
A FRAMEWORK FOR THE MANAGEMENT OF CONTEXT-AWARE
WORKFLOW SYSTEMS

Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone and Marino Segnan
Dipartimento di Informatica - Università di Torino, Corso Svizzera 185, 10149 Torino, Italy

Keywords: Web Services and Web Engineering, Personalized Web Sites and Services.

Abstract: This paper presents the CAWE framework for the context-aware management of applications based on the
composition of Web Services in complex workflows. We introduce a representation of context-dependent
activities based on an abstraction hierarchy which supports the specification of synthetic and clear workflows.
Moreover, we propose a framework architecture which enriches the capabilities of a workflow engine in order
to support the execution of possibly complex adaptation rules. We have exploited the CAWE framework to
develop a prototype application handling a medical guideline which specifies the activities to be performed
in order to monitor patients treated with blood thinners from their home. The application coordinates actors
playing different roles (e.g., patient, doctor, etc.) and can be accessed by using diverse client devices.

1 INTRODUCTION

Up to now, the introduction of context awareness in
workflow systems has been mainly focused on Qual-
ity of Service management and on the adaptation to
the user’s device; e.g., see (Benlismane et al., 2005)
and (Keidl and Kemper, 2004), respectively. In con-
trast, little effort has been devoted to support context-
awareness in composed applications whose business
logic imposes the management of complex and long-
term interactions with the service suppliers. Web Ser-
vices having complex interaction protocols have been
integrated in standard workflows by utilizing Web
Service composition languages, such as WS-BPEL
(OASIS, 2005). However, the context-aware activity
executions have been specified by directly modeling
all the decision points and the alternative execution
paths in flat workflows, which turn out to be hardly
readable for the workflow designer and are little ex-
tensible (e.g., to handle a new contextual condition
and the associated course of action).

In order to enhance the flexibility of workflow and
Web Service composition systems, context informa-
tion and context-adaptation rules should be explicitly
represented in the application logic. As a first step in
this direction, we propose the CAWE (Context Aware

Workflow Execution) framework for the management
of context-aware applications whose business logic is
implemented as a context-sensitive workflow. CAWE
is based on the following features:

• A hierarchical representation of the workflow,
which can includeabstract activitieshiding the
context-dependent details.

• The association of each abstract activity with its
implementations. These are a set of alternative,
context-dependent parts of the workflow which
can be performed in different context states.

• The declarative specification of the context condi-
tions determining the selection of the appropriate
context-dependent part of the workflow at execu-
tion time.

These features support the execution of alternative
courses of action and the context-aware invocation of
Web Service suppliers.

In order to test the functionality offered by our
framework, we have developed a proof-of-concept
prototype and we have instantiated it on the execu-
tion of a medical guideline for the home assistance
of patients affected by heart diseases and treated with
blood thinners. The application, which coordinates
the activities to be performed by the patient, by the

80
Ardissono L., Furnari R., Goy A., Petrone G. and Segnan M. (2007).
A FRAMEWORK FOR THE MANAGEMENT OF CONTEXT-AWARE WORKFLOW SYSTEMS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 80-87
DOI: 10.5220/0001279800800087
Copyright c© SciTePress

UI

CA-WF-Mgr

Workflow Specification
Knowledge Base

CtxMgr WS WS supplier WS supplier

Workflow
Engine

Personalization
Module

Figure 1: Architecture of the CAWE framework. Web Service interfaces are depicted as thick lines.

doctor and by other personnel, may be accessed from
the internet, by using a PC or a Smart Phone client.

In the rest of this paper, we describe the architec-
ture of the CAWE framework and the proposed hierar-
chical representation of context-sensitive workflows.
Moreover, we describe in which way a standard work-
flow engine can be exploited to execute this kind of
workflow.

2 THE CAWE FRAMEWORK

The CAWE framework supports the development of
context-aware applications adapting the user interface
and the workflow execution to the context. In this pa-
per, we focus on the second aspect, which is based on
the introduction of a Personalization Module select-
ing, at each stage of execution, the most appropriate
activity path to be performed by the workflow engine.

2.1 Architecture

Figure 1 shows the framework architecture.
A Context Manager service (CtxMgr WS)pro-

vides the contextual information during the execution
of the application. In line with current approaches
to context-aware workflow management, we have de-
signed the Context Manager as a Web Service which
might exploit multiple information sources to synthe-
size the required information.

The Context-Aware Workflow Manager (CA-WF-
Mgr) runs a workflow engine on the process specifica-
tion which defines the business logic of the composed
application. The engine executes an abstract work-
flow (defined later on) as if it were a standard work-
flow. However, each time it encounters an abstract
activity, the engine invokes the Personalization Mod-
ule to retrieve the appropriate context-dependent part
of the workflow and executes it. The Personalization
Module wraps the adaptation logic, which is repre-

sented by the applicability conditions of the context-
sensitive parts of the workflow. The CA-WF-Mgr in-
vokes the CtxMgr WS for retrieving the contextual
information.

A device-dependentUser Interface(UI) enables
the user to interact with the application while carrying
out the tasks assigned to her/him. The UI component
retrieves the context information needed to adapt the
UI pages from the CtxMgr WS.

The CA-WF-Mgr and the CtxMgr WS may in-
voke someWeb Service suppliersto receive external
services. E.g., in our sample scenario we consider a
Nurcery Service, a Clinical Record Manager WS stor-
ing the clinical records of the patients, and the WS
interface of the lab which performs the medical tests.

2.2 Representation of the
Context-Sensitive Workflow

In order to represent the context-dependent parts of
the workflow in a declarative and synthetic way, we
introduce an abstraction hierarchy whose higher-level
elements describe the activities to be performed in
generic way. Specifically:

• We introduce the concept ofabstract activityto
denote an activity schema which does not directly
specify a piece of business logic of the applica-
tion (e.g., starting a task to be performed by a hu-
man actor, sending or waiting to receive a mes-
sage from a Web Service, or carrying out some
internal computation). In fact, the actions to be
executed in order to complete the activity are se-
lected at runtime, depending on the context state.
An abstract activity is characterized by the follow-
ing features:

– Abstract activity name.

– Input and Output arguments. The input argu-
ments must have been set before invoking the
abstract activity. The output arguments are set
as a result of the completion of the activity, i.e.,

A FRAMEWORK FOR THE MANAGEMENT OF CONTEXT-AWARE WORKFLOW SYSTEMS

81

start

evaluateResults
(patient,date,bloodResults,)

SendToHospital(patient)end

no yes
eval=OK?

onMessage:
bleeding or
fainting

onAlarm (interval)

pick

setUrgency(patient, "high")

emailPatient(date, therapy)

EVAL

ManageBloodCollection
(patient, date, time, appCode,) BLOODRESULTS

storeTherapy(patient,date,)THERAPY

eval(date, time,)INTERVAL

BookBloodTest(patient, date,)TIME, APPCODE

setFirstBloodTest(patient,)DATE

Figure 2: Abstract workflow of our medical application.

after one of its implementations has success-
fully terminated.

– Input variables of the applicability conditions.
This is a list of variables occurring in the ap-
plicability conditions associated to the imple-
mentations of the abstract activity. The vari-
ables are a subset of the input arguments of the
activity.

• We defineabstract workflowa workflow schema
including at least one abstract activity: the work-
flow abstracts from the details of execution of at
least one (context-dependent) activity. If a work-
flow does not contain any abstract activity, it rep-
resents aconcrete workflowand it can be executed
by the workflow engine in straightforward way.1

Each abstract activity has an associated a set of
context-dependent implementationsrepresenting the
alternative courses of action which the workflow en-
gine should actuate, depending on the context. Each
context-dependent implementationis characterized by
the following features:

• Identifier of the implementation.

1In some work about workflow systems, the terms
abstract and concrete workflow denote, respectively, the
schema of a workflow and its instances. Notice that in this
paper we adopt a different meaning.

• Implementsfield. This feature specifies the name
of the implemented abstract activity.

• Workflow specification. Each context-dependent
implementation consists of a workflow and rep-
resents a subprocess to be completed in order to
achieve the results of the abstract activity.2 The
workflow may be elementary, i.e., composed of a
single activity.

• Input and output arguments. The input and output
arguments are set according to the values of the
corresponding input/output arguments of the ab-
stract activity; the correspondence is by name. If
the workflow is elementary, the input and output
arguments are the input and output arguments of
its included activity.

• Context-dependent variables. This is a list of
process variables whose value has to be set ac-
cording to the context, when the implementation
is selected for execution. We introduced this
feature in order to support a reactive adaptation
to context parameters whose value can change
abruptly during the execution of the application.
In fact, although such parameters might have al-
ready been evaluated during the execution of the

2The implementation of an abstract activity might itself
be an abstract workflow.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

82

start
requestLabApp
(patient, date)

emailPatient
(appCode,date, time, address)

end

start

requestNurseAvailability(patient,
appCode1,date,time1,address)

end

 avail? n

requestAmbulance
(patient, appCode1, date, time1)

y

requestLabApp
(patient, date)

emailPatient
(appCode3,date, time3)

emailPatient
(appCode2,date, time2)

receiveLabAppNotification
(patient, , date,)APPCODE TIME, ADDRESS

receiveLabAppNotification
(patient, , date,)APPCODE1 TIME1, ADDRESS1

receiveNurseAvailNotification(
 ,date,)APPCODE2 TIME2

receiveAmbulanceNotification
(patient, , date,)APPCODE3 TIME3

Identifier of implementation: MovBBT
Implements: BookBloodTest
...
Applicability condition: movable = true

Identifier of implementation: Not-MovBBT
Implements: BookBloodTest
...
Applicability condition: movable = false

avail

Figure 3: Context-dependent implementations of abstract activity BookBloodTest. (for movable and not movable pa-
tients).

application, they need to be refreshed in order to
suitably influence the system behavior.

• Applicability condition. A boolean condition
which is true if the context-dependent implemen-
tation can be applied in the current context, false
otherwise. The applicability conditions are char-
acterized byinput variables(bound to the val-
ues of the corresponding input arguments of the
abstract activity) andcontext-dependent variables
(bound according to the context).

Figure 2 depicts the abstract workflow of our proto-
type application. Abstract activity names start with
uppercase letter and concrete activity names start with
lowercase letters. Moreover, the output arguments of
the activities are uppercased. We describe only the
first part of the abstract workflow for space reasons:

1. A doctor starts the workflow by set-
ting the first blood test to be performed
(setFirstBloodTest(patient, DATE)).

2. The application reserves a blood test with a lab at
the specified date and evaluates the time interval
before the test (BookBloodTest(patient,
date, TIME, APPCODE), eval(date,
time, INTERVAL)).

3. If the patient’s health state is good, she waits un-
til the date of the test (onAlarm(interval)).
However, if any warning symptoms occur be-
fore that date (onMessage ...), the service sets
the urgency of the case (setUrgency(patient,
‘‘high’’)). Thepick scope includes the com-
peting courses of action.

4. At the specified date, or after a warning symp-
tom, a blood sample is taken from the patient
(ManageBloodCollection(patient, date,
time, appCode, BLOODRESULTS)). The lab
analyzes the sample and returns the results,
which are evaluated by a doctor. If the results
are good, the next blood test and the therapy

A FRAMEWORK FOR THE MANAGEMENT OF CONTEXT-AWARE WORKFLOW SYSTEMS

83

are set; then, the application notifies the patient
(emailPatient(date, therapy)) and the
flow restarts from item 2. Otherwise, the patient
is advised to go to the hospital.

Figure 3 depicts the context-dependent implementa-
tions associated to theBookBloodTest abstract ac-
tivity. Both implementations are concrete workflows:

• The first one may be performed if the patient can
be transported by car (movable(patient) ap-
plicability condition). The workflow specifies that
the application must obtain an appointment with
the lab (requestLabApp(patient, date),
receiveLabAppNotification(patient,
APPCODE, date, TIME, ADDRESS) and notify
the patient (emailPatient(appCode, date,
time, address)).

• The second one is suitable to handle pa-
tients which cannot be transported by car (not
movable(patient)) and specifies the activities
to be performed in order to request a nurse who
collects the patient’s blood at her home, or an am-
bulance to take the patient to the lab.

It should be noticed that our abstraction mechanism
enables the context-dependent invocation of alterna-
tive Web Service suppliers offering similar services,
and the management of different invocations on the
same Web Service. Specifically:

• An abstract activity A(arg1, ..., argn) might
be implemented as alternative elementary sub-
processes, each one including one of the fol-
lowing concrete activities:C1(arg1, ..., argx), ...
Cm(arg1, ..., argy). Suppose that the activities
invoke different Web Service suppliers, e.g., offer-
ing the same service at different QoS levels. Then,
the application can select the one to be invoked on
the basis of the applicability conditions associated
to the alternative implementations.

• The abstract activity A(arg1, ..., argn) might be
implemented as a single concrete activityC(arg1,
..., argz), which can be invoked by setting its
context-dependent variables according to the con-
text. For instance, the same supplier might offer a
service at different QoS levels and the application
might choose the most appropriate one by setting
the arguments of the invocation.3

It should be noticed that, although the context
variables are particularly significant in the last case
above, they may occur in any implementation of
an abstract activity. In our sample scenario, the

3In this case, the applicability condition of the concrete
activity is always true, because it is not necessary to dis-
criminate between a set of alternatives.

context-aware invocation of a Web Service supplier
is exemplified by theManageBloodCollection
abstract activity. In fact, its implementations include
a notifyUrgency(patient, date, urgency)
concrete activity, which the application executes in
order to inform the lab about the degree of urgency of
the patient (if the urgency is high, the results should
be produced in few hours). Theurgency variable is
stored in the patient’s context and can be retrieved by
interacting with the CtxMgr WS.

2.3 Context-aware Workflow Execution

The workflow engine wrapped by the Context-Aware
Workflow Manager creates an instance of the abstract
workflow each time a user performs the starting activ-
ity of the workflow (in our application, when the doc-
tor sets the first blood test for a given patient). The
abstract workflow is executed as if it were a standard
one; however, when the engine encounters an abstract
activity, it works as follows:

1. First, it invokes the Personalization Module on the
abstract activity.

2. When the Personalization Module returns the ap-
propriate context-dependent implementation, the
workflow engine performs it as a subprocess of
the main process instance.

3. At subprocess completion, the control returns to
the abstract workflow, in order to perform the next
(concrete or abstract) activity.

The Personalization Module, invoked on an abstract
activity, works as follows:

1. First, it retrieves the context-dependent imple-
mentation(s) of the abstract activity from the
Workflow Specification Knowledge Base. If the
abstract activity is associated to more than one im-
plementation, the module evaluates the applicabil-
ity conditions of the alternatives and selects one
of the applicable implementations. The module
retrieves from the CtxMgr WS the values of the
context-dependent variables of the applicability
conditions.

2. The module binds the context-dependent vari-
ables of the selected implementation to their cur-
rent values and returns the implementation to-
gether with the bindings.

In the following section, we explain how the standard
behavior of a workflow engine can be extended to per-
form the steps described above. Before entering such
technical details, we want to point out that this ex-
tension does not require any changes to the workflow
engine: in fact, it can be implemented by embedding

WEBIST 2007 - International Conference on Web Information Systems and Technologies

84

Figure 4: Management of abstract activity.

some executable code in the definition of the abstract
activities.4 In this way, the workflow engine can per-
form each abstract activity as if it were a concrete one;
however, the execution results in the invocation of the
Personalization Module and the enactment of the ap-
propriate implementation.

2.4 Details About the Cawe Prototype

We have developed an initial prototype of the CAWE
framework on top of jBPM (Koenig, 2004), a business
process management system based on Petri Net model
(Jensen, 1976) implemented in Java. jBPM is based
on Graph Oriented Programming model, which com-
plements object-oriented programming with a run-
time model for executing long lasting workflows ac-
tivities, represented as graphs.

In the jBPM language, standard workflow activi-
ties are represented asActions, i.e., they are pieces
of Java code that implement the business logic and

4In turn, this can be achieved at workflow design time,
by translating the abstract workflow to a very similar one,
where the abstract activities have been modified.

are executed upon events in the process. The direct
association ofActions to pieces of executable code
makes the invocation of special purpose operations
rather straightforward. jBPM also separates the nav-
igation of the underlying graph (workflow) from the
maintenance of the workflow state, which is stored
in an object token, similar to the Petri Net model.5

Furthermore, jBPM offersprocess-state nodes
to represent the subprocesses to be performed.

In the CAWE prototype, we have implemented
the abstract activity as a process-state node repre-
senting the subprocess which has to be performed.
It should be noticed that, in a standard jBPM work-
flow, aprocess-state node stores the name of the
workflow definition to be executed when the token
(workflow state) reaches the node. However, in our
framework, the name of such a workflow is known
only after the invocation of the Personalization Mod-
ule. Therefore, we manage the node as follows (see
Figure 4, which shows the management of an abstract
activity onBookBloodTest):

5In our framework, we assume that the workflow is rep-
resented as a Petri Net.

A FRAMEWORK FOR THE MANAGEMENT OF CONTEXT-AWARE WORKFLOW SYSTEMS

85

• The node is set to the same name as the abstract
activity; e.g.,BookBloodTest.

• We use theAction (delegation) tool provided
by jBPM and we define a java class han-
dler, theAbstractManager, that the jBPM en-
gine invokes as soon as the token of execu-
tion enters the node (event:enter-node). The
AbstractManager invokes the Personalization
Module to get the context-dependent process im-
plementation that has to be performed. Moreover,
the handler sets the subprocess definition obtained
from the Personalization Module into the process-
state node associated to the abstract activity be-
fore starting its execution.

The Personalization Module invokes the CtxMgr
WS in order to evaluate the context-dependent vari-
ables used by the subprocess implementation and
passes the context-dependent variables input list to
the AbstractManager. In turn, the handler sets
these variables in the new subprocess instance in or-
der to make them available at execution time.

In the following we provide some details about the
execution of theAbstractManager.

• At invocation time, the handler gets the name of
the abstract activity and retrieves from the main
process instance the values of the variables in-
volved in the evaluation of the applicability con-
dition.

• Then, it invokes the Personalization Module pass-
ing the name of the abstract activity and the in-
put variables list of the applicability condition
(getImplementation arrow in the figure).

• The AbstractManager receives the following
data items from the Personalization Module:

– The context-dependent implementation to be
performed; e.g.,MovBBT.

– A list of evaluated input context-dependent
variables. Notice that the list of input argu-
ments used in the selected context-dependent
implementation is by definition a subset of the
input arguments declared at the abstract activity
level and is made available to the implementa-
tion process by the workflow engine.

• TheAbstractManager sets the implementation
definition as the subprocess definition for this
process-node (setSubProcess arrow in the fig-
ure).

• Moreover, theAbstractManager starts the exe-
cution of the subprocess (Signal arrow).

Similar to the input arguments, output arguments are
copied to the parent process by the workflow engine.

3 RELATED WORK

The introduction of hierarchical workflows is not
new; for instance, several workflow languages en-
able the designer to define complex activities which
expand in workflows forming a composition hierar-
chy; e.g., see WS-BPEL (OASIS, 2005) and process
languages such as Petri Nets (Jensen, 1976; van der
Aalst, 2002). Our proposal differs from such ap-
proaches because it introduces a specialization hierar-
chy supporting the actuation of the same abstract ac-
tivity in different ways. Indeed, our framework brings
to the research in workflow systems some concepts
that have been traditionally developed in the research
about autonomous agents and reactive planners; e.g.,
see (Firby, 1987; Georgeff and Lansky, 1987).

In the Semantic Web research, planning technol-
ogy has been applied to enhance the flexibility in Web
Service composition. However, only simple compo-
sition plans have been considered up to now. Typi-
cally, the interaction with the composed service has a
very short duration, so that persistence management
is not needed; moreover, the invocation of Web Ser-
vice suppliers is elementary because their interaction
protocols consist of exchanging very fewrequestand
responsemessages; e.g., see (McIlraith et al., 2001;
Balke and Wagner, 2003; Keidl and Kemper, 2004).
Indeed, (Laures and Jank, 2005) deals with persis-
tent workflow composition and dynamic selection of
service providers. However, only a reference imple-
mentation is provided, which does not specify details
about the execution model.

As a matter of fact, relying on a standard workflow
engine for the management of the business logic of an
application has scalability and robustness advantages,
which are not guaranteed by other technologies, such
as planners. In fact, several proposals for the adoption
of planners in Web Service composition have turned
out to exploit workflow engines for the service execu-
tion; e.g., (Mandell and McIlraith, 2003; Laures and
Jank, 2005).

4 CONCLUSIONS

We have presented the CAWE framework for the
development of applications composing Web Ser-
vice suppliers in context-sensitive workflows. The
context-aware workflow execution is based on the in-
troduction of abstract activities hiding the context-
dependent details; abstract activities can be per-
formed by following different courses of action, de-
pending on the context state.

In order to test the functionality of the CAWE

WEBIST 2007 - International Conference on Web Information Systems and Technologies

86

framework and its applicability in realistic domains,
we have developed a proof-of-concept prototype sys-
tem and we have instantiated it on a medical domain.

The approach proposed in this paper has the fol-
lowing advantages:

• First of all, the introduction of abstraction en-
hances the readability of the context-sensitive
workflow, which could be very hard to under-
stand, if represented as a flat graph including all
the alternative courses of action.

• Second, the organization of context-sensitive
workflows as a hierarchy of simpler workflows
with applicability conditions supports a seamless
extension of the business logic of an application to
take new contextual conditions and new courses
of action into account. In fact, a context-sensitive
workflow can be extended by replacing any con-
crete activity with an abstract activity and its im-
plementations. Moreover, given an abstract activ-
ity, a new context-dependent implementation can
be added by revising the applicability conditions
of the existing implementations and introducing
the new one in the workflow specification.

• Finally, the introduction of abstraction enables the
designer to define the workflow top-down, starting
from a general view of the activities to be man-
aged, and specifying the low-level details later on.
In our medical domain, this separation helped us
to focus first on the most relevant aspects of the
medical guideline (provided by a physician), and
to postpone the specification of details such as re-
serving an ambulance or requesting a nurse.

It should be noticed that the hierarchical workflows
we propose can be executed by a standard workflow
engine without the Personalization Module. In fact,
although abstract activities and contextual conditions
extend the syntax of standard workflow languages, a
hierarchical workflow could always be translated to
a flat one by replacing abstract activities with deci-
sion points and by including the alternative courses
of action directly into a flat workflow. However, this
translation would generate workflows which are very
difficult to read and debug. For this reason, we pre-
ferred to extend the capabilities of the workflow en-
gine by making it invoke the Personalization Module,
specialized in the execution of adaptation strategies.
As discussed in the paper, even this extension can
be performed by a standard workflow engine without
modifying its core, if the context-sensitive workflow
is translated to an intermediate representation which
maintains its hierarchical structure but expands the
code of the abstract activities. We believe that our ap-
proach is strategic because the Personalization Mod-

ule, which now evaluates boolean conditions, might
be extended to handle complex adaptation rules, with-
out modifying the rest of the system.

ACKNOWLEDGEMENTS

This work is supported by the EU (project WS-
Diamond, grant IST-516933) and by MIUR (project
QuaDRAnTIS).

REFERENCES

Balke, W. and Wagner, M. (2003). Towards personalized
selection of Web Services. InProc. of 12th Int. World
Wide Web Conference (WWW’2003), Budapest.

Benlismane, D., Maamar, Z., and Ghedira, C. (2005). A
view-based approach for tracking composite Web Ser-
vices. InProc. of European Conference on Web Ser-
vices (ECOWS-05), pages 170–179, Växjö, Sweden.

Firby, R. (1987). An investigation into reactive planning in
complex domains. InProc. 6th Conf. AAAI, Seattle
(WA).

Georgeff, M. and Lansky, A. (1987). Reactive reasoning
and planning. InProc. 6th Conf. AAAI, pages 677–
682, Seattle.

Jensen, K. (1976).Coloured Petri nets: basic concepts,
analysis methods and practical use. Springer-Verlag,
Berlin.

Keidl, M. and Kemper, A. (2004). Towards context-aware
adaptable Web Services. InProc. of 13th Int. World
Wide Web Conference (WWW’2004), pages 55–65,
New York.

Koenig, J. (2004). JBoss jBPM white paper.
http://www.jboss.com/pdf/jbpmwhitepaper.pdf.

Laures, G. and Jank, K. (2005). Adaptive Ser-
vices Grid Deliverable D6.V-1. Reference archi-
tecture: requirements, current efforts and de-
sign. Technical report, http://asg-platform.org/cgi-
bin/twiki/view/Public/ReferenceArchitecture.

Mandell, D. J. and McIlraith, S. A. (2003). Adapting
BPEL4WS for the Semantic Web: The bottom-up ap-
proach to Web Service interoperation. InLNCS 2870,
Proc. 2nd International Semantic Web Conf. (ISWC
2003), pages 227–241. Springer-Verlag, Sanibel Is-
land, Florida.

McIlraith, S., Son, T., and Zeng, H. (2001). Semantic Web
Services.IEEE Intelligent Systems, 16(2):46–53.

OASIS (2005). OASIS Web Services Business
Process Execution Language. http://www.oasis-
open.org/committees/
documents.php?wgabbrev=wsbpel.

van der Aalst, W. (2002). Making work flow: on the appli-
cation of Petri Nets to Business Process Management.
In Proc. of 23rd Int. Conf. on Applications and Theory
of Petri Nets, pages 1–22, Adelaide, South Australia.

A FRAMEWORK FOR THE MANAGEMENT OF CONTEXT-AWARE WORKFLOW SYSTEMS

87

