
XMODEL-BASED TESTING OF XSLT APPLICATIONS

Antonia Bertolino, Jinghua Gao, Eda Marchetti and Andrea Polini
Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”

Consiglio Nazionale delle Ricerche
Via Moruzzi, 1 – 56124 Pisa, Italy

Keywords: Automatic Tests Generation, Category Partition, XSLT Testing.

Abstract: Model-based testing is nowadays the emerging paradigm for software testing in many domains. In the Web
arena XML Schema is becoming the technology of reference to describe data structure and applications input
domains. The proposed tool (TAXI - Testing by Automatically generated XML Instances) exploits such a
model to automatically derive correct XML instances applying the well-known Category-partition method-
ology. In this paper we introduce an improvement of TAXI to test XSLT Stylesheets. Indeed, with XSLT
Stylesheets increasingly getting larger and more complex, their correctness becomes a crucial factor for soft-
ware quality and hence we believe that they need careful validation. Two different case studies illustrate the
approach to the validation of XML to XML and XML to XHTML transformations.

1 INTRODUCTION

Generally speaking a model is a schematic representa-
tion of an idea or information including all the charac-
teristics and properties useful for a specific purpose in
a precise context. Considering in particular the test-
ing phase, models are necessary and extremely im-
portant. However the weakest point of models is that
many times models exist only in the human minds or
rely on domain knowledge of people involved in the
diverse activities.

Model based testing is nowadays one of the
widespread techniques adopted for validating and ver-
ifying applications properties. Even if one of the main
arguments against model-based testing is the effort
necessary for constructing or maintaining the mod-
els and/or annotating them properly for making easier
the testing phase. Many industrial realities relies on
this technique for guiding, managing and executing
the testing phase.

In the context of web applications a funda-
mental step for the widespread adoption of mod-
els has been the adoption of standard formats and
open data specifications, and most notably the re-
cent introduction of the eXtensible Markup Lan-
guage (XML) (W3CXML, 1996). The XML Schema

(W3CXMLSchema, 1998) has then spread up as the
notation for formally describing what constitutes an
agreed valid XML document within a certain applica-
tion domain.

Thus XML Schemas represent explicit and for-
mal models of data in which all the type constraints
and possible data combinations are represented. From
this descends naturally the possibility of introducing a
Model Based Testing over XML, i.e., readapting com-
monly adopted black-box testing techniques (for in-
stance partition testing approaches (Bertolino et al.,
2005)), by exploiting the XML Schema characteris-
tics. Translated in terms of testing an XML Schema
means having a clear representation of the input (out-
put) domain which make easier the construction of
test values and the partitioning of them.

Usually the identification of the proper input par-
titions strongly depends on the skill of the tester and
the background knowledge s/he has about the values
domain. In XModel-Based Testing the XML Schema
provides an automatic subdivision of the input do-
main into subdomains, according to the basic princi-
ple of partition testing. (la Riva et al., 2006). From
the diverse subdomains identified, the application of
partition testing amounts to thesystematic derivation
of a set of XML instances. Systematic generation of

282
Bertolino A., Gao J., Marchetti E. and Polini A. (2007).
XMODEL-BASED TESTING OF XSLT APPLICATIONS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Web Interfaces and Applications, pages 282-288
DOI: 10.5220/0001284202820288
Copyright c© SciTePress



XML instances, differently from a random based ap-
proach, clearly has important consequences on the ef-
fectiveness of the generated test suite permitting to
derive meaningful statistics on the kind of instances
generated, and then on the covered features.

In this perspective, a proof-of-concept tool, called
TAXI (Testing by Automatically generated XML In-
stances) for the systematic generation of XML in-
stances (Bertolino et al., 2006) according to the XML-
based Partition Testing (XPT) method has been previ-
ously developed. It takes in input an XML Schema
and automatically generates a set of XML instances,
by implementing several criteria and heuristics, so
that it can be used as test data for the black box test-
ing of a component, whose expected input conforms
to the taken schema.

The contribution of this paper is exploit the poten-
tial of the tool TAXI for testing the XSLT Transforma-
tion tool. If from one said there are explicit models of
the data domain, i.e. XML Schemas, correspondingly
there is the more increasing needs of mechanisms for
transforming one format into another. Technologies
developed for such purpose require the definition of
documents called Stylesheets. These define how data
described within a specific input document should be
transformed and formatted into the target document.
With reference to the context of Web applications cer-
tainly the most successful specification for such pur-
pose is that of the eXtensible Stylesheet Language
Transformation (XSLT) (W3CXSLT, 1999).

However writing down explicitly the rules that
allow specific transformations sometimes is a quite
complex work especially when the transformation
output should adhere to precise XML format, such
as Schemas. In such cases the possibility of making
errors in the stylesheet could be considerable and in
parallel the difficulty in identifying them could have
a hight increase. As a consequence, due to the impor-
tance and the criticality of these documents, the ne-
cessity of methods for automatically testing the cor-
rectness of the stylesheets and quickly identifying
their source of errors arise.

This paper wants to face exactly this last need, and
provides, by means of TAXI, a testing framework for
automatically and systematically generate test cases
for verifying the XSLT Stylesheets correctness. We
therefore assume that the the input and the output of
the XSLT Stylesheets are and have to be, respectively,
conform to given XML Schemas. Thus we use TAXI,
for automatically generate the set of test cases to be
run with the tested XSLT Stylesheet, and with and a
XML Validatior for automatically check the correct-
ness of the transformations.

In the rest of the paper we present an overview of

the related works (Sec. 2) and a brief description of
the TAXI tool (Sec. 3). Then we describe the appli-
cation use of TAXI for testing the XSLT Transforma-
tion Processor (Sec. 4) and the application of the in-
tegrated testing framework to some case studies (Sec.
5). Conclusions are briefly drawn in (Sec. 6).

2 RELATED WORKS

Nowaday XSLT is used widely in web, document
composition, electronic and print publishing applica-
tions. Increasingly, in some cases, XSLT Stylesheet
becomes the core of document creation and process-
ing pipelines. XSLT Stylesheets are getting larger
and more complex, and containing the information of
business logic. The correctness of XSLT Stylesheets
then becomes an extremely important factor that can
affect the software quality.

There are a lot of tools that already exist for
XSLT testing. Most of them do unit testing to
XSLT Stylesheets. Such as UTF-X (Radajewski and
Daniel, 2006), which is an extension to the JUnit
Java unit testing framework and provides function-
ality for unit testing XSLT stylesheets and strongly
supports the test-first-design principle; tennison-tests
(tennison, 2006), which allows user to write unit-tests
in XML, and exercising XSLT from Ant; and Al-
ster (Alster, 2006), which is an XSLT unit testing
framework, allows the creation and “execution” of
XSLT Stylesheets containing specially marked “test
templates”.

The main weakness of these tools is in the selec-
tion of test cases, which is mainly based on manual
setting. Since XSLT becomes more and more com-
plex, the costs of test cases creation is rising rapidly.

3 TAXI

In this section we briefly describe the XPT methodol-
ogy. For space limitations, we assume a basic knowl-
edge of XML and XML Schema, and in the text we
will refer to the elements of XML Schema using this
format.

The XPT methodology is largely inspired to the
well-known Category Partition (CP) technique (Os-
trand and Balcer, 1988), which provides a stepwise in-
tuitive approach to identify the relevant input param-
eters and environment conditions and combine their
significant values into an effective test suite. While
the original CP technique relied on a specification ex-
pressed in natural or semiformal language, the XML
Schema today provides an accurate representation of

XMODEL-BASED TESTING OF XSLT APPLICATIONS

283



the input domain and lends itself quite naturally to the
automated application of CP.

The XPT methodology consists of four different
components (see Fig. 1):

• XML Schema Analyzer (XSA), which prepro-
cesses the XML Schema applying some ini-
tial transformations (see details below), and suc-
cessively manages the final instance generation
phase.

• Test Strategy Selector (TSS), which implements
diverse test strategies useful for selecting the el-
ements of the XML Schema to be used for in-
stance generation. This allows the distribution of
final instances covering the most critical parts of
a Schema.

• Values Storage (VS), which is in charge of stor-
ing the values used for instances generation and
managing a common database;

• User Interface (UI), which implements and con-
trols the interaction between the user and the tool.

These four components work in agreement, ac-
cording to the scheme shown in Figure 1. Following
this schema, in the rest of this section we briefly de-
scribe the main processing steps of TAXI.
Input XML Schema. The UI first reads the in-
put XML Schema and then starts two further activi-
ties that proceed in parallel:Weight Assignmentand
Database Populationin charge of the TSS and VS
components, respectively.
Weight Assignment. The idea underneath the former
is that the children of the samechoice might not have
the same importance with regard to instances deriva-
tion, and therefore the most important ones from the
tester’s point of view should be privileged. TAXI ex-
plicitly requires the user to annotate each child of a
choice element with a value (called theweight), be-
longing to the [0,1] interval, representing its relative
“importance” with respect to the other children of the
samechoice (clearly the sum of the weights associ-
ated to all the children of the samechoice element
must be equal to 1). The default assignment is that all
children have the same weight.
Database Population. It provides the tester with the
possibility of memorizing set of interesting values for
each of the element considered in the XML Schema.
In particular the activity provides three different op-
tions: i) specify the source (for instance a URL) from
which the data can be downloaded or the paths to the
files containing specific values; ii) leave the user with
the possibility of manually inserting the useful val-
ues; iii) recover the values directly from the Schema
in those cases a list is provided (for instance by use of
theenumeration restriction).

Figure 1: XPT main activities.

Preprocessing. The XPT methodology proceeds then
with a Preprocessingstep in which the other XML
Schema constructs different fromchoice, like all,
simpleType, ComplexType and so on, and the shared
elements, likegroup, attributeGroup, ref, and
type, are analyzed and manipulated. Considering,
for instance, theall elements, one of the possible
sequences of their children elements is randomly cho-
sen and used for generating instances; considering the
group elements, their body is copied in each element
which refers to them.
Choice Analysis. In case of severalchoices within
one schema, as many subschemas as the number
of the possible combinations of the children of the
choice nodes are produced. Once this operation is
completed, the set of the partial subtree weights is
normalized so that the sum of the subtree weights over
the entire set of substructure is equal to 1.
Strategy Selection. The subtree weights are then
used in theStrategy Selectionactivity. Specifically
three different test strategies are implemented:

• Applying TAXI with a fixed number of instances,
that could be in practice the case in which a finite
set of test cases must be derived.

• Applying TAXI with a fixed functional coverage,
when a certain percentage of functional test cov-
erage (e.g. 80%) is established as an exit criterion
for instances generation (and then consequently
for testing).

• Applying TAXI with a fixed functional coverage
and number of instances: the above mentioned
strategies are combined. XPT first selects the
proper substructures useful for reaching a certain

WEBIST 2007 - International Conference on Web Information Systems and Technologies

284



percentage of functional coverage and then con-
siders the subtree weights of these selected sub-
schemas and normalizes them so that their sum is
still equal to 1.

Occurrences Analysis. The XPT methodology pro-
ceeds with the activity calledOccurrences Analysis,
pertaining to the VS components, which analyzes the
occurrences declared for each element in the sub-
schema and, applying a boundary condition strategy,
derives the border values (minOccurrences and max-
Occurrences) to be considered for the final instances
generation.
Intermediate Instance Derivation. The XSA com-
ponents then constructs a set of intermediate in-
stances structures, each one derived by the combina-
tions of the border elements occurrences. These are
roughly modified tree representations of the various
sub-schemas in which special tags and instructions
are introduced to make the final instance derivation
easier.
Value Management. The latter step is done in par-
allel with the Value Managementactivity. Accord-
ing to the number of occurrences, established for each
element during theIntermediate Instance Derivation
phase, the VS component randomly retrieves from the
database to require the number of values. If the stored
values are not sufficient, theValue Managementactiv-
ity interacts with the user, asking either to insert the
proper values or to start a random generation. Dur-
ing this activity, predefined values available in the
Schema and various constraints (for instancefacets)
are also considered.
Final Instance Derivation. According to the test
strategy selected and using the values provided by the
Value Managementstep, theFinal Instance Deriva-
tion phase produces and stores the final set of in-
stances, which then corresponds to the final test suite,
in a suitable directory.
Test Instances Packaging and Browsing. This is the
last activity of the XPT methodology. It allows the
browsing and visualization of the generated instances
by user.

4 APPLYING XMODEL-BASED
TESTING

This section describes how XML Model based testing
can be applied to the verification of Stylesheets defin-
ing transformations over XML instances into another.

Specifically we focus on the XSLT Tranformation
Processors which are the interpreters of the language
that, taken in input the starting XML file, read the

stylesheet defined using XSLT and apply the rules to
generate the target document. Figure 2 shows the pro-
cess of transforming one XML instance into another.

Many stylesheets have been defined by developer
just for deriving HTML documents retrieving data
stored into XML documents.

Nevertheless this is not the case with other appli-
cation tools that use XML data formats to interoper-
ate. In such cases the document must strictly adhere
to an agreed format (XML Schema) and any mini-
mal divergence from the specified schema can affect
interoperability. The basic assumption in this con-
text is that the input and the output instances that are
shown in Figure 2 have to conform to the given XML
Schemas. Our insight is that the XModel-Based Test-
ing approach can be helpful here providing an effec-
tive way to test a defined transformation.

Figure 3 provides an overview of how model
based testing can be applied in this setting to ver-
ify the correctness of a stylesheet. The basic idea
is to use the TAXI tool, which is introduced in Sec-
tion 3, to derive a testing framework (called “TAXI
XSLT Testing” - TXT) that permits, in a largely auto-
matic way, to verify the correctness of a transforma-
tion stylesheet.

First steps of the resulting process is the automatic
and systematic generation of a large number of in-
stances, derived by TAXI guaranteeing the confor-
mance to the XML Schema. In fact TAXI derives
instances with many different characteristics that per-
mits to test the specified transformation in many dif-
ferent contexts. Next step of the process foresees than
the transformation of each single instance into a target
document. At this point the assumption that the target
instances must conform to an XML Schema gives us a
model of the oracle that can be used to check the cor-
rectness of the instances generated by the stylesheet
transformation.

The XML based check carried on in the described
framework provides a necessary condition just of syn-
tactical nature for the correctness of the stylesheet.
This means that the stylesheet produces an instance
that will be judged correctly with respect to the XML
schema but however it could be different from the
intentions of developer. Nevertheless having a com-
pletely automatic testing process that use already de-
veloped models (such as XML Schema) largely aug-
ment the verification power of stylesheet transforma-
tions. The verification power of the main process
shown in Figure 3 could be easily augmented if the
final check can use other mechanisms not only based
on the XML Schema conformance check. For in-
stance the developer could develop a specification us-
ing a rule based language (e.g. Schematron (Schema-

XMODEL-BASED TESTING OF XSLT APPLICATIONS

285



Figure 2: An example of tranformation using an XSLT stylesheet.

tron, 2006)) that permit to specify more content re-
lated checks. At the same time in some cases the fi-
nal check could be conducted not based on the XML
Schema but using a validator developed by someone
else. Next section will provide two different exam-
ples using different kind of check for the XML output
instances.

5 CASE STUDY

In this section we will show two case studies. One
case study is to test the XML to XML transforma-
tion. In this case both of these XML files must be
conformed to the specific reference XML schemas.
Another one is to test an XSLT stylesheet that trans-
forms from an XML file to an XHTML. The XML file
must conform to an XML schema, and the XHTML
must be well-formed.

5.1 Xml to Xml Transformation Testing

The first case study considers a customer manage-
ment system requirement, which is the transformation
from XML into another XML using XSLT stylesheet.
The customer management system has two versions.
In old version, the data of customers are stored as
the structure that defined by the XML schema (Fig
4 source XML schema1). The customer data are de-
fined as the attribute of the elementcustomer.

But in the new version of the management sys-
tem, the structure of customer information is changed
into the schema, which is shown in Fig 4 (target XML
schema). In the new structurecustomer has only one
attribute, which isCustomerID, other data are stored
as it’s child elements.

1For space limitation we do not show the source
schemas, instead we create simplified versions of them

Figure 3: The XSLT Model-based testing framework.

An XSLT Stylesheet is created to transform all
customer records from the old structure to the new
one, which is shown in Fig 4 (XSLT stylesheet). Since
the XML schema defines only the structure of the file
the XML instances from the schema can have differ-
ent values, and structures. And that XSLT stylesheet
must transform all possible XML instances that can
be generated from the input XML schema properly.
That is why we use TAXI to test XSLT template, and
ensuring the correctness of the transformation.

Using TAXI to test the XML to XML transfor-
mation, all of the source XML schema, target XML
schema and XSLT stylesheet are required taking as
input. Then choosing “XSLT Testing” from the TAXI
interface. The testing is done on-the-fly and auto-
matically. When an XML instance derived from the
source XML schema, TAXI then transforms it accord-
ing to the XSLT immediately. And the transformed
XML file (we call it target file) will be validated by
the target XML schema automatically. After that the
result of validation will be recorded into the test report

WEBIST 2007 - International Conference on Web Information Systems and Technologies

286



Figure 4: Case study1 - Input files.

file. Testing will not stop until the XML generation is
complete or user stop this process. User can find the
test report, source XML files and the target XML files
in the folderTAXI instanceson disk C.

In the first case study, there are two XML in-
stances that generated from the source XML schema,
and two target XML files, which transformed by
XSLT stylesheet. Due to space limitations, in Fig 5
only one source XML file and one target file are pre-
sented.

The test report that is shown in Fig 6 gives the
outcome of the testing. The result is “testing failed”.
Errors in the test report are derived from XML val-
idator, which point out the invalid places in the target
XML files. According the test report, we can easily to
discover that the fault is leading by the transformation
of CustomerID. XSLT should keep it as attribute, but
transform it as child element. So the target XML files
are not conform to the target XML schema. Accord-
ing to the analyse of the test report, the bug in XSLT
can be revealed easily.

Figure 5: Case study1 - Source and target XML files.

Figure 6: Case study1 - Test report.

5.2 Xml to Xhtml Transformation
Testing

In many domains the main application of XSLT
stylesheets is transforming XML to XHTML. The
source XML schema is shown in Fig 7 (source XML
schema), which defines the data structure of CD cate-
gory. The information is shown by XML form, which
is very difficult to be understood by people who is not
an expert of XML. The motivation of transformation
is giving those data a nice outlook and showing them
in the clear and neat form. The XSLT Stylesheet is
shown in Fig 7 (XSLT stylesheet).

Currently the testing of the transformation be-
tween XML and XHTML is different with the trans-
formation between XML and XML. The target XML
schema of XML to XHMTL is optional. If it is pro-
vided by user, the XHTML will validated by that

XMODEL-BASED TESTING OF XSLT APPLICATIONS

287



Figure 7: Case study2 - Input files.

schema. Otherwise, like in the case study, the tar-
get schema is omitted, the validation will use only the
specification of XHTML to check if the XHTML is
well-formed. However that gives more flexibility to
the testing.

The test report is shown in Fig 8, all transformed
XHTML files are pass the validation, so the XSLT
stylesheet pass the testing.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented an integrated testing envi-
ronment useful for validating the correctness of XSLT
Transformation processes. For this, according to the
emerging Model-based testing paradigm, we exploit
the TAXI tool, which uses the information provided
by the XML Schema for automatically deriving test
cases, which are here XML instances. TAXI has been
now integrated with an XML Validator, which veri-
fies the correctness of the transformation against the
target XML Schema.

Of course the performance of the proposed test-
ing environment strictly relies on the use of XML
Schemas both for the source and the target XML files
involved in the transformation. These structures in-
crease considerably the interoperabiliy and efficiency
of the Web applications based on XML. Therefore our
claim is that the XML Schemas, considered as “mod-
els” of the input/output domain, can also be used for
automatic testing, and in our view these will repre-

Figure 8: Case study2 - Test report.

sent an interesting new field in the model based test-
ing community. For this we introduced the concept of
XModel-Based testing, and showed how this applies
quite naturally to the validation of XSLT transforma-
tions.

REFERENCES

Alster (2006). Alster-XSLT Unit Testing Framework.
http://alster.sourceforge.net/.

Bertolino, A., Gao, J., Marchetti, E., and Polini, A. (2005).
Partition testing from xml schema. Technical report,
ISTI-CNR. Technical Report n. ISTI-2005-TR-45.

Bertolino, A., Gao, J., Marchetti, E., and Polini, A. (2006).
Systematic generation of xml instances to test com-
plex software applications. InRapid Integration
in Software Engineering, (RISE 2006). to appear in
LNCS. Geneve, Switzerland.

la Riva, C. D., Garca-Fanjul, J., and Tuya, J. (2006). A
partition-based approach for xpath testing. Tahiti,
French Polynesia. IARIA, IEEE Computer Society.

Ostrand, T. and Balcer, M. (1988). The category-partition
method for specifying and generating functional tests.
Communications of ACM, 31(6).

Radajewski, J. and Daniel, A. (2006). Utf-x: Unit testing
framework - xslt. http://utf-x.sourceforge.net/.

Schematron (2006). Schematron.
http://www.schematron.com/.

tennison (2006). tennison. http://tennison-
tests.sourceforge.net/index.html.

W3CXML (1996). W3C XML specification.
http://www.w3.org/XML/.

W3CXMLSchema (1998). W3C XMLSchema specifica-
tion. http://www.w3.org/XML/Schema.

W3CXSLT (1999). XSL Transformations (XSLT).
http://www.w3.org/TR/xslt.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

288


