
SIMPLE EVOLUTION OF COMPLEX WEB SYSTEMS

Lech Krzanik
University of Oulu, Department of Information Processing Science

Box 3000, FIN-90014 Oulu, Finland

Keywords: Web system evolution, pervasive context sensitive applications, user-participative development.

Abstract: Usability implies effective, efficient and satisfactory interaction with a system when using it. Similar
properties are not usually considered when an end user is faced with evolutionary developing or improving a
system – an activity increasingly more often, particularly when the context of using a system undergoes
frequent and significant changes. Project Nomadic Media investigated possibilities for user-participative,
effective, efficient and satisfactory evolution of nomadic systems. We considered geographically
distributed, context-sensitive, personalized systems, exploiting various web services and allowing for a
general function referred to as nomadic blogging. In this paper we demonstrate general policies of evolution
and the specific ways of end-user interaction with the evolving system. The overall strategy may be
generally described as simplicity – effective with clear and straightforward goals, efficient in terms of
resources spent at each small evolutionary delivery step and satisfactory in terms of end-user participation
and reaching the explicit planned user targets. Results of experiments with such systems are demonstrated.

1 INTRODUCTION

We investigate user-participative evolution of web
systems characterized as follows. Complex web
systems are considered including federated context-
sensitive pervasive local subsystems linked to global
web services that contribute to the local behaviour.
In this environment various types of local and
distributed businesses are supported as well as a
range of personal and social links and structures.
Both server and user sides of the system are
considered, and the users interact with the system by
using a broad range of devices, mobile and
stationary. The main goal for such a complex web
system is to coordinate the offered services in a way
which assures that the users may freely change their
physical locations geographically and structurally -
between various business points at a location,
between locations within an environment, between
environments, etc. This type of systems originated
from the investigation of media systems for nomadic
users, later extended to cover for various kinds of
businesses, whether dealing with media directly or
indirectly. The domain was investigated and
validated in project Nomadic Media. The mission of
the project was to “find solutions that allow
consumers to enjoy their content and use interactive

services at the times and in the places they prefer,
using the devices that best suit their circumstances.”
The domain is currently characterized by
considerable uncertainty of requirements,
technologies, markets and regulations. The
evolutionary strategy has therefore been selected for
iterative and incremental development of systems.
An important assumption is to include the end users,
possibly belonging to various stakeholder classes, in
the evolutionary feedback loop. Can we make such
interactions simple enough to be acceptable for end
users?

Usability implies effective, efficient and
satisfactory interaction with a system when using it.
Similar properties are not usually considered when
an end user is faced with evolutionary developing or
improving a system – an activity increasingly more
often, particularly when the context of using a
system undergoes frequent and significant changes.
In order to systematically investigate evolution in
such systems we introduce a general quality attribute
referred to as evolutionary simplicity. The attribute
has the interpretation of usability of evolution
support. It uses similar sub-attributes –
effectiveness, efficiency and satisfaction. Project
Nomadic Media investigated possibilities of user-
participative effective, efficient and satisfactory

340
Krzanik L. (2007).
SIMPLE EVOLUTION OF COMPLEX WEB SYSTEMS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Web Interfaces and Applications, pages 340-346
DOI: 10.5220/0001288803400346
Copyright c© SciTePress

Figure 2: A product line implementation of the variaton
process.

evolution of nomadic web systems, allowing for a
general function referred to as nomadic blogging. In
this paper we demonstrate several policies
supporting evolution and allowing for various ways
of end-user interaction with the evolving system.
They should be effective with regard to clear and
straightforward goals, efficient in terms of resources
spent at each small evolutionary delivery step and
satisfactory in terms of reaching the explicit planned
user targets. We introduce three policies,
respectively: For effectiveness it is the
communicative specification (CS) policy. For
efficiency it is the minimalist architecture (MA)
policy. For satisfaction it is the feedback and
cooperation (FC) policy.

Sections 2 and 3 describe the approach to
evolution and the quality attributes. Section 4
presents the policies. Section 5 demonstrates
selected results. Sections 6 and 7 discuss other work
and formulate conclusions.

2 EVOLUTION

Evolutionary approaches to software development
are well suited for projects of various sizes and
under considerable uncertainty of requirements,
technologies, market and regulations (Larman 2003,
Madhavji et al. 2006). An evolutionary project
necessarily consists of two interleaving processes of
variation and selection. The former delivers variant
instances of the system under consideration, e.g., a
mobile service system, while the latter selects the
instance which is best fit and most responsive to
change. Software evolutionary projects are different
from natural evolutionary systems in the sense that
they have considerably accelerated pace, controlled
variation, and the selection occurs within a limited
population of specimen – hence neither the variation
is as random nor is the selection as natural.
Therefore even more attention must be attached to
efficient and well-targeted ways of generating
variants and assessing them by real stakeholders. Of
most importance is such stakeholder communication
which assures a successful selection process in a
community of many stakeholders – that is the
selection process which is the focus of this paper.
An overview of the evolutionary selection process is
shown in Figure 1.

Thanks to the embedded handling of variability,
software product lines (Bosch 2000, Pohl et al.
2005) offer a suitable way of handling the variation
process of evolutionary projects. An example

implementation from Nomadic Media is shown in
Figure 2.

With the focus on quality requirements, we
consider the attribute-driven evolution. In the
considered project the foreground quality attribute
was usability – in the conventional interpretation of
ISO/IEC (1998; Nielsen, 1993; Faulkner, 2000).
Improvements in system qualities such as usability
may result in new function opportunities – as in the
demonstrators discussed in next sections. The
overall function of the considered systems was
nomadic media management and specifically
nomadic blogging (Blood, 2004; Krzanik, 2005).

Evolution is tightly connected with the
architecture of the evolving system. By architecture
we mean a collection of architectural design
decisions, in particular the evolution decisions,
corresponding to the changing requirements and
constraints. According to Jansen and Bosch (2005)
architecture is the structured composition of a set of
business-driven architectural design decisions.
According to Gilb (2005) architecture is the set of
design artefacts, which are selected or exist to
impact a set of stakeholder requirements, by

Application Evolutionary
specification Application

Product Line

Architectural
Evaluation

Domain Model Context Model

Derivation
(Appl. Engg.)

Solution Space

Quantitative
Property-

Based Notation

Scoping
(Dom. Engg.)

Evolutionary
specification
Evolutionary
Specification

Software
Concept

Preliminary
Requirements

Develop a
Version

Deliver the
Version

Elicit
Customer
Feedback

Deliver Final
Version

Incorporate
Customer
Feedback

Update the
Architecture

Design the
Architecture

Figure 1: The iterative selection process of software
system evolution.

SIMPLE EVOLUTION OF COMPLEX WEB SYSTEMS

341

constraining, or influencing, related systems
engineering decisions.

3 QUALITIES OF EVOLUTION

Because of the likely fundamental role of end users
in web systems evolution, we have investigated the
hypothesis that the quality of evolution can be
measured by the usability of the evolution support
made available to the users. Usability defined by
ISO DIS 9241-11 (ISO/IEC, 1998) refers to products
rather than services; hence we reinterpret it as the
extent to which a service (evolution support) “can be
used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a
specified context of use”. By analogy to good
product usability - meaning that users can easily
perform the different tasks with the product - good
evolution means that users can easily perform
evolution tasks such as providing feedback and
selecting evolution options. By analogy we consider
the evolution simplicity attribute for user-
participative projects, including the three main sub-
attributes: effectiveness, efficiency and satisfaction.

Effectiveness measures the extent to which the
evolution support is able to determine whether the
selected or existing design artifacts provide
contribution toward clear and straightforward goal
specification - suitable for user interaction and
supporting the evolution process. Effectiveness
focuses on fundamental and critical system decisions
(its architecture) and promotes easy communication
between various stakeholders. Efficiency promotes
accomplishing evolution tasks with least resources.
Finally, the satisfaction attribute requires that the
participation in the evolution process is a pleasure to
the participating users. The measurement of the
attribute should be based on the observations of
stakeholder attitudes towards the evolution.

4 POLICIES FOR SIMPLE
EVOLUTION

We propose three policies aiming at contributing to
the three above attributes of effectiveness, efficiency
and satisfaction respectively, for evolving complex
web systems: communicative specification (CS),
minimalist architecture (MA) and feedback and
cooperation (FC). In the proposed configuration CS
is the basic policy, MA and FC depend on it.

4.1 Communicative Specification

The goal of the communicative specification (CS)
policy is to contribute to the effectiveness of the
evolution processes. The solution provides clear and
straightforward web system specifications, which
are suitable for system evolution and can serve as
easy communication media between various
stakeholders. To support effective communication
the specifications shall include elements of both (1)
requirements and (2) design, (3) be able to define
multiple stepwise requirement targets for an
evolving system such that at each delivery step the
process explicitly defines software architecture with
the respective (4) impact on critical requirements so
that evaluation of the effects of the steps is
immediate. Moreover (5) quality of the specification
can also be assessed. Thus the specification
aggregates elements of both problem and solution
spaces. The structure of the specification is shown in
Figure 1. The policy assumes a three-partite
structure of the requirement set including functions,
and attributes (non-functional qualities), extended
with features that associate the two.

Stakeholder

Architecture

Design Artefact

directly supports

Evaluation
Step 2:
Artefactt Level

Evaluation
Step 1:
Architecture Level

Evaluation
Step 3:
Contention

Design Decision

impacts

Performance Resource Measurement

Scenario

Scale

Unit

Authority

Benchmark

Target

Feature

Function Quality

Requirement

Gist Description

Figure 3: The structure of a communicative specification.

On the solution space side the respective
software architecture is defined as a collection of
architectural design decisions to meet the specified
requirements (Jansen et al., 2005; Gilb, 2005). The
approach includes online architecture evaluation,
which allows for immediate reaction to stakeholder
feedback. The prospective evaluation methods for

WEBIST 2007 - International Conference on Web Information Systems and Technologies

342

Figure 4: A multi-tier architecture of the federated
context-sensitive pervasive local subsystem for nomadic
blogging applications.

the policy are extensions of popular software
architecture assessment methods such as SAAM and
ATAM (Bass et al., 2003; Kazman et al., 2004) as
well as innovative product line evaluation methods
such as the BAPO method (van der Linden et al.,
2004). Evolution can be expressed in terms of both
the requirements and design decisions. The CS
policy provides for a suitable support of the other
proposed policies.

4.2 Minimalist Architecture

The goal of the minimalist architecture (MA) policy
is to contribute to the efficiency of the evolution
process. The solution is to optimize the size of the
architecture. It is expected to allow for architectural
decisions that are accomplished with the least
resources, including as little effort as possible. For
complex web systems software architecture may
include thousands of architectural decisions.
Optimal target architecture should match the current
delivery steps and minimize the number of involved
architectural decisions by including only active and
critical decisions. Moreover not all the remaining
decisions have to be dealt with explicitly and some
can possibly be deferred until later in the iterative
lifecycle. For example Malan and Bredemeyer
(2002) argue that as few decisions as possible should
be actually made.

4.3 Feedback and Cooperation

The goal of the feedback and cooperation (FC)
policy is to contribute to the satisfaction attribute of
the evolution process. The solution is to provide
suitable media to support (a) feedback collection, (b)
formulation and evaluation of candidate and final
architectural decisions, and (c) cooperative decision-
making, with regard to new or revised decisions.
The support is arranged so as to promote continued
and enhanced participation in the evolution activity.
The aim is to ensure that the stakeholders have
positive feelings towards the activity. The solution
we propose is based on visualization and sharing of
the architectural specifications and on providing
access to evaluations which adapt and enhance
selected known assessment methods.

5 DEMONSTRATORS

We consider a complex web system including
federated context-sensitive pervasive local
subsystems linked to global web services that

contribute to the local behaviour. In each of the local
environments various types of local and distributed
businesses are supported as well as a range of
personal and social links and structures. The users
interact with the system by using a broad range of
devices, mobile and stationary. The mission of the
project Nomadic Media has been to “find solutions
that allow consumers to enjoy their content and use
interactive services at the times and in the places
they prefer, using the devices that best suit their
circumstances.” The content may be linked to
individuals, groups, local or distributed businesses,
etc. The domain of such an exploratory project is
characterized by considerable uncertainty of
requirements, technologies, markets and regulations.
Hence the evolutionary strategy has been selected
for project deliveries. We considered a user-
participative evolution process. Figure 4 shows the
architecture of a federated context-sensitive
pervasive local subsystem. The evolution of both
server and user sides of the system were considered.

There were two variants of the subsystem that
provided support for user interaction for system
evolution: (I) One was based on automated regular
end-user interaction analysis and evolution planning
and evaluation facility intended for system architects
and developers only. That system did not allow all
regular end-users to directly access the evolution
support function and was used as a benchmark for
(II) the other variant which provided direct evolution
support for all important categories of stakeholders.
The implementation of both variants was based on a
cooperative wiki engine that followed the FC policy.
Not all devices used in the system had equal access
to all features (a)-(c) (cf. section 4.3) of the
evolution support applications. The results have
shown that variant (II) performed significantly better

Fr
on

t-
En

d
In

fr
as

tr
uc

tu
re

Content servers

Access server (Portal server)

Gateways

Wireless network

Internet

Client devices

Internet

Client devices

Ba
ck

-E
nd

 In
fr

as
tr

uc
tu

re

SIMPLE EVOLUTION OF COMPLEX WEB SYSTEMS

343

in terms of the introduced evolution criteria
(conventional product usability). Detailed analyses
of these and other results, also taking into account
the exploratory nature of the project, are currently in
progress. A relatively stable nomadic blogging
functionality (Blood, 2004; Krzanik, 2005) had been
defined and a product line platform, the PORO
system (Krzanik et al., 2005), implementing the
variability process for context-sensitive nomadic
blogging has been built. It has been used for
systematic evolution of nomadic media systems.
Examples of the functionality are visualized in
Figures 5-6.

Figure 5: Public screen control: An application derived
from the nomadic blogging functionality.

Figure 6: Virtual city: An application derived from the
nomadic blogging functionality.

The evolution experiments followed an attribute-
driven strategy with usability as the most critical
driver. Six different experiments and deliveries are
illustrated in Figure 7. The experiments demonstrate
the enabling nature of usability: the incremental
quality improvements not only lead to better
systems, but also were instrumental in discovering
new functional opportunities visualized in Figure 7.
It should however be stressed that the functionalities
of all systems shown in Figure 7 were essentially
very close to one another. In the evolution paths the
sub-attributes of efficiency, effectiveness and
satisfaction were main drivers. It is not yet known to
what degree the inventions of new functions are to
be attributed to the learning process associated with
using the evolution support.

Figure 7: Generating application variants driven by
usability and functionality changes.

We found that the domain vocabularies,
associated with requirements and design engineering
(and the revised orthogonal variability model
included in PORO), were critical in supporting the
stakeholders in the evolutionary process.
Vocabularies as well as other introduced support
services and their positive effect on the process
demonstrated the importance of explicit
consideration of stakeholder communication.
Various investigated applications were integrated
into innovative packages such as the Mobile Bastide
package (Krzanik, 2005) implemented as a dedicated
product line for nomadic media.

6 RELATED WORK

The main elements of the proposed approach include
the user-participative evolution, the tailored
approach to usability and the innovative approach to
software architectures. The revised approaches to
architecture assessment, to stakeholder cooperation

WEBIST 2007 - International Conference on Web Information Systems and Technologies

344

in project evolution, the exploratory wiki application
and the innovative nomadic blogging functionality
are all in a sense consequences. All these introduce a
number of changes to existing practices.

The user-participative evolution is essentially a
voluntary activity. Not only it differs from
conventional approaches (Madhavji et al., 2006) that
establish routine evolutionary processes but also
requires specific approaches which promote user
cooperation – in our case through improved usability
of the evolution support function. Our architectural
approach is based on the decision-oriented variant of
architecture definition (Jansen and Bosch, 2005;
Gilb, 2005), and explicitly integration of problem
and solution spaces - different from conventional
approaches to software architecture (IEEE 1471,
2000). It has had far-reaching consequences for
architecture assessment methods in our evolution
support – the possibility for evaluating architectures
with regard to both requirements and design
artefacts, in terms of end-user characteristics, e.g.,
system properties such as usability. The revised
methods could be used to equip the collaboration
tool such as wiki with more support for various
stakeholders as compared with more conventional
approaches, e.g., by Bachmann and Merson (2005).
The nomadic flavour created many new interesting
applications of the conventional blogging function
(Blood, 2004) but perhaps more interesting is the
innovative exploratory and evolutionary way in
which we propose to discover, analyse and validate
these new applications.

On the implementation side the web and
pervasive solutions tend to use conventional
technology (Hansmann et al., 2004). On the other
hand, with reference to the conventional model of
product line engineering (Pohl et al., 2005), we
introduce a revised orthogonal variability model that
better supports variation and selection processes of
evolutionary development for software systems.
Another proposed change was a closer cooperation
between the processes of domain and application
requirements engineering. We also offload some
non-functional attribute process areas from product
management and shift them to requirements
engineering. Consequently, the product roadmap
artefact that links the two process areas (Pohl et al.,
2005) changes respectively. On the other hand
product management takes responsibility of more
extensive evolutionary variation support. It is also
proposed that responsibilities regarding other new
process areas, such as evolutionary selection
support, are divided between product management,

integrated requirements engineering and the
variability model.

7 CONCLUSION

Evolutionary approaches can be applied to software
development projects of various sizes under
considerable uncertainty of requirements,
technologies, markets and regulations. In doing so
we should carefully investigate issues connected
with realizing the evolutionary strategy. Revisions to
conventional approaches may prove necessary. We
propose a user-friendly evolutionary methodology
for complex web systems. The methodology is still
in its validation stage. We illustrated the concept and
proposed solutions with selected results from a
recent project.

ACKNOWLEDGEMENTS

This work was partly supported by project E!2023
ITEA Nomadic Media.

REFERENCES

Bachmann, F., and Merson, P., 2005. Experience Using
the Web-Based Tool Wiki for Architecture
Documentation. Technical Note CMU/SEI-2005-TN-
041, Software Engineering Institute, September 2005.

Bass, L., Clements, P., and Kazman, R., 2003. Software
Architecture in Practice, 2nd Ed. Addison-Wesley

Blood, R., 2004. How Blogging Software Reshapes the
Online Community, Comm. ACM, 47, Nr. 2.

Bosch, J., 2000. Design and Use of Software
Architectures. Addison-Wesley.

Faulkner, X., 2000. Usability Engineering, Macmillan
Press, London.

Gilb, T., 2005. Competitive Engineering: A Handbook For
Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage, Butterworth-
Heinemann.

Hansmann, M., et al., 2004. Pervasive Computing, 2nd Ed.,
Springer.

IEEE 1471, 2000. ANSI/IEEE Std 1471-2000,
Recommended Practice for Architectural Description
of Software Intensive System. IEEE, October 2000.

ISO/IEC, 1998. DIS 9241-11. Part 11: Guidance on
usability. ISO/IEC.

Jansen, A., and Bosch, J., 2005. Software Architecture as a
Set of Architectural Design Decisions. 5th Working
IEEE/IFIP Conference on Software Architecture,
WICSA 2005. IEEE, pp. 109 – 120.

SIMPLE EVOLUTION OF COMPLEX WEB SYSTEMS

345

Kazman, R., Nord, R.L., and Klein, M., 2003. A Life-
Cycle View of Architecture Analysis and Design
Methods. Technical Note CMU/SEI-2003-TN-026,
Software Engineering Institute, September 2003.

Krzanik, L., 2005. Mobile Bastides: Flexible and
Evolvable Business-Oriented Contextual Media, Proc.
11th Intl. VSMM Conf., Ghent.

Krzanik, L., et al., 2005. Usability-Driven Evolution of
Context-sensitive Nomadic Media, Proc. MUM’05
Conf., Christchurch.

Larman, C., 2003. Agile and Iterative Development: A
Manager’s Guide. Addison-Wesley.

Madhavji, N. H., Fernandez-Ramil, J., and Perry, D.,
2006. Software Evolution and Feedback: Theory and
Practice. Wiley.

Malan, R., and Bredemeyer, D., 2002. Less is More with
Minimalist Architecture. IT Professional, Sept./Oct.
2002.

Nielsen, J., 1993. Usability Engineering, Academic Press,
Inc., San Diego.

Pohl, K., Böckle, G., and van der Linden, F.J., 2005.
Software Product Line Engineering: Foundations,
Principles and Techniques, Springer, Heidelberg.

van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K.,
Krzanik, L., and Obbink, H., 2004. Software Product
Family Evaluation. In: Frank van der Linden (Ed.),
Product Family Engineering. Proc. of PFE-5, Siena,
Springer Verlag, Heidelberg.

van Gurp, J., and Bosch, J., 2002. Design Erosion:
Problems & Causes. Journal of Systems & Software,
61(2), pp. 105-119, Elsevier, March 2002.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

346

