
TOWARDS A NEW CODE-BASED SOFTWARE DEVELOPMENT
CONCEPT ENABLING CODE PATTERNS

Klaus Meffert and Ilka Philippow
TU Ilmenau, PF 10 05 65, 98684 Ilmenau, Germany

Keywords: Software development, design patterns, architectural patterns, program understanding, annotations.

Abstract: Modern software development is driven by many critical forces. Among them are fast deployment require-
ments and easy-to-maintain code. These forces are contradicted by the rising complexity of the technologi-
cal landscape among others. We introduce a concept aiding in lowering these negative aspects for code-
based software development. Protagonists of our work are explicit semantics in source code and newly in-
troduced code pattern templates, which enable code transformations. Throughout this paper, the term code
pattern includes architectural patterns, design patterns, and refactoring operations. Enabling automated
transformations stands for providing means of executing possibly premature transformations.

1 INTRODUCTION

Observing current software development projects
leads to the conclusion that for a huge number of
these projects working with source code is the main
driver. By accompanying a lot of source code-based
projects, we noticed the difficulties with state-of-
the-art programming techniques. This paper is a
contribution to make software development more
productive in that segment. To accomplish a raise in
software development productivity, we suggest
using what is described as code pattern template
throughout this paper. Such a template is suited for
supporting the usage of architectural patterns, design
patterns, and refactoring operations. To enable such
templates, we introduce explicit semantics to source
code, assigning a deeper meaning, or sense, to a
piece of code. As low-level refactoring operations
are supported by modern IDEs to a reasonable ex-
tent the main focus of this paper lies on design and
architectural patterns.

2 DEFINITIONS

In this section definitions are introduced that are
helpful for understanding the presented approach.

2.1 Semantics

The meaning of a statement or operator of a pro-
gramming language (“program statement”) is its
dedicated function. For example, the Java statement
x++ increases the value of the variable x. The se-
mantics of a statement is its deeper meaning within a
context (sense, intention). The context determines
the meaning of x and thus the meaning of the state-
ment itself. If x represents a number of pieces, then
x++ increases the number of pieces by one. Is it the
number of available or defect pieces? This in turn
depends on the wider context.

2.2 Annotation

To express the semantic meaning of program con-
structs (statements, declarations, blocks) annotations
are introduced in this paper. An annotation as we see
it is a construct that can be put above any valid pro-
gram construct (in contrast to Java’s JSR 175) with-
out changing the behavior of the program. An anno-
tation can also have parameters, which are deter-
mined by the annotation’s definition. To let an anno-
tation express contextual information, a set of prede-
fined senses has to be made available.

363
Meffert K. and Philippow I. (2007).
TOWARDS A NEW CODE-BASED SOFTWARE DEVELOPMENT CONCEPT ENABLING CODE PATTERNS.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 363-366
DOI: 10.5220/0001324903630366
Copyright c© SciTePress

2.3 Transformation

Here, a transformation defines the process of getting
from a given source to a target code by applying
defined rules. A rule always produces the same
result when applied onto the same source code. At
first, transformations are introduced to obtain a code
pattern template (see next section). At second, they
are helpful to support the developers in applying a
code pattern with tool-support. The latter mentioned
can only be a try because when automatically trans-
forming code the machine executing the transforma-
tions misses what a human would call awareness of
the meaning of source code and its transformation.
That in turn makes it impossible, in our opinion, to
get a machine to transform arbitrary pieces of code
correctly. That is why we suggest a workaround for
this problem. Our suggestion leads to an extended
support for code transformations.

2.4 Code Pattern Template

A code pattern template contains any information
about a pattern necessary for a process like selec-
tion, application, or recognition. This includes static
and dynamic parts, source code as well as semantics.
To use a template effectively it must be connected
with a given source code, the context. This connec-
tion is proposed to be provided by annotations.

The semantic counterpart in the code template is
equivalent to annotations. Also the scope an applied
annotation has is relevant. When comparing the
name and the scope of an annotation in source code
and code pattern template a match can be deter-
mined. The next figure illustrates this.

class Example{
...
void doWork(){
...
/**@@intent..*/
for(int i=...)
...
}

class Example{
...
void doWork(){
...
/**@@intent..*/
for(int i=...)
...
}

Source code

Pattern: X
role: <name>

<semant.elem.>

<scope>

<constraints>

Pattern: X
role: <name>

<semant.elem.>

<scope>

<constraints>

Pattern template

Figure 1: Matching source code with a template via
annotations.

The source code on the left contains annotations
that have a correspondence in the template on the
right.

3 TOWARDS A NEW CONCEPT

Our approach suggests extending common code-
based development scenarios by a semantic layer.
For adding semantics, two perspectives are pro-
posed. The first one is the perspective of code. By
adding explicit semantic information to code, analy-
sis tools have much more possibilities of extracting
information from the code. The second perspective
concerns code pattern templates which are supposed
to be enriched by semantic information, too. The
vehicle for manifesting explicit semantics in code is
the concept of annotations. Adding semantics to
code pattern templates can occur in any satisfying
way, because templates do not have to be compi-
lable.

The result of having explicit semantics in source
code as well as in code pattern templates allows
finding an appropriate template for a given source
code in order to transform it, according to what the
template defines. Matching code and template is
easier with help of explicit semantic information
than by any ordinary AST-based comparison (see
Meffert+, 2006). When working with code patterns,
tool-support for the pattern processes definition,
recognition, selection, and, application is possible
regarding current development environments or
papers like (Taibi+, 2003). Each process can profit
from explicit semantics that would otherwise not be
reasonable by a machine. The next paragraph de-
scribes the idea of introducing explicit semantics to
code and code template in detail.

3.1 Working with Explicit Semantics

As said, there are two sides of the medal, for which
explicit semantic information is relevant, namely
source code and code templates. Code templates are
a newly introduced entity (other papers did this in a
different way already) not significant for a pro-
grammer. However, enriching source code with
annotations is significant for developers following
our approach. As it is not possible reasoning about
the sense of any piece of code and as it is not possi-
ble knowing about the design intentions of develop-
ers, annotations have to be added to source code
manually at least to a certain extent. It may be pos-
sible for a machine to introduced annotations for
cases similar to known ones.

The introduction of semantic information into
code templates is different and more complex than
for source code. Code templates have to be de-
scribed once for a set of similar contexts, whereas

ICSOFT 2007 - International Conference on Software and Data Technologies

364

annotating code depends on the individual motiva-
tions for doing so. Different motivations for annota-
tion source code are plausible, e.g. given the devel-
oper

 knows a pattern to apply but wants support in
applying it,

 does not now which pattern to select and wants
support in selecting and applying one, or,

 wants to know which patterns may exist in the
code respectively to which extent they are exis-
tent.

Depending on the aim a developer has, the pro-

cedure for applying annotations is different. The
easiest case is when a pattern is selected already and
has to be applied. In this case adding annotations to
source code is quite simple because it is known
which annotations are required. Finding a pattern to
apply is more difficult as the source code to be ex-
amined has to be annotated appropriately. In gen-
eral, an annotation has to be added to the code
where an analysis tool is not able to evaluate the
code appropriately to present a qualified suggestion.

4 CODE PATTERN TEMPLATES

The process of obtaining a code template definition,
including annotations, contains the activities:
1. Choose a suitable source code as base for apply-

ing a selected pattern to.
2. Provide a target code where the selected design

pattern is already applied.
3. Transform code from step one to step two and

record the actions undertaken. During this proc-
ess, add annotations for any piece of code that is
significant for the pattern.

4. Obtain a code pattern template, including anno-
tation definitions and transformations, from the
previous step.

5. Verify and improve the generality of the ob-
tained code pattern template by choosing a dif-
ferent source code for step two and proceed from
there.

For the first activity a suitable code can be either
produced by providing a degenerated version of a
design pattern, or a code on which the pattern could
be applied. The target code from activity two con-
tains the applied pattern. In step three, annotations
are added to it. For instance, the Client class of the
Composite design pattern could be marked with an
annotation such as:

/*@@COMPOSITE_CLIENT_CLASS*/
public class Client {...}

The transformations undertaken manually during
activity three must be backed-up by transformation
methods added on demand later on, in case they do
not exist already. These methods include routines
such as “condense a list of parameters into one dedi-
cated parameter”, or “replace a for-loop with Itera-
tor”. At first it should be tried to compose each
needed method from already existent lower-level
ones to enforce reuse of transformations. In the next
paragraph, the procedure for defining code tem-
plates is described deeper.

In activity four, the transformations obtained as
well as the annotated relation between source and
target code is encapsulated under one package.

To validate the overall reusability of the pack-
age, a different source code should be chosen for
which the examined pattern also is applicable and
for which the previously obtained pattern template
should work. That source code should contain com-
mon parts – especially same annotations – with the
initially chosen source code.

In general it should hold that for any annotation
added to the source code, a corresponding annota-
tion in the target code must exist. Also, for any dif-
ference between source and target code a transfor-
mation must be defined.

4.1 Getting a Code Template Definition

The procedure to get to the template involves the
following steps:
1. Consider the target code. For each class:

a. Create a new role section. The name of the
section reflects the role of the class within the
pattern. If the class plays no assigned role in
the pattern, choose a unique role name.

b. Copy the whole target code for the class into
the role section.

c. Determine the context-dependent parts of the
copied code. Here, reflecting on the found
transformations benefits.

d. Introduce a placeholder (called slot) for each
context-dependent part. For context-
dependent sequences of statements introduce
an annotation above any sequence that has a
distinct meaning.

e. For logic that should be kept as the original
from the source code is, add a control tag
with parameters.

f. For logic within a block (e.g. within meth-
ods) that may be extendable, add a documen-

TOWARDS A NEW CODE-BASED SOFTWARE DEVELOPMENT CONCEPT ENABLING CODE PATTERNS

365

tation link. A documentation link references a
description with possibilities to extend the
logic.

2. Add each interface of the target code as is to the
template by putting each code block in a section
identified by the keyword interface plus the
name of the role the interface plays.

3. For any annotation added to the source code (and
thus also to the target code) a definition must be
created or updated. There are two cases:
a. Appropriate Annotation definition not exis-

tent: Create it.
b. Otherwise: Update annotation definition if

changes are necessary and possible.
4. Implement handler routines for

a. extracting information from relevant annota-
tions and providing relating these information
to other annotations,

b. actions for which handlers do not exist, and,
c. executing precondition checks.

Step 3 of the above activities results in annota-
tion definitions. The annotations existent in the
source and target code are equivalent with respect to
their name, but maybe different concerning their
scope. The scope of an applied annotation is the
statement the annotation is applied above.

5 RELATED WORK

Relevant approaches cope with the issues code
transformation, code templates, annotations, and
program understanding. With Java 5 annotations
have been introduced as first-class language con-
structs (JSR 175). These annotations are restricted in
that they cannot be applied to arbitrary scopes (i.e.
single statements are out of the scope). (Jackpot)
browses Java source code for conformance with
generic rules and executes transformations on ASTs
automatically. Each rule contains a Java-statement to
be matched and specifies how to transform the
fragment. (Krahn+, 2006) introduce compilable
code templates to execute automated refactorings for
Java code via code generation. To include directives
into the template, comments are used. The approach
does not consider semantic information. FUJABA
(Niere+, 2006) aims at extending UML for specify-
ing method bodies and generating code from UML
diagrams up to the level of statements. Additionally,
the generation of UML diagrams from source code
is supported.

6 CONCLUSIONS AND FUTURE
WORK

This paper suggested introducing explicit semantics
to source code as a means for identifying the contex-
tual sense of program elements. Using annotations
as a vehicle for transporting semantic information,
an adaptation of current coding practices is pro-
posed. In turn, the definition of code pattern tem-
plates allows obtaining key information about a
pattern, including its structure, preconditions, trans-
formations and annotation definitions.

A code pattern template contains a lot of useful
information and allows recognizing synonymous
pieces of codes. When defining code templates,
variants of a pattern and variations of source code
have to be considered separately to a certain extent.
Reuse is possible but reflecting on the validity of
existing templates is important. There should be a
consolidation feature which puts common parts of
two similar templates into one master template and
adds the different parts by referencing them.

Currently, we are examining complex patterns in
order to demonstrate the practicability of the de-
scribed approach. Especially the capability to reason
about missing information/annotations is focused.

REFERENCES

Gamma, E., Helm, R., Johnson R., Vlissides, J. (1995):
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

JSR 175: A Metadata Facility for the Java Programming
Language. http://www.jcp.org/en/jsr/detail?id=175

Jackpot. http://jackpot.netbeans.org/index.html
Niere, J., Schäfer, W., Wadsack, J. P., Wendehals, L.,

Welsh, J. (2000): Towards Pattern-Based Design Re-
covery. Proceedings of the 22nd International Confer-
ence on Software Engineering, Limerick, Ireland, 241-
251

Krahn, H., Rumpe, B. (2006): Techniques For Light-
weight Generator Refactoring. In: Lämmel, R.,
Saraiva, J., Visser, J.: Proceedings of Summer School
on Generative and Transformational Techniques in
Software Engineering (LNCS 4143), Springer.

Meffert, K., Philippow, I. (2006): Supporting Program
Comprehension for Refactoring Operations with An-
notations. In: Fujita, H., Mejri, M. (eds.): New Trends
in Software Methodologies, Tools and Techniques -
Proceedings of the fifth SoMeT_06, Vol. 147, 48-67.

Taibi, T.; Chek Ling Ngo, D. (2003): Formal Specifica-
tion of Design Patterns – A Balanced Approach. In:
Journal of Object Technology, vol. 2, no. 4, July-
August 2003, S. 127-140.

ICSOFT 2007 - International Conference on Software and Data Technologies

366

