
THE MISSING LAYER
Deficiencies in Current Rich Client Architectures, and their Remedies

Brendan Lawlor and Jeanne Stynes
Department of Computing

Cork Institute of Technology
Cork, Ireland

Keywords: Rich client, rich internet application, model view controller, software architecture.

Abstract: There is an architectural deficit in most rich client applications currently undertaken: In n-tier applications
the presentation layer is represented as a single layer. This fits badly with business layers that are
increasingly organized along Service Oriented Architecture lines. In n-tier systems in general, and SOA
systems in particular, the client’s role is to combine a number of services into a single application. Low-
level patterns, mostly based on MVC, can support the design of individual components, each one
communicating with a particular back end service. No commonly understood pattern is currently evident
that would allow these components to be combined into a loosely coupled application. This paper outlines a
rich client architecture that addresses this gap by adding a client application layer.

1 ADDRESSING DIRECT
COUPLING IN
COMPONENT-BASED
ARCHITECTURES

A common problem in the design of a component-
based rich client application of any complexity is the
absence of any well-defined way of connecting its
constituent components together in a predictable and
maintainable way without coupling those
components directly to each other. The importance
of decoupling lies in the reusability it confers on the
component. Development projects often result in
either (i) relatively decoupled components that are
connected to each other by a large, ad hoc and
difficult to maintain amount of glue code (also know
as the Big Ball of Mudi), or (ii) components that
cooperate in a more systematic way, but as a
consequence come to know a little too much about
each other, and become coupled to the extent that
they are no longer reusable beyond the context of the
application.

Assuming that the Big Ball of Mud is always to
be avoided, then the main obstacle to a component-
based, rich client architecture is tight coupling
between the components. Objects cannot operate as
componentsii unless they can function both
independently from and in collaboration with other

components. Current rich client architectures do not
satisfactorily address this seemingly paradoxical
requirement, and permit only a limited decoupling
between components that still results in some direct
coupling. So there remains an architectural deficit in
which developers of rich clients have to work. To
address this problem, this paper outlines an
approach, called Application Model View Controller
(AMVC), that breaks the presentation layer into an
application layer and a component layer.

In enterprise systems, the client code is typically
represented as a single layer – the presentation layer.
(For Internet-based applications a distinction is
made between server-side elements and client-side
elements, but this is a deployment distinction, rather
than an architectural one.) For both desktop and
Internet based rich-clients, this single layer has not
been enough. Single-layer architectures tend to
result in bundles of components, directly coupled to
each other as required by the needs of the
application. Breaking applications down into
components does not in itself reduce the direct
coupling between the resulting components. An
explicit application layer, specifically designed to
prevent direct coupling, is an essential ingredient in
any successful rich-client architecture.
In order to ensure the absence of direct coupling
which is required to sustain a true component-based
architecture, we need to address the features of

351
Lawlor B. and Stynes J. (2007).
THE MISSING LAYER - Deficiencies in Current Rich Client Architectures, and their Remedies.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 351-356
DOI: 10.5220/0001325803510356
Copyright c© SciTePress

component-based presentation layer architecture that
can lead to direct coupling: events shared between
components, event data shared between components,
and containment relationships between components.

The following sections describe the AMVC
architecture, which removes each of these causes of
coupling between components.

1.1 The AMVC Component
Abstraction

The first step in defining a component-based
architecture is to define the abstraction of the
component itself. The AMVC architecture’s notion
of a component is heavily influenced by the hMVCiii
(hierarchical Model View Controller) design (and
therefore on PAC of which it is a specialized caseiv),
even to the extent of using the same terminology.
But the AMVC component abstraction diverges
from hMVC in a number of ways. AMVC can be
said to be a modification and an extension of hMVC
since the AMVC architecture also incorporates an
extra layer of indirection that hMVC does not
possess. A summary of the precise nature of the
differences between the two architectures is
provided towards the end of this paper, after a fuller
explanation of AMVC has been offered.

An AMVC component is a Model-View-
Controller grouping (Triad) where the controller has
a function beyond the coordination of events
between the model and the view: It also directs
events out of the triad to other triads. Components
are organized into a hierarchy as in hMVC and
controllers act as the point of contact between the
triads. Each component has its own individual
functionality, but in the context of the AMVC
architecture, the component is abstracted as a Triad
that, from an external perspective, is simply capable
of receiving events, emitting events, and entering
into a parent-child relationship with another triad.
Another public aspect of a Triad is the view itself -
this will be described later. We now consider the
way these components are organized into
applications.

1.2 Two Layers – Two Activities

We can identify two separate layers in the
construction of a rich client using AMVC. The
component layer is composed of independent and
functionally specialized Triads. The model elements
of these Triads typically communicate with
particular services in an SOAv, if they have any
server-side functionality at all. The application layer
consists of application-specific configuration
information that links instances from the component

layer - without introducing coupling between these
components. It is this absence of coupling that
defines the AMVC architecture and represents its
main value proposition.

The work of developing a rich client application
can be broken up into two activities that correspond
to the two layers above: component development
and application assembly. In the absence of direct
coupling between the components, applications can
be assembled by combining and re-combining
components in different ways, re-using the same
component types many times within one application,
and achieving different results with each
combination.

To appreciate how this architecture provides for
decoupling between components, it is important to
understand the factors that lead to coupling in the
first place. But in order to do that, we must first look
at the different kinds of events defined by AMVC.

1.2.1 AMVC Event Types

There are two kinds of events defined by AMVC:
Component Events and Application Events,
corresponding to the Application and Component
layers. Within AMVC components, the Model and
View elements typically communicate with each
other by means of Component Events
(implementations allow for views directly calling
model for efficiency and simplicity– though not
vice-versa). Some of these events are exposed
outside the components as emitted events, or
received events, or both.

Note that Component Events should be
distinguished from what we will here call widget
events. The latter are well understood concepts of
GUI programming and communicate low-level
interface-specific events (e.g. 'button A has been
pushed') to components. The component layer
intercepts, interprets and combines these widget
events into Component Events, which represent
reusable business functionality for a specific service
(e.g. 'List the Orders'). Application Events are
described below.

1.2.2 Coupling Due to Event Sharing

Event-passing is a common way for components to
communicate. Although this can often be done in
such a way that avoids the programmatic coupling of
the communicating components, a form of coupling
remains: the name of the event itself. If an event is
passed from one component to another, the
communicating components must have a shared
understanding of what that event means. This

ICSOFT 2007 - International Conference on Software and Data Technologies

352

constitutes a semantic coupling between the
components.

In AMVC, to avoid the coupling that comes with
sharing events between components, Component
Events are never passed from one component to
another. Instead, components communicate with
each other through Application Events. These
Application Events are specific to the way in which
the Components have been recombined and
represent user experience or even steps of a use case
(e.g. List All Orders for the Selected Product).

Figure 1 shows how components communicate
with each other through Application Events.
Component Events are ‘translated’ into Application
Events at the interface of the emitting components,
and these Application Events are further translated
into another Component Event at the interface of the
receiving component.

This event indirection removes the first source of
inter-component coupling, namely shared events
between components. It is not just the fact that the
translation is done but where it is done that counts: It
is done in the Application Layer, and therefore
during application assembly. Thus, the components
themselves (that is to say their source code and their
runtime states) are not affected by this translation.
They remain completely independent of what
happens to their events once those events leave the
components’ scope. The information about the
components’ collaboration is created as part of the
entirely separate application layer.

1.2.3 Coupling Due to Event Data

Events not only have names, they often also carry
data, or payload. Complex types being passed from
one component to another, albeit through translated
events as described in the previous section, leads to
coupling. The event payload data types must be
understood by both the sending and the receiving
components, and thus constitute coupling through
shared code. The two components cannot be said to
be independent and reusable.

The AMVC architecture facilitates a translation
between event payloads. To avoid coupling one
component to another through a shared data type,
each component event specifies its own payload
type, and the application layer provides for the
declarative mapping of one into the other as part of
application assembly.

1.2.4 Coupling due to the Containment
Relationship

The third and final coupling force at work in a rich
client application is the containment relationships
that exist: Dialogs have parent Frames, Buttons sit in
Panels, and so on. Normally this relationship is
expressed through code.

Through the triad abstraction in AMVC, this
containment relationship is hidden from the
Component code and expressed only at application
assembly time. Both parent and child triads are
aware only that they may be connected to other
implementations of the triad abstraction, but they do
not know which ones.

1.3 Application Assembly

1.3.1 Design Time

We saw in the previous sections how a component
can be entirely decoupled from any other while still
allowing them to collaborate. This section shows
how that collaboration can be established in a rich
client application purely through declarative
configuration. The consequent potential for increase
in productivity and component reuse demonstrates
the value in achieving this total decoupling.

Application assembly consists of (i) arranging
component instances into a hierarchical
organization, (ii) connecting output events of some
components to input events of others, through their
translation into application events, (iii) translating
event data (payload), where necessary, from that
produced by the emitting component to that
expected by the receiving component.

The hierarchy serves to establish the parent-child
relationships between the views of any two given
components. Note that a triad’s view can be
decomposed into a number of named areas. For
example the view can contain a number of panels
each capable of containing a child view. In this case,
the area names are exposed as part of the public
interface of the triad. When a child relationship is
established with another triad, the relationship
includes the name of the view and this creates a
widget containment relationship between the
parent’s named View area and the child’s view. The
details of the way in which the views combine
depends on the view types, and can be deduced
automatically by the AMVC implementation, or can
be prompted by the AMVC declarative description

THE MISSING LAYER - Deficiencies in Current Rich Client Architectures, and their Remedies

353

Figure 1: Translation of Component Events into Application Events.

of the inter-component relationship (e.g. the
relationship can specify a dialog child).

The hierarchy also establishes lines of
communication between components. Application
Events can move between components across these
parent-child connections. There is no impediment to
routing Application Event between two components
directly (as opposed to using the hierarchy), and this
might make sense in a lot of cases, but the hierarchy
provides a good first option.

Application assembly can be done mechanically
and indeed visually if supported with the right tools.

1.3.2 Runtime

Initialisation of an AMVC application can be
organized in any way that the application developer
sees fit. That said, it makes sense that the process be
started by the propagation of a startup Application
Event to all Triads, through the hierarchy. The
implementation described in the next section
assumes that all triads are instantiated before that
point, but another implementation may allow for a
lazy-loading approach.

This event can be wired to Triad events as part
of the normal application assembly. Each Triad type
can offer its own incoming initialisation event and
prepare itself for operation in whatever way makes
sense for that Triad.

It is worth mentioning that no noticeable
performance penalty should be paid by this

architectural approach, and indeed none has been
noticed in the implementation.

2 AN IMPLEMENTATION OF
AMVC

This section outlines some of the salient points of
the AMVC implementation.

The Proxy design patternvi was employed in the
design of the Controller’s event handling
mechanism. At configuration time, a controller has
no guarantee that it will have been connected to a
View or Model before having its events configured
(in fact these View and Model elements can be
considered optional, so the controller may never be
connected to either). The same goes for the parent
and child Triads that a Controller may eventually be
connected to. To deal with this problem, Proxy
objects take the place of the destination Model,
View or external parent or child Triad Controller at
configuration time. For example, a Model Proxy
‘remembers’ that its event must be directed at the
Model. At runtime, when events actually arrive in
the Controller, all connections to the Model, View
and external Triad Controllers have been made, and
the Proxy objects are used to complete the routing.

Unnecessary programming configuration is
avoided by using coding conventionsvii. In both

ICSOFT 2007 - International Conference on Software and Data Technologies

354

Model and View, the methods use naming
conventions to ensure that component events are
forwarded to those methods. Java Reflection is used
extensively to handle events. Models or Views that
wish to handle a particular event need only
implement a method whose name indicates the
Component Event name. A layer of GUI
components that use the Triad code but provide
general rich client functionality is included as part of
this AMVC implementation.

Dependency Injectionviii is another important
design pattern used in this implementation of
AMVC. The power and importance of this pattern in
providing for decoupling has been documented in
many other places, and has led to the development
of a number of frameworks specifically to support
its use. We have used the Spring Frameworkix in this
particular implementation for a number of reasons,
principal amongst which is its new custom
namespace feature. A key feature of AMVC is the
declarative nature of the application assembly.
Whereas components are composed of both code
and declarative descriptors, the application layer is
entirely declarative. The customisable nature of the
Spring Framework’s XML configuration made it the
ideal way to combine components without coupling
them, while providing a terse but readable
declarative configuration format.

An example of this custom Spring-based format
is provided in Listings 1 and 2 below to give an idea
of the ease with which applications can be
assembled within an AMVC architecture.

<amvc:appEvent id="appLogIn"
 name="LogIn"/>
…
<amvc:triad id="appLoginTriad"
 type="loginTriad">
 <amvc:terminate
 appEventRef="appLogIn"
 compEventRef="compLogin"/>

 <amvc:emitToParent

appEventRef="appLogInSuccess"
compEventRef="loggedInLogin"/>

 <amvc:emitToParent
 appEventRef="appExit"
 compEventRef="cancelledLogin"/>
</amvc:triad>

Listing 1: Declaration of event and login triad.

The above is an example of the declaration of an
application event of id appLogIn followed by the
instanciation of a component of type loginTriad.
This triad instance (a component which provides

basic username and password login functionality) is
declared to capture the appLogIn application event,
translate it into its own internal compLogin event,
and direct it inwards to be processed as a compLogin
event.

Similarly, two of the internal loginTriad events
are emitted as application events – in both cases
being directed upwards to the parent triad. The
declaration of that parent triad, which happens to be
the root or main triad of the application, looks like
this:

<amvc:mainTriad type="mainTriad">
 <amvc:terminate
 appEventRef="appLogInSuccess"
 compEventRef="logInSuccessful">
 <amvc:payloadMapper
 targetClass="LoginResult">
 <amvc:map
 sourceField="user"
 targetField="username"/>
 <amvc:map
 sourceField="pw"
 targetField="password"/>
 </amvc:payloadMapper>
 </amvc:terminate>
 …
 <amvc:dialogChild
 ref="appLoginTriad"/>
</amvc:mainTriad>

Listing 2: Declaration of main triad.

The above section of the application assembly
declaration demonstrates a number of important
points.

Firstly, from the terminate element, we can see
that the appLoginSuccess application event (emitted
from the appLoginTriad from the previous listing) is
consumed by the main triad, having first been
translated into the main triad’s own loginSuccessful
event. In this case, the termination and translation of
the event requires a mapping of the event payload.
The event emitted by the login triad includes a
payload instance made up of two fields called user
and pw. The main application triad which terminates
the event expects a payload with two fields called
username and password. AMVC allows for the
declarative mapping of the source payload object
into the target payload object, as outlined in section
1.2.3 above.

A second point is the dialogChild element of the
main triad’s declaration. It is in this way that the
parent child relationship between the main triad and
the login triad is established. The View elements of
the two triads are combined without using code.
Moreover, though the child triad’s View element has
been added here as a dialog, AMVC could just as

THE MISSING LAYER - Deficiencies in Current Rich Client Architectures, and their Remedies

355

easily have added as a panel bounded by the main
triad’s View element.This detail is important in
promoting real component reuse.

Note that these examples have demonstrated
how a declarative Application Layer can weave
together reusable elements of a Component Layer in
such a way as to completely avoid the coupling that
comes from Event Sharing, Event Data and the
Containment Relationship. This approach provides a
template for a divide-and-conquer approach to rich
client application development.

3 COMPARISON WITH
HMVC/PAC

While the Triad of AMVC is based on hMVC, the
way in which AMVC Triads communicate with each
other is new. hMVC/PAC allows event names and
event data generated in one Triad to travel to any
other Triad in the application. AMVC uses the extra
Application Layer to capture and convert both event
names and event data, as part of routing those events
from one Triad to another. Applications following
the AMVC architecture consist therefore of a set of
truly decoupled Triads in one layer, declaratively
bound through event routing and mapping by the
Application Layer.

Put another way, the architectural description of
hMVC stops at the Triad. Because the hMVC Triad
is responsible for its own communication with other
Triads, and because its event names and data must
thus be shared with other Triads, the hMVC Triad
loses it re-usability and component nature. AMVC
architecture describes not only the Triads, but the
Application Layer than connects them without
coupling them.

4 CONCLUSION

An AMVC component encapsulates the entire View
and Model of a business process, and its interface is
specified in term of business events. The approach
taken by AMVC eliminates even indirect coupling
between components and its extra layer allows
components to be easily recombined and reused.
AMVC can be applied to any component-based,
event-driven presentation layer, and so can be used
for desktop clients and Rich Internet Applications
alike.

REFERENCES

Cai, Kapila and Pal (7-21-2000) HMVC: The layered
pattern for developing strong client tiers. Javaworld
(http://www.javaworld.com/javaworld/jw-07-2000/jw-
0721-hmvc_p.html)

Coutaz, Joëlle (1987). "PAC: an Implementation Model
for Dialog Design". H-J. Bullinger, B. Shackel (ed.)
Proceedings of the Interact'87 conference, September
1-4, 1987, Stuttgart, Germany: pp. 431-436, North-
Holland.

Fowler (2001) Reducing coupling. In Software IEEE,
Volume: 18, Issue: 4.

i http://www.laputan.org/mud/
ii One idea of what defines a software component can be

got by reading Szyperski and Messerschmitt’s list of
their characteristics: Multiple use; Non-context-
specific; Composable with other components;
Encapsulated; and a unit of independent deployment
and versioning. To the last point, one could add the
word ‘purchase’ – the component can also be seen as
an economic unit of software.

iii Jason Cai, Ranjit Kapila and Gaurav
Pal, JavaWorld.com, 07/21/00. HMVC: The layered
pattern for developing strong client tiers.

iv
http://en.wikipedia.org/wiki/Presentation_Abstraction_
Control

v Service Oriented Architecture:
http://en.wikipedia.org/wiki/Service-
oriented_architecture

vi http://en.wikipedia.org/wiki/Proxy_pattern
vii

http://blog.decaresystems.ie/index.php/2006/01/13/con
vention-over-configuration/

viii http://www.martinfowler.com/articles/injection.html
ix http://www.springframework.org

ICSOFT 2007 - International Conference on Software and Data Technologies

356

http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-hmvc_p.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-hmvc_p.html
http://www.interaction-design.org/references/conferences/interact_87_-_2nd_ifip_international_conference_on_human-computer_interaction.html
http://www.interaction-design.org/references/conferences/interact_87_-_2nd_ifip_international_conference_on_human-computer_interaction.html

