
DESIGN AND IMPLEMENTATION OF DATA STREAM
PROCESSING APPLICATIONS

Edwin Kwan, Janusz R. Getta
School of Computer Science and Software Engineering, University of Wollongong,Wollongong, Australia

Ehsan Vossough
Department of Computing and Mathematics, University of Western Sydney, Campbelltown, Australia

Keywords: Data stream, data stream management system, data stream application, processing data streams.

Abstract: Processing of data streams requires the continuous processing of end-user applications over the long and
steadily increasing sequences of data items. This work considers the design and implementation of data stream
processing applications in the domains where the limited computational resources, constraints imposed on the
implementation techniques and specific properties of applications exclude the use of a general purpose data
stream management system. The implementation techniques described in the paper include the representation
of atomic application as sequences of operation in an XML based language and translation of XML specifica-
tions into the programs in an object-oriented programming language.

1 INTRODUCTION

The technological advances of small size and energy
efficient electronic sensing devices allow for collect-
ing and real time processing of long sequences of
data items commonly known asdata streams. A
data streamis a theoretically unlimited and con-
tinuously expanding sequence of homogeneous data
items (Babcock et al., 2002). Many of such sequences
are obtained from the periodical measurements of pa-
rameters of physical processes like for instance the
values of temperature, humidity, air pressure or even
the series of radio signals received from the outer
space. Processing and managing the high frequency
data streams are beyond the performance capabilities
of present commercial Database Management Sys-
tems (DBMS). It is commonly agreed that a new class
of systems, commonly called as Data Stream Man-
agement Systems (DSMS) (Motwani et al., 2003), is
needed to reach the performance levels needed by the
data stream processing applications.

The typical application domains where it is hard to
apply the general purpose DSMS include processing
of data streams in the embedded systems and in the
wireless sensor networks.

A methodology for the design and implementation
of data stream processing applications in an object-

oriented programming languages is still an open prob-
lem. The applications expressed in a high level query
and data manipulation language must be translated
into the programs in a lower level implementation lan-
guage and later on these programs must be optimized
as well. There is no well established and commonly
accepted language suitable for programming and op-
timization of data stream processing applications at
the implementation level.

An interesting question is how to formally express
the functionality of a data stream processing applica-
tion at the lower levels of abstraction and how to op-
timize an application ? As the data streams are the-
oretically unlimited sequences of data items, the pro-
cessing of complete streams at any moment in time is
practically impossible. To avoid this problem we as-
sume that only subsets of data streams, also called as
windows, are processed by an application. Thereac-
tivity principle requires the processing of all windows
to be performed whenever the contents of at least one
window have been changed. If only approximate re-
sults are expected then some of the data items from
a window are processed and processing is performed
everyn-th modification.

This work is based on a formal model of data
stream processing presented in (Getta and Vossough,
2004). If an application processesn data streams

193
Kwan E., R. Getta J. and Vossough E. (2007).
DESIGN AND IMPLEMENTATION OF DATA STREAM PROCESSING APPLICATIONS.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 193-196
DOI: 10.5220/0001326901930196
Copyright c© SciTePress

x1, . . . ,xn then we represent it as ann-ary operation
f (x1, . . . ,xn). To enforce thereactivity of an appli-
cation we have to implementn operations,f1, . . . , fn,
each one on a data stream andn−1 windows. The op-
erations are implemented as the expressionse1, . . . ,en
built over the binary operations on the elements of
data stream processedxi and the windows on the
streamswx1, . . . ,wxn.

Design and implementation of data stream pro-
cessing applications in a way consistent with a for-
mal model described above is suitable for the envi-
ronments were data stream processing software has to
be merged with software implemented in the general
purpose programming languages.

The paper is organized in the following way. We
start from a review of the previous works in an area
of data stream processing systems. Section 3 presents
the basic concepts of data stream model used in the
paper. It is followed by a presentation of operational
model of data stream processing. Section 4 and Sec-
tion 5 that overviews the implementation aspects and
the experiments conducted so far. Finally, Section 6
summarizes and concludes the paper.

2 PREVIOUS WORKS

Design and implementation of scalable and dis-
tributed data stream processing systems attracted a lot
of attention in the last years. As many of the funda-
mental assumptions behind the traditional DBMS no
longer hold for data stream processing systems (Bab-
cock et al., 2002), implementation of the prototype
systems presented a significant challenge.

STREAM system (Motwani et al., 2003) is a gen-
eral purpose DSMS that supports a declarative query
language and it is able to process many continuous
queries on the data streams with high frequencies of
input data. The system also supports the approximate
query answering when processing the queries over the
data streams with very high frequencies.

TelegraphCQ is a dataflow system for the process-
ing of continuous queries over data streams (Avnur
and Hellerstein, 2002). It uses an adaptive query en-
gine, which is based on a concept of Eddy earlier in-
vented for the adaptive query processing in the rela-
tional DBMS.

Aurora system (Abadi et al., 2003) is designed to
process large number of asynchronous and push based
data streams. Aurora builds continuous queries out of
a small set of well defined operators that implement
standard filtering, mappings, aggregate and windows
join operations. Currently, the development of Aurora
has been superseded by Borealis project, Borealis is

maxw sortw

swritemax mwrite find

Figure 1: The compositions of elementary operations.

a distributed data stream processing engine that in-
herits core functionality from Aurora and inter-node
communication from Medusa system (Zdonik et al.,
2003).

Gigascope is a data stream processing system for
network applications including traffic analysis, intru-
sion detection, router configuration analysis, network
monitoring, and performance monitoring and debug-
ging (Cranor et al., 2003).

3 BASIC CONCEPTS

A data streamis a theoretically unlimited sequence
of homogeneous and either elementary or composite
data items. A type of the individual data items deter-
mines the special types of data streams, for instance,
a relational data streamis a stream whose data items
are the tuples of elementary values,XML data stream
is a stream whose data items are the XML documents,
and so on.

A system of elementary operations on data items
is derived from a formal model of data stream pro-
cessing and optimization proposed by (Getta and Vos-
sough, 2004). An elementary operation always pro-
cesses one input data stream, at most one data con-
tainer, and outputs the data items to zero or more out-
put data streams.

There are two types of data containers:fixed size
container also called aswindowson data streams and
variable sizecontainers used to keep the intermediate
results of stream processing.

The complex operations on a data stream are im-
plemented through the composition of elementary op-
erations. For instance, finding the current largest
value in a sequence of data items can be implemented
as the composition of areadoperationmax andwrite
operationmwrite, see Figure 1. In another exam-
ple, an operationfind compares an item taken from
a stream withn largest and sorted items stored in a
data containerwsort and finds all items smaller than
the new one, see Figure 1. If at least one item is found
a sequence of items that should be written towsort to
keep it sorted is passed to an operationswrite,

In a general case implementation ofn argu-
ment operation is performed by the decomposition of
f (w1, . . . ,wi−1,xi ,wi+1, . . . ,wn), into n−1 binary op-
erations.

ICSOFT 2007 - International Conference on Software and Data Technologies

194

yw

zw

*

*

write

xyw

+

zxw

write + write

write

result

x
copy

Figure 2: A data stream processing networks implementing
(x∗wy)+(x∗wz).

For example, an operationf (x,wy,wz) that pro-
cesses a data streamx, fixed size windowswy,
wz on the streamsy and z can be implemented
as f2(f1(x,wy),wz) and represented as apath p :
f1(wy), f2(wz),ε. A data streamx is piped into a path
p, x → p in order process the data items. The last
symbol in a path identifies the next path to be used
for the processing. A special symbolε denotes an end
of processing.

As a simple example consider an operation
f (x,wx,wy) = (x∗wy)+(x∗wz) that processes a data
streamx against the fixed size windowswy and wz.
The paths:
p:copy()(1:p1,2:p2)
p1:∗(wy),write(wxy),+(wzx),write(result),ε
p2:∗(wz),write(wzx),+(wxy),write(result),ε
implementingf (x,wx,wy) are visualized in Figure 2.
A moduleis a set of paths encapsulated as a complex
operationm(p1, . . . , pm,d1, . . . ,dn)1:ε, . . . , p:ε where
p1, . . . , pm are the path parameters,d1, . . . ,dn are the
data container parameters and 1:ε, . . . , p:ε are the out-
puts.

Processing of many data streams needs the indi-
vidual implementations of paths for each one of the
streams involved in an application. Adata stream
processing networkis a set of path expressions to-
gether with the data streams ”piped” into the paths.

4 DESIGN OF APPLICATIONS

In an operational model of data stream processing an
application acting on the streamsx1, . . . ,xn is repre-
sented asn-argument operationf (x1, . . . ,xn). Due to
the reactivityprinciple, an application should be able
to recompute the operation after a new data itemδi
is appended to anyone of the streams. Therefore, an
application programmer must provide the implemen-
tations ofn operationsf1(wx1 ⊕ δ1,wx1, . . . ,wxn),. . . ,
f1(wx1, . . . ,wxn ⊕ δn) wherewxi ⊕ δi denotes the con-
tents of a windowwxi after the insertion of a data item
δi .

In order to speed up the evaluation of the oper-

m−1d

2dα 1

α 2

α m

α m−1

1diδ w i

md

Figure 3: Implementation offi(w1, . . . ,wi ⊕δi , . . . ,wn).

ations, all computations on thewindows that have
not been changed since the previous evaluation are
taken from the earlier recorded temporary results,
also called asmaterializations d1, . . . ,dm, see Fig-
ure 3. Hence, the implementation offi(w1, . . . ,wi ⊕

δi , . . . ,wn) is performed through the transforma-
tion of n-argument operation into an expression
ei(d1, . . . ,dm,wi ⊕ δi) over the binary operations
α1, . . . ,αm, window wi ⊕ δi , and materializations
d1, . . . ,dm,

A sequence of binary operations is transformed
into a pathpi : α1(d1), . . . ,αm(dm) whered1 is awin-
dow on a data stream see Figure 3. A transforma-
tion of an expressionei into a path is performed
in the following way. We start from an operation
α1(δi ⊕ wi ,d1) and we construct a pathpi :αi(d1).
Next, we consider an operationα2(α1(δi ⊕wi ,d1),d2)
and we extend a pathpi to get pi :α1(d1)),α2(d2).
We repeat this process until an operationαm at the
root of expressionei is processed. Finally, we append
write(wout) to a pathpi . We repeat, this process for
all expressionsei , i = 1, . . . ,n. Next, if d j is a mate-
rialization of the intermediate results then we insert
an operationwrite(d j) into all paths expressions that
contribute to the contents ofd j . At the end, we add
an operationwrite(wi) at the beginning all pathspi
whose inputs are directly taken from the data streams.

5 IMPLEMENTATION OF
APPLICATIONS

An implementation stage that follows an application
design includes the preparation of formal specifica-
tion and optimization of paths, generation of imple-
mentation code, and implementation of the opera-
tions. XML is chosen as a language for formal speci-
fication of paths.

XML document that describes a data stream pro-
cessing application consists ofPORT, DATA-TYPE,
WINDOWS, andPATH elements. An elementPORT in-
cludes information about the sources from where the
data items are collected and it is described by the at-

DESIGN AND IMPLEMENTATION OF DATA STREAM PROCESSING APPLICATIONS

195

tributesIP, TYPE, andTO-PATH.
An element DATA-TYPE contains information

about the structures of data items handled by an ap-
plication. Its subelements and attributes are modeled
in a way similar to C++ class structures.

An elementWINDOWS contains information about
the different types of windows used by an application.

An element PATH represents the paths a data
stream processing application consists of. It is de-
scribed by the attributesNAME andTYPE whereNAME
identifies a path andTYPE is a type of data item pro-
cessed by a path. The subelements ofPATH inlude the
repetitions of the elementsOPERATION andOUTPUT.
An elementOPERATION that represent the operations
included in a path has its own sub-elements including
COMMENTS,GET, STORE, andBRANCH.

C++ code generated from XML specification im-
plements entire application except the elementary op-
erations that have to be separately provided by the ap-
plication programmers. Every data item handled by
a data stream processing application has its type de-
clared in the application. Data types are represented
by C++ classes of objects and the variables being the
instances of a particular data type are stored as either
private or public variables.

All paths described in XML document are repre-
sented as sequences of operations are the segments
within the function. A code generated from XML
uses sockets for connecting and listening to different
ports.

6 SUMMARY, AND FUTURE
WORK

This work considers the design and implementation
of data stream processing applications in the envi-
ronments where the limited computational resources
or specific requirements imposed on the applications
make the utilization of complex DSMS not practical.
In our approach an application processingn input data
streams is represented as ann-ary operation. We show
how to decompose such operations into the expres-
sions built of binary operations,materializations, and
input data items and later on we describe the transala-
tion the expressions into the sets of data stream pro-
cessing paths. In our model one data stream is di-
rected for processing to one path and set of paths
represents entire application. The paths are formally
described in XML based language and implemented
through the automatic translation into C++ code.

The following are the possible directions for fu-
ture extensions of our approach to data stream pro-
cessing. An interesting idea is to distribute the com-

putations over many processing units. A closely re-
lated problem is the distribution of the processing in
the sensor networks. Another problem is related to
the simultaneous processing of more than one data
stream. In such a case the synchronization of flows
of data items along the processing paths needs to
throughly be addressed.

REFERENCES

Abadi, D., Carney, D., Cetintemel, U., M.Cherniack, Con-
vey, C., Erwin, C., Galvez, E., Hauton, M., Maskey,
A., Rasin, A., A.Singer, Stonebraker, M., Tatbul, N.,
Xing, Y., Yan, R., and Zdonik, S. (2003). Aurora: A
data stream management system. InProceedings of
the 2003 ACM SIGMOD International Conference on
Management of Data, pages 663–663.

Avnur, R. and Hellerstein, J. (2002). Continuously adaptive
continuous queries over streams. InProceedings of
the 2002 ACM SIGMOD International Conference on
Management of Data, pages 49–60.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. (2002). Models and issues in data stream sys-
tems. In Popa, L., editor,Proceedings of the Twenty-
first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 1–16. ACM
Press.

Cranor, C., Johnson, T., Spatatschek, O., and Shkapenyuk,
V. (2003). Gigascope: A stream database for net-
work applications. InProceedings of the 2003 ACM
SIGMOD International Conference on Management
of Data, pages 644–648.

Getta, J. R. and Vossough, E. (2004). Optimization of data
stream processing.SIGMOD Record, 33(3):34–39.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S.,
Datar, M., Manku, G., C.Olston, Rosenstein, J., and
Varma, R. (2003). Query processing, resource man-
agement, and approximation in a data stream man-
agement system. InProceedings of the First Bi-
ennial Conference on Innovative Data Systems Re-
search, pages 245–256.

Zdonik, S., Stonebraker, M., M.Cherniack, Cetintemel, U.,
Balazinska, M., and H.Balakrishnan (2003). The Au-
rora and Medusa projects.Bulletin of the Technical
Committee on Data Engineering, pages 3–10.

ICSOFT 2007 - International Conference on Software and Data Technologies

196

