
ASSL SPECIFICATION OF RELIABILITY SELF-ASSESSMENT
IN THE AS-TRM

Emil Vassev, Olga Ormandjieva and Joey Paquet
Department of Computer Science and Software Engineering

Concordia University, Montreal, Quebec, H3G 1M8, Canada

Keywords: Specification language, autonomic system, reactive system, reliability self-assessment.

Abstract: This article is an introduction to our research towards a formal framework for tackling reliability in reactive
autonomic systems with self-monitoring functionality. The Autonomic System Specification Language
(ASSL) is a framework for formally specifying and generating autonomic systems. With ASSL, we can
specify high-level behavior policies, which shows that it is very appropriate language for specifying
reliability models as part of overall system behavior. In this paper, we show how ASSL can be used to
specify reliability self-assessment i n t h e Aut o nomi c Sy st e m T i me d Rea c t i v e Mode l (AS-TRM). T h e
reliability self-assessment is performed at two levels: autonomic element (local) and system (global). It
depends on the configuration of the system and is concerned with the uncertainty analysis of the AS-TRM
as it evolves. An appropriate architecture for supporting reliability self-assessment, along with a
communication mechanism to implement the reactive and autonomic behavior, are specified with ASSL.

1 INTRODUCTION

In order to overcome the increasing complexity of
IT infrastructure and the associated workload
required to maintain such a complex infrastructure,
we need self-adaptive and autonomic computing
systems. Autonomic systems (AS) are not only
inherently complex, but also evolve during
execution. Thus, it is important to monitor the
behavior of such systems and to ensure a high level
of system reliability at runtime.

Research Problem. The computing industry thrives
on the assumption in the marketplace that software
is reliable and correct, but countless examples from
experience over the decades cast doubt on the
validity of this assumption. There is no automated,
general purpose method for building reliable
systems that fully meets system reliability
requirements. This represents a major gap that has
yet to be fully addressed by the software engineering
community. The runtime reliability verification
method proposed in this paper attempts to bridge
this gap through self-monitoring of system reliability
and its assessment measured against the system
policies of interest at runtime. Reliability self-
assessment has to be regulated by policies stating the
required minimum level of reliability for the system

and the constraints on system reliability level
fluctuations at runtime.

Approach. Our paper reports on the ongoing work
on built-in reliability self-assessment, which would
allow for the capture of reliability policies, the
modeling of reliability self-assessment and the
implementation of a runtime reliability verification
method in an evolving Autonomic System Timed
Reactive Model (AS-TRM). The vision of the AS-
TRM is to be able to create autonomic distributed
real-time reactive systems on a framework that
leverages their modeling, development, integration
and maintenance. The reliability self-monitoring of
an evolving AS-TRM is rooted in the theory of
Markov chains. The reliability level is an indicator
of the amount of certainty (excess entropy) in the
environment-system’s behavior (Ormandjieva et al.,
2006; Ormandjieva, 2002). This paper extends our
previous work on reliability to complex composite
reliability structures.

One of the main contributions of this paper is the
formalization of the AS-TRM approach with the
Autonomic System Specification Language (ASSL)
(Vassev, Paquet, 2007) – which is a framework for
formally specifying and generating ASs, such
systems being specified as formal executable models
with an interaction protocol and autonomic

198
Vassev E., Ormandjieva O. and Paquet J. (2007).
ASSL SPECIFICATION OF RELIABILITY SELF-ASSESSMENT IN THE AS-TRM.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 198-206
DOI: 10.5220/0001328601980206
Copyright c© SciTePress

elements. In our understanding, ASSL facilitates the
achievement of the goal of specifying the reliability
self-assessment in such a framework. Moreover,
ASSL focuses on the service-level objectives and the
AS’s self-management policies, thus making ASSL
suitable for specifying the reliability self-
assessment. The advantages of using ASSL for
modeling AS-TRM systems are that it enables
software assurance and it provides proof of the
correctness of the behavior of such systems.
Moreover, formally derived models can be used as
the basis for code generation.

The rest of this paper is organized as follows:
Section 2 surveys related work. The AS-TRM and
the reliability self-assessment mechanism at both
autonomic component and system levels are
described in Section 3. Section 4 introduces ASSL.
Section 5 presents the formal specifications of
reliability self-assessment in the AS-TRM with
ASSL. Our conclusions and future work directions
are outlined in Section 6.

2 RELATED WORK

IBM Research has developed a framework called
Policy Management for Autonomic Computing
(PMAC) (IBM Tivoli, 2005), which provides a
standard model for the definition of policies and an
environment for the development of software objects
that hold and evaluate policies. PMAC is used for
the development and management of intelligent
autonomic software agents. With PMAC, these
agents have the ability to dynamically change their
behavior, an ability provided through a formal
specification of policies encompassing the scope
under which these policies are applicable. Moreover,
policy specification includes the conditions under
which a policy is in conformity (or has been
violated), a set of resulting actions, goals or
decisions that need to be taken and the ability to
determine the relative value (priority) of multiple
applicable actions, goals or decisions.

In (Goseva-Popstojanova, Kamavaram, 2004), a
methodology was proposed for the uncertainty
analysis of architecture-based software reliability
models suitable for large, complex, component-
based applications which is applicable throughout
the software life cycle. Within this methodology,
two methods for uncertainty analysis have been
developed: the method of moments and Monte Carlo
simulation. The method of moments is used to
quantify the uncertainty in software reliability due to
uncertainty in component reliabilities. The
expressions derived in (Goseva-Popstojanova,
Kamavaram, 2004) are valid for random variables

and do not allow the uncertainty in software
reliability to be studied due to uncertainty in the
operational profile.

In (Dai, 2005), a new model-driven scheme for
autonomic management is presented, based on a
comprehensive survey of reliability models. This
scheme can better allocate resources by using the
reliability models to predict and direct the
distribution of monitoring efforts. If certain services
or components are predicted to have a high degree of
reliability at a particular time, then there is no need
for intensive monitoring during that period.
However, those with low reliability require more
intensive monitoring.

The reliability evaluation method discussed in this
paper differs from previous reliability evaluation
methods in the following ways:
• The most common stochastic queuing model for

the arrival time of the external events, namely a
Poisson distribution, is assumed.

• It is based on the architecture model of an AS
and the extended state diagrams.

The work presented in this paper builds on the

research results on the reliability self-assessment of
autonomic components in the AS-TRM (Vassev et
al., 2006; Ormandjieva et al., 2006).

3 AS-TRM AND RELIABILITY
ASSESSMENT

The AS-TRM (Vassev et al., 2006; Ormandjieva et
al., 2006) differs considerably from related work in
the area of autonomic computing in that it targets the
modeling of both reactiveness and self-managing in
distributed systems. This section provides a
comprehensive conceptual view of the AS-TRM
architecture (see Figure 1), which is intended to
capture and convey the significant decisions that will
serve as a foundation for further design and
implementation. The architectural concepts for ASs
are mainly based on the IBM’s blueprints and the
on-going research into autonomic computing being
conducted at IBM laboratories (IBM, 2006).

3.1 AS-TRM Architecture

The AS-TRM is a three-tier layered model, in which
each upper tier communicates only with the tier
immediately below it (Vassev et al., 2006). The
three-tier structure describes the AS configuration,
autonomic peer groups and grouped reactive
components.

ASSL SPECIFICATION OF RELIABILITY SELF-ASSESSMENT IN THE AS-TRM

199

Figure 1: AS-TRM Architecture.

Reactive Component (RC). This tier encapsulates
reactive objects in an AS-TRM reactive component.
A reactive object is modeled as a labeled transition
system. The timing requirements are modeled as
constraints on the transitions, and are specified with
the aid of local clocks initialized as actions
associated with transitions. The synchronous
interaction between the reactive objects allows for
realization of the reactive task. Synchronous
communication axioms govern the interaction
between the reactive objects. Communication
between an RC and its upper tier – the ACG – is
realized through an interface, and is asynchronous.

Autonomic Group of RCs (ACG). The AS-TRM
Component Group is a set of synchronously
communicating RCs cooperating in fulfillment of a
group task. Each ACG can independently
accomplish a complete real-time reactive task. The
self-monitoring behavior at the ACG tier level and
the asynchronous interaction in an ACG are realized
by the ACG’s Autonomic Group Manager (AGM).

Autonomic System (AS). The AS consists of a set
of asynchronously communicating ACGs. The self-
monitoring behavior and the asynchronous
interaction between the AS and the ACGs are
realized by the Global Manager (GM). The
responsibilities of the GM include the continuous
monitoring of the reliability level of the AS required
to the reliability policies of the AS.

Anatomy of the AGM and the GM. The GM is
responsible for the self-configuring, self-healing and
self-optimizing, and self-protecting of the autonomic
group. The responsibilities of the AGM include the
continuous monitoring of the reliability level of the
ACG required by the evolving nature of the group
for self-configuration purposes. Every ACG

communicates with the GM via its AGM, its status
and its measurements. According to the input
received from the ACGs, the GM makes decisions
based on the policies, facts and rules and
communicates instructions to the AGMs.

The reactive behavior is modeled at the RC level.
We model the environmental objects communicating
with the system as reactive objects, and incorporate
them into the RCs fulfilling the corresponding
reactive task. Autonomic functionalities like
reliability self-assessment can be implemented at
group level, using locally maintained policies and
specific characteristics such as timing constraints
and synchronous communication axioms, and at
system level using the knowledge on the global
policies, system characteristics, etc.

3.2 ACG Reliability

In our approach, the reliability level of an ACG is an
indicator of the amount of certainty (excess entropy)
in the environment-system’s behavior (Ormandjieva
et al., 2006; Ormandjieva, 2002). The reliability self-
monitoring of the evolving AS-TRM is based on the
theory of Markov chains.

Traditionally, the use of Markov chains has
required monitoring the states of all RCs. However,
this approach does not scale (there is too much to
monitor) and usually does not work (for most
systems, the probabilities cannot be calculated). In
our approach, reliability is assessed from the
specifications of the reactive objects modeled as
labeled transition systems, reactive components
consisting of synchronously interacting reactive
objects and the AS-TRM architecture, and so those
states do not require monitoring. The specification
information is available in the form of text files and
serves as input to the reliability assessment, which
has to be performed before the evolving system’s
change is actually implemented. Moreover, the
reliability assessment model allows for calculation
of the transition probabilities in the Markov chain
from the extended state machines of the individual
reactive objects and of groups of synchronously
communicating reactive objects. What this means is
that there is no need for statistical data on the
system’s usage. The details of reliability self-
monitoring in autonomic components are given in
(Ormandjieva et al., 2006; Ormandjieva, 2002). One
of the contributions of this paper to reliability
assessment is the definition of reliability for AS,
which is given in Section 3.3.

ICSOFT 2007 - International Conference on Software and Data Technologies

200

3.3 AS Reliability

The reliability levels of the ACGs, reported to the
GM, are used to determine the reliability of the
whole AS based on the configuration of its n ACGs.
There are two interesting limit cases of such a
configuration, namely, parallel structures and serial
structures (Zhang, Nakamura, 2005). We have a
parallel configuration when there is at least one
component necessary to ensure that the entire AS
functions. Assuming the independence of failures of
the corresponding components, reliability is
calculated:

R = 1 - Π k=1,n (1 – Rk)
where Rk is the reliability of ACGk. In a serial
reliability structure, the functioning of the system is
ensured while all the components are functioning
properly. In this case, reliability is given by the
following formula:

R = Π k=1,n Rk
In the complex composite reliability structure, the
above two simple reliability structures can be
adopted to form a composite reliability structure.
The basic composite reliability structures include the
parallel-serial composite reliability structure and the
serial-parallel composite reliability structure (Dai,
2005). The reliability of the system with the parallel-
serial composite reliability structure is defined as

R = Π m=1,C (1 - Π k=1,Cm (1 – Rm
k))

where C is the number of serial composites and Cm
is the number of parallel components in the serial
composite m. The reliability of the system with the
serial-parallel composite reliability structure is

R = 1 - Π m=1,C (1 - Π k=1,Cm Rm
k)

where C is the number of parallel composites and Cm
is the number of serial components in the parallel
composite m.

3.4 Reliability Self-Assessment Method

The reliability assessment at the AS level would
allow a request for reconfiguration of the system to
be deployed by the GM if and only if the policies for
reliability level fluctuations hold. The reliability
policy assumed in this paper is the following: “The
reconfiguration shall not lead to a reliability level
below the required minimum.” The reliability self-
assessment tasks during runtime are modeled as a
control loop (IBM, 2006) comprising the following
steps: (i) Monitor: continuously track requests for
evolving changes within the AS-TRM, either from
the environment or from within the system, such as
configuration changes, time constraint changes and
synchronization axiom changes; (ii) Analyze: based
on the requested change received in step (i), predict
the new system reliability from the new reliability of

the ACG and of the new system configuration (see
3.2 and 3.3), and assess the request for change
against the AS reliability policies; (iii) Execute:
based on the results of the analysis performed in step
(ii), accept or deny the request for change.
Advantages. The advantages of the reliability self-
assessment in the AS-TRM include:
• Assessment of reliability from the specifications

of the reactive objects, the RCs and the
architecture of groups, with the result that
complex mechanisms for monitoring the states
of the reactive components are not required.

• The probabilities are calculated from the
extended state machines that specify the
behavior of the reactive objects/components,
and thus do not rely on the statistical data
collected on the system behavior at run time.

• The reliability self-assessment is performed
before a request for change is implemented, thus
ensuring compliance with the policies during
the self-management tasks.

Assumptions. In our system reliability analysis, all
the ACGs are considered to function independently,
and therefore it is assumed that there is
independence of failures of the corresponding
ACGs. This view is also supported by the ASSL
approach to specifying an AS.

4 ASSL

The Autonomic System Specification Language
(ASSL) is a framework that implies a multi-tier
structure for specifying ASs. By its virtue, ASSL is
generic and expressive enough to describe a variety
of ASs (Vassev, Paquet, 2007). The ASSL
framework is defined through formalization tiers.
Over these tiers, ASSL provides a layered structure
for specifying ASs as formal executable models.
ASSL defines an AS with its interaction protocol
and autonomic elements (AE). The ASSL’s tiers and
their sub-tiers describe different aspects of the AS,
like policies, communication interfaces, execution
semantics, actions, etc. All of them ensure that the
system is well-defined and consistent, providing a
“bottom-up” style where the upper tiers are
expressed using the elements described in the lower
ones. The following elements represent the major
tiers and sub tiers in ASSL.

I. Autonomic System (AS)
• AS Service-Level Objectives
• AS Self-Management Policies
• Metrics

ASSL SPECIFICATION OF RELIABILITY SELF-ASSESSMENT IN THE AS-TRM

201

• Architecture
II. AS Interaction Protocol (ASIP)
• Public AS Messages & Negotiation

Protocol
• Public Communication Channels
• Public Communication Functions

III. Autonomic Element (AE)
• AE Service-Level Objectives
• AE Self-Management Policies
• Friends
• AE Interaction Protocol (AEIP)

o Private AE Messages & Negotiation
Protocol

o Private Communication Channels
o Private Communication Functions
o Managed Resource Interface

• Recovery Protocol
• Behavior
• Outcomes
• Actions
• Events
• Metrics

4.1 Autonomic System Tier

The Autonomic System tier specifies an autonomic
system in terms of service-level objectives, self-
management policies, metrics and architecture
(Vassev, Paquet, 2007).

AS Service-Level Objectives. Service-level
objectives (SLO) are a higher-level form of
behavioral specification that establishes objectives –
for example, performance. The ASSL concept
(Vassev, Paquet, 2007) assumes that the AS service-
level objectives (AS SLO) constitute a global task,
the realization of which is to be decomposed into AE
service-level objectives (AE SLO).

AS Self-Management Policies. At this tier, the
ASSL formal model specifies the four self-
management policies of an AS as stated in (IBM,
2006): self-configuring, self-healing, self-optimizing
and self-protecting. In addition, ASSL leaves
available the option of specifying other AS-level
policies that cannot be classified as any of these four
policies.

AS Metrics. ASSL generally classifies metrics as
AS-level metrics and AE-level metrics, together
constituting a set of global metrics – parameters and
observables – that the AEs can control.

AS Architecture. ASSL addresses ASs as multi-
agent systems, where the individual agents are AEs

controlling resources and delivering services
(Tesauro et al., 2004). Each AS agent is an AE. At
this tier, the ASSL framework helps specify the
topology of the AS. The architecture is specified as a
correlation between the AEs or groups of AEs.

4.2 AS Interaction Protocol

To achieve effective interoperation among AEs, we
need the individual AEs to adopt standard
communication interfaces. At this tier, the ASSL
framework specifies the AS-level interaction
protocol (ASIP). The ASSL framework specifies the
AEs as entities communicating over ASIP. ASIP is a
public communication interface, expressed as public
messages exchanged among AEs using public
communication channels and public communication
functions (Vassev, Paquet, 2007).

4.3 Autonomic Element Tier

The ASSL formal model considers AEs to be
analogous to software agents able to manage their
own behavior and their relationships with other
autonomic elements, through which they provide or
consume computational services. At this level of the
framework, ASSL describes the correlation between
low-level system measurements, events, and actions,
and higher-level AE service-level objectives.

5 RELIABILITY
SELF-ASSESSMENT WITH
ASSL

As a formal language, ASSL defines a language-
independent representation for ASs, where they are
described as a set of interacting AEs. ASSL provides
a rich set of structures and elements, including self-
management policy structures (Vassev, Paquet,
2007). In this research, we focus on the specification
of reliability self-assessment, which we consider to
be a self-management policy. The assumptions
underlying the modeling of the tasks required to
fulfill the reliability self-assessment are:
• A reconfiguration plan has been received by the

GM and propagated to all the AGMs.
• The AGMs have completed their

reconfiguration analysis.

The following scenario describes the reliability
self-assessment policy specified with ASSL:

1. Each AGM sends a “reconfiguration analysis
done” message to the GM (see the “Monitor”
step in Section 3.4).

ICSOFT 2007 - International Conference on Software and Data Technologies

202

2. The GM requests, from all the AGMs, their
reliability levels that correspond to the new
configuration.

3. Each AGM sends their reliability level.
4. The GM computes the new reliability level of

the AS and analyzes it.
(Note: For steps 2, 3 and 4 see the “Analyze”
step in Section 3.4).

5. The GM accepts or denies the request for
reconfiguration (see the “Execute” step in
Section 3.4)

5.1 AS Tier

At this tier, we specify a global quality metric, called
SystemReliability, which, as its name implies, is an
indicator of the system reliability. We specify a
range for system reliability between min and max
(see Listing 1). This metric is used by the GM
reliability self-assessment behavior (see 5.3).
Moreover, at this tier, we specify the AS-TRM
architecture model. In our example, we consider an
AS-TRM as consisting of a GM and three AGMs.
As specified (see Listing 1), the AS-TRM has a
centralized architecture. The GM and all the AGMs
are grouped together, in groupGM, where the GM is
the group council node (Vassev, Paquet, 2007), and
AGM1, AGM2 and AGM3 are the member nodes.
The group council is an AE coordinating the work of
the group members. Moreover, we specify a list of
dependencies, to show that the AGMs do not depend
on each other, but on the GM. Listing 1 represents a
partial specification of the AS-TRM’s AS tier.

AS ASTRM {
 METRICS {
 METRIC SystemReliability {
 type = QUALITY;
 description = “Measures the reliability of the system.”;
 THRESHOLD_CLASS Reliability: double [min, max];
 }
 ASARCHITECTURE { // centralized system with 3 AGMs
 AE_LIST: GM, AGM1, AGM2, AGM3;
 DIRECT_DEPENDENCIES {

DEPENDENCY GM: AGM1, AGM2, AGM3;
DEPENDENCY AGM1: GM;
DEPENDENCY AGM2: GM;
DEPENDENCY AGM3: GM; };

 TRANSITIVE_DEPENDENCIES {};
 GROUPS {
 GROUP groupGM {
 MEMBERS: AGM1, AGM2, AGM3;
 FINAL COUNCIL: GM;
 };

 };
 } // ASARCHITECTURE
} // ASTRM

Listing 1: AS AS-TRM Partial Specification.

In the AS architecture specification, ASSL
considers only AEs. Therefore, we do not specify
the RCs (see Section 3.1), since they are not AEs,
but rather managed resources which are controlled
by the associated AGM (Vassev, Paquet, 2007).

5.2 ASIP Tier

At this tier, we specify the communication protocol
needed by the GM and AGMs to communicate and
transfer data for the needs of the reliability self-
assessment policy. First, we specify the messages
needed for the reliability self-assessment
specification (see Listing 2):
• analysisDone – used by the AGMs to report to

the GM that they have completed the
reconfiguration analysis.

• requestReliability – used by the GM to request
the reliability level from the AGMs. Moreover,
the same message is used by the AGMs to
return the computed reliability level to the GM.

The reconfiguration itself is not specified here. In

general, it should be triggered by the GM, i.e. the
GM should send a message to all the AGMs
requesting reconfiguration, together with a
reconfiguration plan.

ASIP {
 MESSAGES {
 FINAL MESSAGE analysisDone {
 SENDER: {AGM1, AGM2, AGM3};
 RECEIVER: GM;
 TYPE: TEXT;
 ID: none;
 BODY: “analysisDone ”;}
 FINAL MESSAGE requestReliability {
 SENDER: {GM, AGM1, AGM2, AGM3};
 RECEIVER: {GM, AGM1, AGM2, AGM3};
 TYPE: TEXT;
 ID: none;
 BODY: “systemReliability = ?”;}
 }
 CHANNELS {
 CHANNEL configChannel {
 ACCEPT: { requestReliability, analysisDone };
 ACCESS: SEQUENTIAL;
 DIRECTION: BIDIRECTIONAL; }
 }
 FUNCTIONS {
 FUNCTION sendRequestReliability {
 requestReliability >> configChannel; }
 FUNCTION receiveRequestReliability {
 requestReliability << configChannel; }
 FUNCTION sendAnalysisDone {
 analysisDone >> configChannel; }
 FUNCTION receiveAnalysisDone {
 analysisDone << configChannel; }
 }
} // ASIP

Listing 2: ASIP Partial Specification.

In addition, at this tier, we specify a single
communication channel (see configChannel in
Listing 2) and the functions operating the messages
over that channel, i.e. functions for receiving and
sending the messages requestReliability and
analysisDone from and to the configChannel. It is
important to mention that the ASIP specification is
not complete. In Listing 2, we present only those
messages, channels and functions needed by the
system reliability self-assessment specification.

ASSL SPECIFICATION OF RELIABILITY SELF-ASSESSMENT IN THE AS-TRM

203

5.3 AE Tier - GM Specification

At the AE tier, we specify the AS-TRM’s AEs, i.e.
we specify the GM, AGM1, AGM2 and AGM3. In
Listing 3, we present a part of the GM specification,
which describes the GM’s reliability self-assessment
policy specification. To specify the reliability self-
assessment policy, we use four major elements:
• SystemReliability – an AS metric expressing the

current system reliability level (see Section 5.1);
• RELIABILITY_SELF_ASSESSMENT – a self-

management policy describing in ASSL terms
the reliability self-assessment policy of the GM.
Here, we use a set of fluents and mappings to
specify the policy (Vassev, Paquet, 2007). With
the fluents, we express specific situations in
which the reliability self-assessment policy is
interested, and with the mappings we map those
situations to actions (see Listing 3). A fluent has
a timed duration, for example a state like
“reliability is changing”. When the system gets
into that specific condition, the fluent is
considered to be valid;

• actions – a set of actions that could be
undertaken by the GM in response to certain
conditions, and according to the reliability self-
assessment policy;

• events – a set of events that are triggered by, the
actions, according to the reliability self-
assessment policy.

AE GM { // GM (Global Manager) ASSL specification

 AESELF_MANAGEMENT {
 OTHER_POLICIES {
 RELIABILITY_SELF_ASSESSMENT {
 FLUENT inRequestReliability {

 INITIATES: isAnalysisDone ;
 TERMINATES: isRequestReliabilitySent; }

 FLUENT inReceiveReliability {
 INITIATES: isRequestReliabilitySent;
 TERMINATES: isRequestReliabilityReceived; }

 FLUENT inChangeReliability {
 INITIATES: isRequestReliabilityReceived;
 TERMINATES: isReliabilityChanged; }

 MAPPING { // request reliability from all the AGMs
 CONDITION: inRequestReliability;
 ACTION: ACTIONS.requestReliability;}
 MAPPING { // receive reliability from all the AGMs
 CONDITION: inReceiveReliability;
 ACTION: ACTIONS.receiveReliability;}
 MAPPING { // receive reliability from all the AGMs
 CONDITION: inChangeReliability;
 ACTION: ACTIONS.computeReliability;}
 MAPPING { // denies the new configuration
 CONDITION: EVENTS.isConfigurationDenied;
 ACTION: ACTIONS.configurationDenied;}
 } // RELIABILITY_SELF_ASSESSMENT
 }
 } // AESELF_MANAGEMENT
 ACTIONS {
 ACTION requestReliability {
 GUARDS: isAnalysisDone ;
 ENSURES: isRequestReliabilitySent;
 DOES {
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 call: ASIP.FUNCTIONS.sendRequestReliability; }
 }
 }
 ACTION receiveReliability {
 GUARDS: isRequestReliabilitySent;
 ENSURES: isRequestReliabilityReceived;

 DOES {
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 call: ASIP.FUNCTIONS.receiveRequestReliability; }
 }
 }
 ACTION computeReliability {
 GUARDS: isRequestReliabilityReceived;
 ENSURES: isReliabilityChanged;
 DOES {
 double product = 1;
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 product = product * (1 - member. METRICS.AGMReliability); }
 set: AS.METRICS.SystemReliability = 1 – product;
 }

TRIGGERS: isConfigurationDenied;
 }
 ACTION configurationDenied {
 GUARDS: isConfigurationDenied;
 DOES {
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 call: ASIP.FUNCTIONS.receiveRequestReliability; }
 call: IMPL DenyConfiguration;
 }
 }
 } // ACTIONS
 EVENTS { // these events are used in the fluents’ specification
 EVENT isRequestReliabilityReceived:
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 received ASIP.MESSAGES.requestReliability and
 ASIP.MESSAGES.requestReliability.ID = msgID and
 ASIP.MESSAGES.requestReliability.SENDER = member; }
 EVENT isRequestReliabilitySent:
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 sent ASIP.MESSAGES.requestReliability and
 ASIP.MESSAGES.requestReliability.RECEIVER = member; }
 EVENT isAnalysisDone :
 foreach member in AS.GROUPS.groupGM.MEMBERS {
 received ASIP.MESSAGES.analysisDone and
 ASIP.MESSAGES.analysisDone.ID = msgID and
 ASIP.MESSAGES.analysisDone .SENDER =member; }

EVENT isReliabilityChanged: changed AS.METRICS.SystemReliability;
 EVENT isConfigurationDenied: ;
 } // EVENTS

} // AE GM

Listing 3: AE GM Partial Specification.

The following elements describe the specification
listed in Listing 3.

inRequestReliability. This fluent takes place when
the GM requests the new reliability levels from the
AGMs. The fluent is initiated by the isAnalysisDone
event, which happens when the GM has received the
analisysDone message from all the AGMs.
Moreover, this fluent terminates when the
isRequestReliabilityEvent happens, i.e. when the
GM has sent the requestReliability message to all
the AGMs. Further, this fluent is mapped to the
requestReliability action, which uses the specified at
the ASIP tier (see 5.2) sendRequestReliability
function to send the message to all the AGMs.

inReceiveReliability. This fluent is triggered when
the requestReliability message has been sent to all
the AGMs (see the isRequestReliabilitySent
specification), and terminates when all the new
reliability levels have been received (see
isRequestReliabilityReceived in Listing 3). This
fluent is mapped to the receiveReliability action.

inChangeReliability. This fluent is triggered when
the requestReliability message has been received
from all the AGMs (see the

ICSOFT 2007 - International Conference on Software and Data Technologies

204

isRequestReliabilityReceived specification), and
terminates when the system reliability level has been
changed (see the isReliabilityChanged
specification). It is mapped to the computeReliability

action, which then applies the formula stated in the
algorithm described in Section 3.3 for computing
system reliability. Further, the new reliability level is
assigned to the AS SystemReliability metric. If the
new reliability level does not conform to the
metric’s range (specified by its threshold class – see
Listing 1), the action denies the new level and
triggers the isConfigurationDenied event.

isConfigurationDenied. This event is mapped to the
configurationDenied action. The latter uses an IMPL
routine (see the ASSL clause IMPL in (Vassev,
Paquet, 2007)) to deny the new configuration due to
a lower reliability level. The IMPL clause states for
“further implementation”, which means that the
ASSL framework will generate an empty routine and
its content should be implemented manually.

5.4 AE Tier – AGM Specification

At this tier, we specify an AE AGM class
(AECLASS in ASSL). This class specifies three
AGM AEs in common: AGM1, AGM2 and AGM3,
which extend the AGM class (see the end of Listing
4). Since the AGMs should monitor their own
reliability level, we specify a quality metric, called
AGMReliability, with a reliability range between min
and max (see Listing 4). This metric is used by the
AGM reliability self-assessment behavior. As in the
GM specification, we specify the reliability self-
assessment policy as a separate structure, called
RELIABILITY_SELF_ASSESSMENT, which is
specified in the OTHER_POLICIES section,
subsection of AESELF_MANAGEMENT.

We specify two fluents with the appropriate
mappings. The first fluent – inChangeReliability -
merges the events isAnalysisDoneSent and
isReliabilityChanged. The former is raised when the
message announcing a successful reconfiguration is
sent to the GM, and the latter is raised when the
reliability level has been changed successfully.
Therefore, we compute the new reliability level right
after sending the reconfiguration analysis message.
Moreover, this fluent is mapped to the
computeReliability action, which uses an IMPL
routine, called ComputeAGMReliability, to compute
the AGM’s reliability level. This routine is a further
implementation (see the ASSL clause IMPL) of the
algorithm described in Section 3.2. If the new
reliability level does not conform to the
AGMReliability metric’s range (specified by its
threshold class – see Listing 4), the action denies the
new level and triggers the isConfigurationDenied

event. The specification of this event is similar to the
specification of its homolog in the GM specification.

 The second fluent, called inRequestReliability,
merges the isRequestReliabilityReceived and
isRequestReliabilitySent events. The former is raised
when the message requesting reliability evaluation
has been received from the GM, and the latter is
raised when the reliability level has been sent to the
GM. This fluent is mapped to the sendReliability
action (see Listing 4), which does the following:
• sets the receiver of the requestReliability

message to the GM;
• sets the body of the message to the computed

reliability level;
• sends the message to the GM, by using the

specified at the ASIP tier
sendRequestReliability function (see 5.2).

AECLASS AGM { // AE class
 AESELF_MANAGEMENT {
 OTHER_POLICIES {
 RELIABILITY_SELF_ASSESSMENT {
 FLUENT inChangeReliability {
 INITIATES isAnalysisDoneSent;
 TERMINATES: isReliabilityChanged;}
 FLUENT inRequestReliability {
 INITIATES: isRequestReliabilityReceived;
 TERMINATES: isRequestReliabilitySent;}
 MAPPING {
 CONDITION: inChangeReliability;
 ACTION: ACTIONS.computeReliability;}
 MAPPING {
 CONDITION: inRequestReliability;
 ACTION: ACTIONS.sendReliability;}
 MAPPING { // denies the new configuration
 CONDITION: EVENTS.isConfigurationDenied;
 ACTION: ACTIONS.configurationDenied; }
 } // RELIABILITY_SELF_ASSESSMENT
 }
 } // AESELF_MANAGEMENT
 ACTIONS {
 ACTION computeReliability {
 GUARDS: isAnalysisDoneSent;
 ENSURES: isReliabilityChanged;
 DOES {
 set: AGMReliability = IMPL ComputeAGMReliability;
 }

TRIGGERS: isConfigurationDenied;
 }

 ACTION sendReliability {
 GUARDS: isRequestReliabilityReceived;
 ENSURES: isRequestReliabilitySent;
 DOES {
 set: ASIP.MESSAGES.requestReliability.RECEIVER = GM;
 set: ASIP.MESSAGES.requestReliability.BODY = AGMReliability;
 call: ASIP.FUNCTIONS.sendRequestReliability;
 }
 }
 ACTION configurationDenied {
 GUARDS: isConfigurationDenied;
 DOES {
 call: IMPL DenyAGMConfiguration;
 }
 }
 } // ACTIONS
 EVENTS {
 EVENT isAnalysisDoneSent:
 sent ASIP.MESSAGES.analysisDone ;
 EVENT isRequestReliabilityReceived:
 received ASIP.MESSAGES.requestReliability and
 ASIP.MESSAGES.requestReliability.ID = msgID and
 ASIP.MESSAGES.requestReliability.SENDER = GM;
 EVENT isRequestReliabilitySent:
 sent ASIP.MESSAGES.requestReliability;
 EVENT isReliabilityChanged: changed METRICS.AGMReliability;
 EVENT isConfigurationDenied;
 } // EVENTS
 METRICS {
 METRIC AGMReliability {

ASSL SPECIFICATION OF RELIABILITY SELF-ASSESSMENT IN THE AS-TRM

205

 type = QUALITY;
 description = “Measures the reliability of the AGM.”;
 THRESHOLD_CLASS Reliability: double [min, max];
 }
 }
} // AECLASS AGM

// specify three similar AGMs by extending the AGM class
AE AGM1 extends AGM {};
AE AGM2 extends AGM {};
AE AGM3 extends AGM {};

Listing 4: AGM Partial Specification.

At the end of AGM class specification, we specify
our three AGMs. They extend the AGM AE class.

6 CONCLUSION AND FUTURE
WORK

One of the most important aspects of ASs is self-
monitoring – a feature requiring a formal mechanism
for self-diagnosis of AS status. In this paper, a
system reliability self-assessment method is
described for the diagnosis of potential reliability
flaws, and consequently safety problems in evolving
reactive ASs. A new formal specification language,
ASSL, for specifying ASs has been applied to
specify the AS-TRM and the reliability self-
assessment. ASSL constitutes a hierarchical
approach to specifying ASs where the low-level tiers
express high-level detail structures of AEs, and the
high-level tiers express a general architectural view
of an AS. This exercise has demonstrated that ASSL
is sufficiently generic and adaptable to
accommodate most of an AS’s aspects, thus
allowing their specification not only at design time,
but also during runtime (Vassev, Paquet, 2007).

Future research is concerned with modeling the
effect of failure types and their assumed
probabilities on the reliability computation. We will
also explore rules for monitoring other non-
functional requirements on system behavior, such as
security, performance and trustability. There is a
need to develop and analyze algorithms and
negotiation protocols for conflicting non-functional
requirements, and to determine what bidding or
negotiation algorithms are the most effective. These
are some of the issues that are expected to be tackled
in the future.

REFERENCES

IBM Corporation, 2006. An architectural blueprint for
autonomic computing, White Paper, 4th Edition.

Vassev, E., Paquet, J., 2007. ASSL - Autonomic System
Specification Language, In Proceedings of the 31st
Annual IEEE/NASA Software Engineering Workshop
(SEW-31), Baltimore, MD, USA.

Vassev, E., Paquet, J., 2007. Towards an Autonomic
Element Architecture for ASSL, In Proceedings of the
29th International Conference on Software
Engineering / Software Engineering for Adaptive and
Self-managing Systems (ICSE 2007 SEAMS),
Minneapolis, MN, USA.

Goseva-Popstojanova, K., Kamavaram, S., 2004. Software
Reliability Estimation under Uncertainty:
Generalization of the Method of Moments, In
Proceedings of the 8th IEEE International Symposium
on High Assurance Systems Engineering (HASE’04),
pp. 209-218, Tampa, FL, USA.

Dai, Y., 2005. Autonomic Computing and Reliability
Improvement, In Proceedings of the 8th IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC'05), pp. 204-206,
Seattle, WA, USA.

Zhang, T., Nakamura, M., 2005. Reliability-based Optimal
Maintenance Scheduling by Considering Maintenance
Effect to Reduce Cost, Quality and Reliability
Engineering, International, 21:203–220.

Vassev, E., Kuang, H., Ormandjieva, O., Paquet, J., 2006.
Reactive, Distributed and Autonomic Computing
Aspects of AS-TRM, In Proceedings of the 1st
International Conference on Software and Data
Technologies - ICSOFT’06, pp. 196-202, Setubal,
Portugal.

Ormandjieva, O., Kuang, H., Vassev, E., 2006, Reliability
Self-Assessment in Reactive Autonomic Systems:
Autonomic System-Time Reactive Model Approach,
International Transactions on Systems Science and
Applications, Volume 2 (1), pp.99-104.

IBM Tivoli, 2005. Policy Management for Autonomic
Computing – Version 1.2, Tutorial, IBM Corp.

Tesauro, G., Chess, D., Walsh, W., Das, R., Whalley, I.,
Kephart, J., White, S., 2004. A multi-agent systems
approach to autonomic computing, In Proceedings of
Autonomous Agents and Multi-Agent Systems
(AAMAS’04), New-York, NY, USA.

Ormandjieva, O., 2002. Deriving New Measurements for
Real-Time Reactive Systems. Ph.D. Thesis. Computer
Science Department, Concordia University, Montreal,
Canada.

ICSOFT 2007 - International Conference on Software and Data Technologies

206

