
TEST COVERAGE ANALYSIS
FOR OBJECT ORIENTED PROGRAMS

Structural Testing through Aspect Oriented Instrumentation

Fabrizio Baldini, Giacomo Bucci, Leonardo Grassi and Enrico Vicario
Dept. Sistemi e Informatica, Università degli Studi di Firenze

Via S. Marta 3, 50139 Firenze, Italy

Keywords: Data Flow Analysis, Object Oriented Testing, Abstract Syntax Tree, Aspect Oriented Programming.

Abstract: The introduction of Object Oriented Technologies in test centered processes has emphasized the importance
of finding new methods for software verification. Testing metrics and practices, developed for structured
programs, have to be adapted in order to address the prerogatives of object oriented programming. In this
work, we introduce a new approach to structural coverage evaluation in the testing of OO software. Data flow
paradigm is adopted and reinterpreted through the definition of a new type of structure, used to record def/use
information for test critical class member variables. In the final part of this paper, we present a testing tool
that employs this structure for code based coverage analysis of Java and C++programs.

1 INTRODUCTION

Testing is the process of verifying the correctness of
a system through the exercise of its components and
functionalities (Beizer, 1990). As a part of this pro-
cess, coverage analysis is the activity of evaluating
the degree of coverage attained by performed tests
with respect to some abstraction of the system. This
provides a measure of the quality of tests, and, indi-
rectly, of the confidence about the absence of residual
undetected faults. In structural approaches, these ab-
stractions are derived from the implementation of the
system according to different paradigms which may
address control flow (Ntafos, 1988), data flow (Rapps
and Weyuker, 1985), finite state behavior (Fujiwara
et al., 1991) (Yannakakis and Lee, 1995).

In control flow analysis, coverage is evaluated
with reference to the flow of control, measuring
the number of covered statements, basic blocks,
branches, conditions or paths. Data flow testing ex-
tends the approach by focusing the analysis on paths
between definitions and uses of program variables
(Rapps and Weyuker, 1985). This follows a basic
rational for which “paths formed by definitions and
uses of variables are a good place to look for errors
in software” (Binder, 1994). In fact, if there’s a fault
in the program we have a good chance of detecting

it by covering the statements where the faulty-written
memory location is read. Data flow theory prescribes
different coverage criteria. The most relevant isAll
useswhich requires that the test suite exercises at least
one def-use path between each variable definition and
every subsequent use of the same variable.

While data flow theory has been developed and
successfully practiced mainly on structured program-
ming, its capabilities effectively answer to some of
the specific complexities posed by OO programming.
In fact, OO programming basically reduces the sig-
nificance of control flow and, at the same time, aug-
ments coupling based on concurrent def/usage of at-
tributes: control flow does not follow a regular hierar-
chical pattern as in structured programming and rather
evolves in a graph-like often tangled manner; mem-
ber variables have global visibility within the class
so that class methods are coupled through the inner
state of the object; the object state is maintained even
when the flow of control is not located in the object
methods; objects have global visibility within the pro-
gram, and can be concurrently invoked by a variety of
clients, thus extending coupling to the interclass level.

Several abstractions have been proposed to ad-
dress these complexities in the testing process.
Baudry, in (Baudry and Traon, 2005), proposes a
structure calledClass Dependency Graph(CDG),

55
Baldini F., Bucci G., Grassi L. and Vicario E. (2007).
TEST COVERAGE ANALYSIS FOR OBJECT ORIENTED PROGRAMS - Structural Testing through Aspect Oriented Instrumentation.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 55-60
DOI: 10.5220/0001329200550060
Copyright c© SciTePress



which is used to support design through a measure
of testability and through the identification of some
specificanti-patternswhich are supposed to be most
error-prone. The CDG is derived from a detailed
UML class diagram, which should, at the same time,
capture implementation details and designer’s intent;
the graph represents the dependency among classes
deriving from inheritance/implementation/override
and from delegation relations with no reference to
def/use coupling on class attributes. (Hong et al.,
1995) and (Gallagher et al., 2006) propose a special
type of control flow graph, calledClass/Component
Flow Graph, which describes the interaction among
methods of one or more classes, using the formalism
of state transition systems. The approach emphasizes
state behavior more than data flow dependency on
variables accesses and requires that program behav-
ior be modeled as an FSM in a so-calledClass State
Machine. However, this cannot be automatically de-
rived from code inspection and does not effectively
encompass programs with dynamic object creation.
In (Harrold and Rothermel, 1994), the structure of a
program is modeled as aClass Control Flow Graph
which extends the concept of inter-procedural con-
trol flow graph (Pande and Landi, 1991) to the OO
context by capturing intra-method, inter-method and
intra-class control flow deriving from decision struc-
tures and function calls. The graph is proposed as a
basis to select test cases in data flow style for the lim-
ited scope of each single class.

In this paper, we address the application of data
flow criteria to test coverage analysis of object ori-
ented programs. We propose a technique and a tool
performing static analysis of C++or Java code to iden-
tify def/use dependencies in the access to selected
salient attributes which occur among methods in the
intra-class and inter-class scope; these are reported
in so-calledDef/Use Tables, replacing conventional
control flow graphs in the representation of cases
that should be covered for reliable testing. We then
describe how Aspect Oriented Programming (AOP)
can be used to efficiently instrument the code to log
method invocations and to provide a basis for the of-
fline evaluation of the coverage attained with respect
to def/use tables, in the reference of various data flow
criteria.

The rest of the paper is organized in five sections.
In Sect. 2 and 3 we introduce Def/Use Tables as
a way of representing data flow information and we
present the set of syntactic rules used for their au-
tomated retrieval through code inspection. Sect. 4
formally defines the coverage criteria developed on
Def/Use tables and describes how these criteria are
evaluated though the offline analysis of an execution

log produced by the aspect oriented (Kiczales et al.,
1997) instrumentation of the program. In Sect. 5,
we provide a description of two practical tools devel-
oped to automate coverage analysis in the testing of
Java and C++programs. Finally, a validation of these
tools, with respect to design patterns, is presented.

2 OBJECT ORIENTED DATA
FLOW

Data flow testing employs an annotated version of
control flow graph, calleddefinition-use graph(Rapps
and Weyuker, 1985), to record the structural informa-
tion of the program under test. Basic blocks repre-
sent the building unit of the graph. Each node of the
definition-use graph is labeled with the set of variable
definitions (def) and uses (c-useor p-use) performed
in the corresponding basic block.

In our approach, we identify basic blocks with
method invocations without unfolding the control
flow graph within each method, this facilitates code
instrumentation for coverage evaluation and simpli-
fies the analysis so as to allow to scale to the inter-
class level; at the same time, in code developed ac-
cording to a good programming practice, this simpli-
fication does not hide relevant information due to the
high cohesion between statements contained within
the body of each single method.

Moreover, we do not distinguish betweenp-uses
andc-uses. This is not restrictive forAll Usescover-
age and avoid the needs to parse the statements that
encompass the expressions in which an attribute is re-
ferred to.

2.1 Def/Use Tables

The definition-use graph provides a global represen-
tation of data accesses in the program. In our work,
the graph structure has been replaced by an annotated
structure, calledDef/Use table, expressing data flow
information with respect to single variables.

We define a Def/Use table as follows: letx be the
member variable under observation. LetTuse(x) be
the set of methods (functions) performing at least a
use onx and letTde f(x) be the set of methods (func-
tions) performing at least a definition onx. Let n and
m be the size ofTuse(x) andTde f(x), respectively. A
Def/Use table for variablex is a n-row, m-column
table where rows are labeled with the elements of
Tuse(x) and columns are labeled with the elements of
Tde f(x). Note that, ifx is read and written within the
body of one methodm, thenm will be an element of
bothTuse(x) andTde f(x) and will appear in both a row

ICSOFT 2007 - International Conference on Software and Data Technologies

56



and a column of thex table. A Def/Use table represen-
tation for attributeage of the following classPerson
is reported in Table 1.

class Person {
public:

Person() {age = 0;}
˜Person(){}
void birthday() {age = age +1;}
int getYears() {return age;}
bool isAdult() {return age>=18;}

private:
int age;

};

Table 1: Def/Use table for the attribute age of class Person.

class:Person DEF
var: age Person() birthday()

isAdult()
USE getYears()

birthday()

Each cell of a Def/Use table can be regarded as a path
between adef node and ausenode of the definition-
use graph. The set formed by suchdefinition clear
pathsis thus given by the Cartesian product between
the columns and the rows of the table. The number of
the resulting (DEF method, USEmethod) sequences
is anyway to be considered as a theoretical upper
bound of the number of feasible paths. The identi-
fication of infeasible paths is a complex data flow is-
sue (Holley and Rosen, 1981) and has not been part
of this research. Indeed, during coverage evaluation,
we accepted the structural or semantical infeasibility
of some specificdef-usepairs formed by methods not
sequentially executable by the program.

2.2 Table Levels

Def/Use tables context of analysis can be extended
to include those methods which indirectly cause an
access to the variable under observation by invoking
another method that defines or uses the variable.

Let x be the variable under observation. Let
T (x, i) be the set of functions contained in table of
level i for variable x. Let Tde f (x, i) and Tuse(x, i)
be the subsets ofT (x, i) identifying the functions
that perform a definition or a use onx. As a re-
sult, T (x, i) = Tde f (x, i) ∪ Tuse(x, i) and, generally,
Tde f (x, i)∩Tuse(x, i) 6= 0. Table of leveli + 1 can be
built from table of leveli as follows:

• Tde f (x, i +1) is formed by all methods (functions)
that directly invoke at least one method (function)
contained inTde f (x, i)

• Tuse(x, i +1) is formed by all methods (functions)
that directly invoke at least one method (function)
contained inTuse(x, i)

As an example, consider the implementation of class
Parent :

class Parent: public Person{
public:

Parent(){...};
void childBirthday(){

if(child.isAdult()){
...
}
celebrate(child);

}
protected:

int celebrate(Person& p){
p.birthday();
return p.getYears();

}
private:

Person child;
};

Parent::celebrate(Person&) invokes directly
Person::birthday() and Person::getYears()
which are in the table of level 0 for the attributeage ;
according to this,Parent::celebrate(Person&)
will be recorded in level 1 table. The final form of
level 1 table forPerson::age will then be:

Table 2: Def/Use table of Level 1 for variable age.

class:Person DEF
var: age
level: 1 celebrate(Person&)
USE celebrate(Person&)

childBirthday()

Higher order tables provide an essential means for the
completeness of the representation of the definition-
use graph since they enable the evaluation of method
interactions at both the inter-method and inter-class
level (Harrold and Rothermel, 1994).

3 SOURCE CODE MODEL

The set of definitions and uses reported in a Def/Use
table is given by the union of methods performing
a direct or indirect access on the member variable
under observation. Direct accesses are given by ex-
plicit references to the attribute in infix, prefix, postfix
and assignment expressions contained in the method
body. An indirect access happens when the examined
method invokes another method by passing the vari-
able under test as one of its parameter and/or when

TEST COVERAGE ANALYSIS FOR OBJECT ORIENTED PROGRAMS - Structural Testing through Aspect Oriented
Instrumentation

57



the current method changes the state of the attribute1

by invoking a method on it (i.e. the variable is of an
abstract data type).

In order to identify each expression contained in
a method definition and addressing the variable the
table refers to, we require an analyzable abstraction
of the program under test. This model is provided by
the Abstract Syntax Tree (AST) (Kuhn and Thomann,
2006). Code parsing is performed by exloring the
nodes of the AST of each method, according to the
following rules: letx be the table attribute.

1. Every assignment, prefix or postfix expression,
that containsx, is examined as a node in the
method AST to detect a possible directdef or use
onx.

2. Every method invocation node of the AST is vis-
ited to detect a possible indirectdef or useonx.

3. If a useand adef for that method have already
been registered, the analysis for that method stops.

While the retrieving of direct accesses is a relatively
simple task to accomplish, the activity of identifying
indirect accesses strongly depends on the semantic of
the adopted programming language. The only general
rule that can be derived consists in the migration of
the scope of analysis from the calling method to the
called one.

As an example of indirect attribute access, we will
refer to classParent . Method childBirthday()
invokes isAdult() on the attributechild . This
method has no side effects for the invoking object so
only auseis registered forchildBirthday() . More-
over,childBirthday() passes a reference tochild
as a parameter toParent::celebrate(Person&
p) . The status ofp is changed through the invocation
of p.birthday() , consequently,childBirthday()
is considered to perform a definition onchild . The
resulting Def/Use table forchild is presented in Ta-
ble 3.

Table 3: Def/Use table for attribute child.

class:Parent DEF
var: child
level: 0 childBirthday()
USE childBirthday()

1The state of an object is a predicate on the values of its
member variables.

4 COVERAGE ANALYSIS

4.1 Logging Aspect

Aspect Oriented Programming (AOP) was used to in-
strument the code of the program under test and to
produce a log file containing the trace of tested be-
haviors.

An AOP language is a language containing ex-
pressions for the encapsulation of crosscutting con-
cerns into single units called aspects. An aspect is a
modular unit of crosscutting implementation that can
alter the behavior of multiple classes belonging to the
non-aspect part of the program.

Logging is a type of crosscutting concern that
AOP languages are able to address; several works
(Chen et al., 2004), (Rajan and Sullivan, 2005), have
employed this technique for structural and functional
analysis of object oriented programs.

Our AOP model is created according to the pro-
gram structure and to the scope of analysis deter-
mined by the tester. An aspect module is the result of
an aspect generator that, on the basis of the Def/Use
tables, automatically states which method calls must
be instrumented. The resulting aspect is formed by a
pointcut whose joinpoints are the elements of the ta-
bles. Two different advices are defined on the pointcut
to detect when the flow of execution enters the body
of a method and when the execution leaves it. The log
file records these advices in XML format indicating,
for each entry, the ID2 of the class instance the logged
method refers to, the identity of the process that gen-
erated the method execution and amessagefield used
by the program to trace the execution sequence.

4.2 Coverage Criteria

Def/Use tables serve as a tracking utility to record
couples of methods sequentially executed. Every
cell of a table corresponds to adef-usepair between
methods and functions of the same level, and can be
marked with thedefinition clearpath effectively ex-
ercised by test cases. To retrieve the paths covered
during test execution, three rules have been defined to
individually evaluate each method of the logged se-
quence:

• Def method: the method is labeled as the last one
that performed an assignment to the variable.

• Use method: if there is a method labeled aslast
def then adefinition clearpath has been covered;

2In Java, the value of the ID field is given by an hashcode
representation of the object. In C++, the ID is given by the
object’s memory location.

ICSOFT 2007 - International Conference on Software and Data Technologies

58



the information is registered in the Def/Use table
and thelast def label is removed.

• Def-use method: the method performs both a
reading and a writing on the variable. Conven-
tionally, theuseaccess is notified before thedef
access. Before reassigning thelast def label, a
check is performed to detect a possibledef-use
chain.

Classical data flow metrics have been adapted to the
object oriented context, deriving three different cov-
erage criteria.

• All nodes: this criterion represents the weakest
of the three. Full coverage for this criterion is
reached when test execution exercises every ele-
ment contained in the Def/Use table.

• All defs: full coverage for this criterion requires
the test set to exercise at least oneuseelement for
everydef element contained in the table.

• All uses: full coverage for this criterion requires
the test set to exercise everyuseelement for every
def element contained in the table. This criterion
implies that every ordered couple of methods, be-
longing to the cartesian product between the rows
and the column of the Def/Use table, is executed
during the testing phase.

In our approach, if coverage analysis is performed on
a set of member variables, the total coverage mea-
sure is derived from the partial measures, individually
evaluated on each Def/Use table.

Instance control is a required means to guaran-
tee that eachdef-usepair, reported in a table, is ac-
tually related to the same variable. Every time a nom-
inal definition clearpath is encountered, a check is
performed to verify the correspondence between the
identities of the object that invoked thelast defining
method and the object invoking theusemethod.

5 TOOL SUPPORT

To support the proposed technique we implemented
two testing tools namedCppTestandJavaTest. Both
programs have been developed as plug-ins for the
Eclipse platform, and use the CDT and JDT tools
for structural analysis of source code. AspectC++and
AspectJ were also used to perform code instrumen-
tation for the purposes of test logging.CppTestand
JavaTestperform structural analysis of source code,
create Def/Use tables for the user-defined variables,
instrument the code and evaluate the coverage results
of a test set execution.

To validate both the technique and the tools we
performed experiments on a workbench comprised of
a set of design patterns (Gamma et al., 1995) exhibit-
ing a variety of interactions and structural dependen-
cies which are common in the good practice of OO
programming.

As an example, Table 4 represents the Def/Use ta-
ble extracted from the implementation of an Observer
pattern (Gamma et al., 1995). In the pattern, the at-
tributeobservers , represents the list of references to
the observers previously attached to the subject. The
table indicates which are the possible def/use depen-
dencies among methods, and it marks with a token
which of them have been actually exercised in a test-
ing suite including the following testing sequence:

1 7021720 - Subject::Subject()
2 7019640 - Subject::Subject()
3 7019640 - void Subject::attach(Observer*)
4 7021720 - void Subject::attach(Observer*)
5 7021720 - void Subject::detach(Observer*)
6 7021720 - Subject::˜Subject()
7 7021720 - void Subject::detach(Observer*)
8 7019640 - void Subject::notify()

The pathattach()-detach() , i.e. the registra-
tion and removal of one observer, is provided by lines
4 and 5. The destruction of one Subject instance is
given by lines 6 and 7 which cover the def-use pair
detach()- ∼Subject() . Lines 3 and 8 cover the
attach()-notify() path by updating the status of
a registered observer.

6 CONCLUSIONS

We adapted significant concepts of data flow theory to
the context of OO programming, and we proposed a
technique of coverage analysis supported by tools for
C++and Java programs.

Def/Use relations appear to catch semantics
relevant for class interaction, thus establishing a
correspondence between the completeness of a
requirement-based test case selection activity and the
measure of structural data-flow coverage achieved by
those tests. Besides, the adoption of Def/Use tables
in place of a labeled graph provides a compact rep-
resentation of method interactions focused on critical
attributes that capture the intent of the composition of
classes. This enables abstraction which is essential to
scale up the scope of analysis in the integration test-
ing.

The proposed technique and tools can be effec-
tively cast into a methodology that spans over devel-
opment and verification activities of an UP-like soft-
ware lifecycle. In the development process, designers

TEST COVERAGE ANALYSIS FOR OBJECT ORIENTED PROGRAMS - Structural Testing through Aspect Oriented
Instrumentation

59



Table 4: Def/Use table for the Observer pattern. Bullet items indicate test covered def-use pairs.

class:Subject DEF
var: observers
level: 0 attach(Observer*) detach(Observer*) Subject()

∼Subject() •
USE attach(Observer*) •

detach(Observer*) •
notify() •

are supposed to document the relevant attributes of
salient classes which are most critical for inter-class
interaction (Cockburn, 1996). This can be done as
an annotation of UML class diagrams comprising the
specification or the implementation model (Fowler,
2003). In the testing stage, Def/Use tables are au-
tomatically derived through source code analysis, and
code is automatically instrumented using Aspect Ori-
ented Programming. The application is then tested
on a suite of cases selected according to any specific
approach (e.g. derived from use cases (Heumann,
2001)), and their execution is logged to a file con-
taining the trace of the methods effectively exercised.
Coverage analysis is finally performed through offline
check of the def-use paths reported in the log file and
contained in the tables.

REFERENCES

Baudry, B. and Traon, Y. L. (2005). Measuring design testa-
bility of a uml class diagram.Information and Soft-
ware Technology, 1(47).

Beizer, B. (1990). Software testing techniques (2nd ed.).
Van Nostrand Reinhold Co., New York, NY, USA.

Binder, R. V. (1994). Design for testability in object-
oriented systems.Commun. ACM, 37(9):87–101.

Chen, Y., Qiu, W., Zhou, B., and Peng, C. (2004). An
automatic test coverage analysis for systemc descrip-
tion using aspect-oriented programming. InComputer
Supported Cooperative Work in Design. Proceedings.
The 8th International Conference on, Vol. 2, pages 632
– 636.

Cockburn, A. (1996). The interaction of social issues and
software architecture.Commun. ACM, 39(10):40–46.

Fowler, M. (2003). UML Distilled: A Brief Guide to
the Standard Object Modeling Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M.,
and Ghedamsi, A. (1991). Test selection based on fi-
nite state models.IEEE Trans. Softw. Eng., 17(6):591–
603.

Gallagher, L., Offutt, J., and Cincotta, A. (2006). Integra-
tion testing of object-oriented components using finite

state machines: Research articles.Softw. Test. Verif.
Reliab., 16(4):215–266.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Harrold, M. J. and Rothermel, G. (1994). Performing data
flow testing on classes. InSIGSOFT ’94: Proceedings
of the 2nd ACM SIGSOFT symposium on Foundations
of software engineering, pages 154–163. ACM Press.

Heumann, J. (2001). Generating test cases from use cases.
The Rational Edge. Retrieved January 20, 2007, from
www.therationaledge.com.

Holley, L. H. and Rosen, B. K. (1981). Qualified data flow
problems.IEEE Trans. Softw. Eng., 7(1):60–78.

Hong, H. S., Kwon, Y. R., and Cha, S. D. (1995). Test-
ing of object-oriented programs based on finite state
machines. InAPSEC ’95: Proceedings of the Second
Asia Pacific Software Engineering Conference, page
234. IEEE Computer Society.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. InProceedings of the
11th European Conference on Object-Oriented Pro-
gramming, pages 220–242.

Kuhn, T. and Thomann, O. (2006). Abstract syntax tree.
Eclipse Corner Articles. Retrieved October 23, 2006,
from http://www.eclipse.org/articles/index.php.

Ntafos, S. C. (1988). A comparison of some structural test-
ing strategies. IEEE Trans. Softw. Eng., 14(6):868–
874.

Pande, H. D. and Landi, W. (1991). Interprocedural def-use
associations in c programs. InTAV4: Proceedings of
the symposium on Testing, analysis, and verification,
pages 139–153, New York, NY, USA. ACM Press.

Rajan, H. and Sullivan, K. (2005). Aspect language fea-
tures for concern coverage profiling. InAOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 181–
191. ACM Press.

Rapps, S. and Weyuker, E. J. (1985). Selecting software test
data using data flow information.IEEE Trans. Softw.
Eng., 11(4):367–375.

Yannakakis, M. and Lee, D. (1995). Testing finite state
machines: fault detection. InSelected papers of the
23rd annual ACM symposium on Theory of comput-
ing, pages 209–227. Academic Press, Inc.

ICSOFT 2007 - International Conference on Software and Data Technologies

60


