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Abstract: Pattern detection methods discover recurring solutions in a system’s implementation, for example design 
patterns in object-oriented source code. Usually this is done with a pattern library. This has the disadvantage 
that the precise implementation of the patterns must be known in advance. The method used in our case 
study does not have this disadvantage. It uses a mathematical technique called Formal Concept Analysis and 
is applied to find structural patterns in two subsystems of a printer controller. The case study shows that it is 
possible to detect frequently used structural design constructs without upfront knowledge. However, even 
the detection of relatively simple patterns in relatively small pieces of software takes a lot of computing 
time. Since this is due to the complexity of the applied algorithms, applying the method to large software 
systems like the complete controller is not practical. They can be applied to its subsystems though, which 
are about five to ten percent of its size. 

1 INTRODUCTION 

Architecture reconstruction and design recovery are 
a form of reverse engineering. Reverse engineering 
does not involve changing a system or producing 
new systems based on existing systems, but is 
concerned with understanding a system. The goal of 
design recovery is to "obtain meaningful higher-
level abstractions beyond those obtained directly 
from the source code itself” (Chikovsky and Cross, 
1990).  

Patterns provide proven solutions to recurring 
design problems in a specific context. Design 
patterns are believed to be beneficial in several ways 
(Beck et al, 1996), (Gamma et al, 1995), (Keller et 
al, 1999), where knowledge transfer is the unifying 
element. Empirical evidence shows that developers 
indeed use design patterns to ease communication 
(Hahsler, 2003). Considering the fact that program 
understanding is one of the most time consuming 
activities of software maintenance, knowledge about 
applied patterns can be useful for software 
maintenance. Controlled experiments with both 
inexperienced (Prechtelt et al, 2002) and 

experienced (Prechtelt et al, 2001) software 
developers support the hypothesis that awareness of 
applied design patterns reduces the time needed for 
software maintenance and the number of errors 
introduced during maintenance. 

For an overview of methods and tools for 
architecture reconstruction and design recovery, see 
e.g. (O’Brien et al, 2002), (Deursen, 2001), (Hassan 
and Holt, 2004), (Sim and Koschke, 2001), (Bassil 
and Keller, 2001). Architectural clustering and 
pattern detection are the most prominent automatic 
methods (Sartipi and Kontogiannis, 2003). 

Pattern-based reconstruction approaches detect 
instances of common constructs, or patterns, in the 
implementation. Contrary to the approach where one 
uses a library of known patterns to detect these in 
source code, we concentrate in this paper on the 
detection without upfront knowledge about the 
implemented patterns (Snelting, 2000), (Tilley et al, 
2003). For this we use Formal Concept Analysis.   
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1.1 Formal Concept Analysis 

Formal Concept Analysis (FCA) is a mathematical 
technique to identify “sensible groupings of formal 
objects that have common formal attributes” ((Siff 
and Reps, 1998) citing (Wille, 1981)). FCA is also 
known as Galois lattices (Arévalo et al, 2003). Note 
that formal objects and formal attributes are not the 
same as objects and attributes in object-oriented 
programming!  

The analysis starts with a formal context, which 
is a triple C=(O,A,R) in which O is the finite set of 
formal objects and A the finite set of formal 
attributes. R is a binary relation between elements in 
O and A, hence R⊆O×A. If (o,a)∈R it is said that 
object o has attribute a.  

Let X⊆O and Y⊆A. Then the common attributes 
σ(X) of X and common objects τ(Y) of Y are defined 
as (Ganter and Wille, 1998): 

 ( ) ( ){ }: ,X a A o X o a Rσ = ∈ ∀ ∈ ∈  (1) 

 ( ) ( ){ }: ,Y o O a Y o a Rτ = ∈ ∀ ∈ ∈  (2) 

A formal concept of the context (O,A,R) is a 
pair of sets (X,Y), with X⊆O and Y⊆A, such that: 

 ( ) ( )Y X X Yσ= ∧ =τ  (3) 

Informally a formal concept is a maximal 
collection of objects sharing common attributes. X is 
called the extent and Y the intent of the concept. 

The extents and intents can be used to relate 
formal concepts hierarchically. For two formal 
concepts (X0,Y0) and (X1,Y1) (Ganter and Wille, 
1998) define the subconcept relation ≤ as: 

 ( ) ( )0 0 1 1 0 1 1 0, ,X Y X Y X X Y≤ ⇔ ⊆ ⇔ ⊆Y

,

,

 (4) 

If p and q are formal concepts and p≤q then p is 
said to be a subconcept of q and q is a superconcept 
of p. The subconcept relation enforces an ordering 
over the set of concepts that is captured by the 
supremum  and infimum  relationships. They 
define the concept lattice L of a formal concept C 
with a set of concepts I (Ganter and Wille, 1998): 
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where I is the set of concepts to relate. To calculate 
the supremum �  (or smallest common 

superconcept) of a set of concepts their intents must 
be intersected and their extents joined. The latter set 
must then be enlarged to fit to the attribute set of the 
supremum. The infimum ∏  (or greatest common 
subconcept) is calculated in a similar way.  

(Siff and Reps, 1997) describe a simple bottom-
up algorithm that constructs a concept lattice L from 
a formal context C=(O,A,R) using the supremum 
relation. It starts with the concept with the smallest 
extent, and constructs the lattice from that concept 
onwards. The algorithm utilizes that for any concept 
(X,Y) (Snelting, 1996): 

  (7) ( ) { }o⎛ ⎞
⎜ ⎟
⎝ ⎠

{ }( )
o X o X

Y X oσ σ σ
∈ ∈

= = =∪ ∩
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This equation enables calculating the supremum 
of two concepts by intersecting their intents. (8) 
gives a formalized description of the lattice 
construction algorithm. This description is based on 
the informal description by (Siff and Reps, 1997).  
The algorithm starts with the calculation of the 
smallest concept cb of the lattice. The set of atomic 
concepts, together with cb, is used to initialize L. 
Next the algorithm initializes a working-set W with 
all pairs of concepts in L that are not subconcepts of 
each other. A hash table is used to store L and allow 
efficient checking for duplicates later on. The 
algorithm subsequently iterates over W to build the 
lattice using the supremum relation for each relevant 
concept-pair. The supremum of two concepts is 
calculated using (7). Recall that in this calculation 
the intents of the concepts c1 and c2 are intersected, 
after which τ is applied obtain the extent. If the 
calculated concept is new it is added to L and the 
working-set is extended with relevant new concept 
pairs.  
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The time complexity of algorithm (8) depends on 
the number of lattice elements. If the context 
contains n formal objects and n formal attributes, the 
lattice contains 2n concepts (Snelting, 1996). This 
means the worst case running time of the algorithm 
is exponential in n. In practice however, the size of 
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the concept lattice typically is O(n2), or even O(n) 
((Snelting, 1996), (Tonella and Antoniol, 1999), 
(Ball, 1999)). This results in a typical running time 
for the algorithm of O(n3). 

Algorithm (8) is a very simple lattice 
construction algorithm that does not perform very 
well. (Kuznetsov and Obëdkov, 2001) compare a set 
of lattice construction algorithms, both theoretically 
and experimentally. They conclude that for large 
contexts the Bordat algorithm (Bordat, 1986) gives 
the best performance. For a concept lattice L with 
|L| formal concepts and |O| and |A| formal objects 
and attributes of the formal context, the Bordat 
algorithm has a worst-case computational 
complexity of O(|O|·|A|2·|L|).  

1.2 Design Pattern Detection 

(Tonella and Antoniol, 1999) describe the use of 
FCA to find recurring design constructs in object-
oriented code. The key idea is that a design pattern 
amounts to a set of classes and a set of relations 
between them. Two different instances of a pattern 
have the same set of relations, but different sets of 
classes.  

Let D be the set of classes in the design and T be 
the set of relationship-types between classes. For 
example T={e,a} defines the relationship types 
“extends” and “association”. Then the set of inter-
class relations P is typed P⊆D×D×T. To find 
pattern instances of k classes, the formal context 
Ck=(Ok,Ak,Rk) is used with: 
• Ok: set of k-sized sequences of classes in the 

design. More precisely 
 ( ) [ ]{ }1, , | 1..k k iO x x x D i k= ∈ ∧ ∈…  

where k is called the order of the sequence. 
• Ak: set of inter-class relations within the 

sequences in Ok. Each is a triple (xi,xj)t, where 
xi and xj are classes and t is a relationship-type. 
Ak is defined by 

 ( ) ( ) [ ]{ }, | , , 1..k i jt t
A i j x x P i j k= ∈ ∧ ∈ . 

• Rk: “possesses” relation between the elements in 
Ok and in Ak. 

A formal concept (X,Y) consists of a set of class-
sequences X and a set of inter-class relations Y. Thus 
the intent Y specifies the pattern and the extent X 
specifies the set of pattern-instances found in the 
code.  

Before the lattice can be constructed from the 
context, this context must be generated from the 
class diagram. (Tonella and Antoniol, 1999) 
describe a simple inductive algorithm, which is 

shown in (9). Recall that D is the set of classes and 
P the set of class-relations. 

The initial step generates an order two context. 
This is done by collecting all pairs of classes that are 
related by a tuple in P; the set O2 of formal objects 
of the order two context consists of all pairs of 
classes related by a tuple in P. This means that for 
all formal objects in O2 a relation of type t exists 
from the first to the second class. Therefore, the set 
A2 of formal attributes of the order two context 
consists of the tuples (1,2) t for which a tuple in P 
exists that relates two arbitrary classes by a relation 
of type t.  

In the inductive step, the order of the context is 
increased with one. The construction of Ok appends 
one component, xk, to the tuples in Ok-1. This xk is 
defined as any class for which a tuple in P exists that 
relates xk to some other class xj that is present in the 
tuple of Ok-1. Next, Ak is constructed by extending 
Ak-1 with two sets of tuples. The first set consists of 
the tuples (k,j)t, for which j equals the index of the 
class xj that allowed the addition of xk during the 
construction of Ok, and a relation of type t exists in 
P from xk to xj. The second set is similar, with k and 
j exchanged. 
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(9) 

Note that in (9) the order n context contains the 
order n-1 context in the sense that all lower-order 
sequences are initial subsequences of the objects in 
the order n context, and that all attributes are 
retained. The algorithm assumes that design patterns 
consist of connected graphs. This assumption holds 
for all patterns in (Gamma et al, 1995), so provided 
that sufficient relationships between classes are 
extracted it does not impose a significant restriction. 

(Tonella and Antoniol, 1999) use algorithm (8) 
to construct the lattice. The concepts directly 
represent patterns, but redundancies can be present. 
For example, two concepts may represent the same 
pattern. (Tonella and Antoniol, 1999) informally 
define the notions of equivalent patterns and 
equivalent instances to remove redundancies from 
the lattice. Equations (10) and (11) define these 
notions formally. 

Definition 1 (Equivalent patterns): Let (X1,Y1) 
and (X2,Y2) be two concepts representing design 
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patterns that are generated from the same order k 
context. (X1,Y1) and (X2,Y2) are equivalent patterns 
if an index permutation f on the index set {1..k} 
exists such that: 

( ) ( )( ) ( ){ } ( ) ( )( ) ( ){ }1 12 1 1 1 11 1
,..., ,..., ,..., ,...,kf f k f f k

X x x x x X X x x x x X− −= ∈ ∧ = 2k ∈

  (10) 

(X1,Y1) ≅ (X2,Y2) denotes that (X1,Y1) and (X2,Y2) 
are equivalent patterns. 

According to Definition 1 two patterns (X1,Y1) 
and (X2,Y2) are equivalent when X2 can be obtained 
by reordering the classes in (some of) the elements 
of X1 and vice versa. Consequently, each formal 
attribute in Y1 can be transformed into one in Y2 and 
vice versa.   

Definition 2 (Equivalent instances): Let 
(x1,1,…,x1,k) and (x2,1,…,x2,k) be two formal 
objects in the extent X of an order k concept (X,Y) 
that represents a design pattern. These formal 
objects represent equivalent instances within that 
concept if an index permutation g on the index set 
{1..k} exists such that: 

 ( ) ( ) ( )( ) ( ) ( ) ( )(
( ) ( )( ) ( )

)
{

1 12,1 2, 1,1 1,1, 1 1, 2, 1 2,

1 2 1 2

,..., ,..., ,..., ,...,

, ,

k kg g k g g

tt

x x x x x x x x

Y g y g y y y Y t T

− −= ∧ =

∧ = ∈ ∧ ∈ }
k  

(11)
 

Here, (x1,1,…,x1,k) ≅ (x2,1,…,x2,k) denotes that 
(x1,1,…,x1,k) and (x2,1,…,x2,k) are equivalent 
instances. 

According to Definition 2, two formal objects in 
the extent X of a concept (X,Y) are equivalent within 
that concept if an index permutation exists that 
transforms them into each other, and when applied 
to the formal attributes in Y produces attributes that 
are also part of Y.  

(Tonella and Antoniol, 2001) apply the method 
to three public domain applications written in C++ 
(20-100 KLOC). Besides the static inter-class 
relations (inheritance and association), also dynamic 
inter-class relations (calls and delegates) and class 
attributes such as member function definitions are 
taken into account. They report the detection of 
several recurring design constructs, including the 
Adapter pattern (Gamma et al, 1995) in several 
variants. The order of the context was chosen 
between two and four, typically three. Higher-order 
patterns did not prove to be a good starting point 
because “they impose an increasing number of 
constraints on the involved classes and are therefore 
matched by few instances (typically just one)”. For 
the order three context the number of formal objects 
was 1721 to 34147. The number of formal attributes 
was 10 in all cases. 

2 CASE STUDY 

The subject for our case study is a printer controller. 
Such a controller consists of general-purpose 
hardware on which proprietary and third party 
software runs. Its main task is to control (physical) 
devices such as a print- and scan-engine, and act as 
an intermediate between them and the customer 
network.  

The software running on the controller has been 
written in multiple programming languages, but 
mostly in C++.  An as-designed architecture is 
available, but it is not complete and large parts of the 
architecture documentation are not consistent with 
the implementation.  

Table 1 shows the characteristics of the 
controller and two of its subsystems, Grizzly and 
RIP Worker. Because of performance limitations it 
was not feasible to apply the design pattern detection 
to the complete controller. Instead, it has been 
applied to these two subsystems. The Grizzly 
subsystem provides a framework for prototyping on 
the controller. The RIP Worker subsystem 
transforms Postscript files into printable bitmaps, 
taking the print-settings the user specified into 
account (“ripping”). (Kersemakers, 2005) 
reconstructs the architecture of this controller by 
detecting instances of architectural styles and design 
patterns in the source code by means of a pattern 
library.  

Table 1: Software characteristics. 

 Controller Grizzly RIP 
Worker

Classes 2661 234 108
Header and source files 7549 268 334
Functions 40449 2037 1857
Lines of source code 
(*1000) 

932 35 37

Executable statements 
(*1000) 

366 18 16

2.1 Goals 

Our case study investigates the detection of 
unknown structural design patterns in source code, 
without requiring upfront knowledge, using Formal 
Concept Analysis (FCA). We formulate the 
following hypothesis: 

H1: With Formal Concept Analysis frequently 
used structural design constructs in the 
source code of the controller can be 
detected without upfront knowledge of the 
expected structures. 
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The confirmation of H1 does not imply that the 
found design constructs represent a useful 
architectural view of the controller. We therefore 
formulate an additional hypothesis: 

H2: Knowledge of frequently used structural 
design constructs found with Formal 
Concept Analysis in the controller provides 
an architectural view that is useful to gain 
insight in the structure of the system. 

The usefulness of knowledge on structural 
design constructs depends on the amount of 
information this knowledge gives. The number of 
classes in the pattern and the number of instances of 
the pattern are two important criteria for this. On 
average, the design patterns in (Gamma et al, 1995) 
contain about four to five classes. Because we are 
reconstructing an architectural view and not a 
subsystem-design we want to find slightly larger 
patterns. Hence we decided the patterns must 
contain at least six classes to be useful for 
architecture reconstruction.  

The other criterion, the minimal number of 
instances of a useful pattern, is difficult to quantify. 
To our knowledge no work is published on this 
subject, so we determine it heuristically. Because no 
pattern-library is used, maintainers need to invest 
time to understand the patterns before reaping the 
benefit of this knowledge. The benefit, easier 
program understanding, must outweigh this 
investment. Obviously this is not the case if the 
patterns have one instance. Because we search 
repeated structures and not named patterns (like 
library-based approaches do) the investment is 
relatively high. Hence, we decided that a pattern 
must have at least four instances to be useful to 
reconstruct an architectural view of the controller.  

To confirm the two hypotheses H1 and H2, a 
prototype has been built that implements the 
approach Tonella and Antoniol proposed, described 
in section 1.2. Before applying the prototype to the 
complete controller it has been applied to two of its 
subsystems, namely Grizzly and the RIP Worker.  

2.2 Pattern Detection Architecture 

This section describes the architecture of the pattern 
detection prototype. This architecture is based on the 
pipe and filter architectural style (Buschmann et al, 
1999). The processing modules have been 
implemented with two third party tools and XSLT 
transformations. XSLT has been chosen because: 
• It allows functional programming. This is an 

advantage because one of the most important 

algorithms of the implemented approach is 
defined inductively by (9). This definition maps 
very well to a functional implementation.  

• The two third-party tools, Columbus and 
Galicia, both support XML export and import. 

• XSLT is a mature and platform independent 
language. 

Figure 1 shows a view of the prototype’s 
architecture. The blocks represent processing-
modules and the arrows directed communication 
channels between the modules. The latter are 
implemented with files. The following sections 
discuss each of these modules. 

 
Fact

extraction
Lattice

construction
Context

generation
Pattern

selection
Source
code

Most used
design

constructs  
Figure 1: Architectural view of the prototype. 

2.2.1 Fact Extraction 

The fact extraction module uses Columbus/CAN to 
extract structural information from the source code. 
Columbus uses the compiler that was originally used 
to compile the analyzed software, in this case 
Microsoft Visual C++. The extracted information is 
exported from Columbus with its UML exporter 
(Columbus, 2003), which writes the information to 
an XMI file.  

Because the XMI file has a relatively complex 
schema, the fact extraction module converts it to an 
XML file with a simpler schema. This file serves as 
input for the context generation module. It contains 
the classes and most important relationships between 
them.  

Three types of relations are extracted: 
• Inheritance: The object-oriented mechanism 

via which more specific classes incorporate the 
structure and behavior of more general classes. 

• Association: A structural relationship between 
two classes. 

• Composition: A special kind of association 
where the connected classes have the same 
lifetime. 

2.2.2 Context Generation 

This module uses the inductive context construction 
algorithm given in (9) to generate the formal context 
that will be used to find frequently used design 
constructs. After algorithm (9) has been completed, 
the “context generation” module converts the formal 
context to the XML import format Galicia uses for 
“binary contexts”.  
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Since XSLT does not support sets, the prototype 
uses bags. This, however, allows the existence of 
duplicates. The prototype removes these with an 
extra template that is applied after the templates that 
implement each of the initial- and inductive steps. 
This produces the XSLT equivalent of a set. 

Size of the output. The initial step of the context 
generation algorithm produces an order two context. 
The order of the context represents the number of 
classes in the patterns searched for. Each inductive 
step extends the order with one. This step is repeated 
until the desired order is reached. So in general the 
(k-1)-th step of the algorithm (k≥2) produces a 
context Ck=(Ok,Ak,Rk) of order k, where Ok is the 
set of formal objects, Ak the set of formal attributes, 
and Rk the set of relations between the formal 
objects in Ok and the formal attributes in Ak.  

The number of formal attributes, |Ak|, is 
bounded by the number of different triples that can 
be made. Each formal attribute in Ak is a triple 
(p,q,t) where p and q are integer numbers between 
1 and k, and t is a relationship-type. The number of 
permutations of two values, each between 1 and k, is 
bounded by k2 so at most k2 different combinations 
are possible for the first two components of the 
formal attributes. Therefore, if T is the set of 
relationship-types, and the size of this set is |T|, 
|Ak|≤|T|·k2.  

The number of formal objects, |Ok|, in the order 
k context is limited by the number of permutations 
of different classes of length k. If D is the set of 
classes, and |D| the size of this set, this means that 
|Ok|≤|D|k. So the number of formal objects is 
polynomial with the number of classes and 
exponential with the size of the patterns searched 
for. However, the fact that the connectivity of the 
classes in D is usually relatively low (and even can 
contain disconnected subgraphs), limits |Ok| 
significantly.  

Computational complexity. Let P⊆D×D×T be 
the set of relations between classes, with D and T 
defined above.  In the implementation the initial step 
is implemented with a template for the elements of 
P. Hence, if |P| is the number of elements in P, the 
complexity of the initial step is O(|P|).  

The inductive step increases the order of the 
context with one. This is implemented with a 
template for the formal objects in the order (k-1) 
context, so for the elements of Ok-1. This template 
extends each formal object o∈Ok-1 with a class that 
is not yet part of o and is related to one of the classes 
in o via a class-relation in P. Because every formal 
object in Ok-1 consists of k-1 classes, the inductive 
step that produces Ok has a computational 

complexity of O(|Ok-1|·(k-1)·|P|), which 
approximates O(k·|P|·|Ok-1|).  

Let (x1,…,xk-1) be the sequence of classes 
represented by a formal object o∈Ok-1. Because in 
our implementation the previous inductive step 
appended classes to the end of this sequence, in the 
next inductive step only the last element xk-1 can 
lead to the addition of new classes to the sequence. 
Therefore, all but the first inductive steps do not 
have to iterate over all k-1 classes in the formal 
objects in Ok-1, but can only consider the most 
recently added class. This optimization reduces the 
computational complexity of the inductive step to 
about O(|P|·|Ok-1|). Because of limited 
implementation time this optimization has not been 
applied to the prototype however, but is left as future 
work.  

Because |Ok-1| is polynomial with the number of 
classes in D, and in the worst case |P| is quadratic 
with |D|, this optimization gives the inductive step a 
computational complexity that is polynomial with 
the number of classes in D. However, it is 
exponential with the size of the patterns searched 
for. 

2.2.3 Lattice Construction 

The prototype constructs the lattice with a third 
party tool, Galicia. Galicia is an open platform for 
the construction, visualization and exploration of 
concept lattices (Valtchev et al, 2003). Its most 
important functions are the input of contexts, and 
lattice construction and visualization (Galicia). 
Galicia also implements interactive data inputs and 
various export formats. The lattice is exported from 
Galicia in an XML format. 

Galicia implements several algorithms to 
construct a lattice from a formal context. Based on 
their characteristics one of them is chosen for the 
prototype. Because it is expected that the number of 
classes extracted from the source code, and hence 
the number of formal objects, will be relatively high, 
the Bordat algorithm (Bordat, 1986) is best suited to 
generate the lattice, as explained in section 1.1. 

Complexity of the lattice construction. 
Theoretically the size of the lattice, |L|, is 
exponential with the size of the context; if 
|A|=|O|=n then |L|≤2n. In practice however, the 
lattice-size may be O(n) (Snelting, 1996), but this 
obviously depends on the properties of the formal 
context. Assuming that this is the case, and 
considering that in our case |A| is much smaller than 
|O|, the computational complexity of the Bordat 
algorithm approximates O(|O|2). Thus, because the 
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number of formal objects was polynomial with the 
number of classes and exponential with the size of 
the patterns searched for, this also holds for the 
computational complexity of the lattice construction. 

2.2.4 Pattern Selection 

The final module of the prototype filters the patterns 
in the lattice. Like the other data transformations in 
the prototype, this step is implemented with XSLT 
templates. Two filters are applied. First, sets of 
equivalent formal concepts, in the sense defined by 
(11), are replaced by one of their elements. Second, 
the concepts are filtered according to the size of their 
extent and intent (the number of formal objects and 
attributes respectively). In the remainder of this 
section these two filters are described more 
precisely. 

The prototype does not filter for equivalent 
patterns in the sense defined by (10). It was planned 
to add this later if the output of the prototype proved 
to be useful. However, as is described in section 2.3, 
this was not the case. 

Equivalent formal object filtering. Let X be the 
set of formal objects of some formal concept the 
lattice construction module produced, and let 
instance equivalence ≅ be defined by (11). Then, for 
every formal concept, the result of the first filter is 
the subset X’⊆ X that is the maximal subset of X that 
does not contain equivalent instances. If |X’| and |Z| 
refer to the number of elements in X’ and another set 
Z respectively this is defined as:  

 ( ) ( )
( ) 1 2 1 2 1 2

' ' :

with ' , ' :

X X f X Z X f Z Z X

f X x x X x x x x

⊆ ∧ ∧¬∃ ⊆ ∧ >

≡ ¬∃ ∈ ≠ ∧ ≅

'

(12)
 

This filter is implemented with two templates for 
the formal objects (the elements of X). The first 
template marks, for every formal concept, those 
formal objects for which an unmarked equivalent 
instance exists. Of every set of equivalent instances 
this leaves one element unmarked. The second 
template removes all marked formal objects. It is 
easy to see that this produces the maximal subset of 
X that does not contain equivalent instances.  

Size-based filtering. The second filter removes 
all formal concepts with a small number of formal 
objects or attributes. Let px and py be two user-
specified parameters that specify the minimum 
number of required formal objects and attributes 
respectively. Then the output of this filter only 
contains concepts with at least px formal objects and 
py formal attributes. This filter is implemented with 
a trivial template for the elements in the lattice.  

Complexity of the pattern selection. Let 
avg(|X|) and avg(|Y|) represent the average number 
of formal objects and formal attributes respectively 
of the formal concepts. If |L| represents the number 
of formal concepts in the lattice, the first filter then 
has a time complexity of O(|L|·avg(|X|)·avg(|Y|)). 
If avg(|X’|) represents the average size of the formal 
objects after equivalent instances have been 
removed by the first filter, the second filter has a 
computational complexity of 
O(|L|·(avg(|X’|)+avg(|Y|))). Because avg(|X’|) is 
smaller than avg(|X|), the pattern selection module 
has a total computational complexity of 
approximately O(|L|·avg(|X|)·avg(|Y|)).  

We assume that the number of formal concepts 
|L| is proportional to the number of formal objects 
(and the number of formal attributes, but that is 
much less). If every formal attribute is associated 
with every formal object, avg(|Y|) equals the 
number of formal objects. Because we assume the 
number of formal attributes to be very small 
compared to the number of formal objects, avg(|X|) 
is not relevant for the computational complexity. 
Therefore, the computational complexity of the 
filtering module is approximately quadratic with the 
number of formal objects. Because the number of 
formal objects was polynomial with the number of 
classes and exponential with the size of the patterns 
searched for, this again also holds for the complexity 
of the pattern-selection. 

2.3 Results 

The prototype has been applied to the Grizzly and 
RIP Worker subsystems of the controller. The 
following sections give some examples of the found 
patterns. 

2.3.1 Results for Grizzly 

The application of the prototype to the Grizzly 
source code (234 classes) produced a formal context 
and lattice with the characteristics shown in Table 2.  

Table 2: Characteristics of the order four context for 
Grizzly and the corresponding lattice. 

Number of formal objects 40801 
Number of formal attributes 37 
Number of attribute-object relations 128065 
Number of formal concepts 989 

Recall from section 2.2.2 that the number of 
formal attributes |Ak| of an order k context is 
bounded by |Ak|≤|T|·k2, where |T| is the number of 
relationship-types. In this case, |T|=3 and k=4 so 
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the number of formal attributes is bounded by 
3×42=48. Table 2 shows that the number of formal 
attributes (37) is indeed less than 48.  

Recall from the same section that the upper 
bound of the number of formal objects of an order k 
context, |Ok|, is polynomial with the number of 
classes |D|. More specific |Ok|≤|D|k. Since the 
characteristics in Table 2 are of an order four 
context, |Ok|=2344≈ 3·109, which is clearly more 
than 40801. In fact, the number of formal objects is 
in the same order as 2342=54756. This large 
difference is due to the low connectivity of the 
classes.  

The figures in Table 2 confirm the assumptions 
made in section 2.2.3. The number of formal 
attributes is indeed much lower than the number of 
formal objects. Furthermore, the number of formal 
concepts is not exponential with the size of the 
context. In fact, it is about one order smaller than the 
number of formal objects. This confirms our 
assumption that the size of the lattice is 
approximately linear with the number of formal 
objects. 

With the user-specified filtering-parameters both 
set to four (px=py=4), the prototype extracted 121 
order four concepts from this context (with px=py=5 
only twelve remained). However, despite the 
filtering, many of the found patterns were very 
similar. The result even included several variants of 
the same pattern, for example with the associations 
organized slightly different.  

The 121 concepts obtained with both filtering 
parameters set to four have been analyzed manually 
according to their number of formal objects and 
attributes. Figure 2 shows two of the found patterns 
that were among the most interesting ones. Galicia 
generated the concept-IDs, which uniquely identify 
the concept within the lattice. 

 

W

Y

Concept ID=941
Nr. of formal objects=21
Nr. of formal attributes=5

Concept ID=678
Nr. of formal objects=20
Nr. of formal attributes=4

K

NMLZX

 
Figure 2: Two patterns found in Grizzly. 

Concept 678 represents a pattern with classes W, 
X, Y and Z, where Z has an association with X and 
Y. Furthermore, both W and Y have a composition 
relationship with X. Analysis of the 20 instances of 
this pattern shows that for W fourteen different 

classes are present, for X and Y both two, and for Z 
three. This indicates that the instances of this pattern 
occur in a small number of source-code contexts. 

Table 3 shows four example instances of this 
pattern. Examination of the Grizzly design 
documentation learned that the first instance in 
Table 3, with W=BitmapSyncContext, covers a part 
of an Interceptor pattern (Buschmann et al, 1999). 
This pattern plays an important role in the 
architecture of Grizzly. The 
BitmapDocEventDispatcher class plays the role of 
event Dispatcher, and the BitmapSyncContext the 
role of ConcreteFramework. The abstract and 
concrete Interceptor classes are not present in the 
detected pattern. (The designers of Grizzly omitted 
the abstract Interceptor class from the design.) The 
EventDispatcherTest class is part of the Grizzly test 
code, and plays the role of the Application class in 
the Interceptor pattern. The Document class is not 
part of the Interceptor pattern. In the Grizzly design 
this class is the source of the events handled with the 
interceptor pattern.  

Observe that the pattern in Figure 2 does not 
contain the “create” relation between the 
BitmapDocEventDispatcher (Y) and the 
BitmapSyncContext (W) classes (Buschmann et al, 
1999). This does not mean that this relationship is 
not present; it is omitted from this pattern because 
the other pattern instances do not have this 
relationship. 

Table 3: Example instances of pattern 678. 

W X Y Z 
BitmapSyncContext 
SheetDocEvent- 

Dispatcher 

Document BitmapDocEvent- 
Dispatcher 

BitmapDocEvent- 
DispatcherTest 

FlipSynchronizer InversionWorker- 
JobInterceptor 

StripeSynchronizer 

BasicJob BitmapDocSynchro- 
nizer 

BitmapDoc- 
SynchronizerTest 

The other concept shown in Figure 2 (with ID 
941) represents a relatively simple pattern with four 
classes labeled K, L, M and N. Here, class L, M and 
N inherit from K, L has a self-association, and M an 
association to N. Analysis of the 21 detected 
instances shows that in all cases K refers to the same 
class, L to three, and M and N both to six different 
classes. This indicates that all instances of this 
pattern are used in the same source-code context. 

Table 4 shows four of the detected instances of 
pattern 941. SplitObjectStorage is an abstract class 
from which all workflow-related classes that store 
data inherit. The SplitList classes are container 
classes, for example for SplitTransition classes. The 
SplitTransition classes each represent a single state 
transition and are each associated with two 
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SplitState objects. These represent the states before 
and after the transition.  

Table 4: Example instances of pattern 941. 

K L M N 
SplitTransition SplitState SplitListOfAllTransitions 
SplitNode SplitDoc 

SplitListOfAllStates SplitState SplitAttribute 

SplitObject- 
Storage 

SplitListOfAllDocuments SplitDocPart SplitImage- 
Sequence 

Surprisingly, the Grizzly design documentation 
does not mention any of the classes listed in Table 4. 
Analysis of the code shows that these classes are 
concerned with workflow management in the 
controller, and represent points where Grizzly 
interfaces with the rest of the system. Strictly 
speaking these classes are not part of Grizzly but of 
the workflow-management subsystem of the 
controller. However, they are redefined in the 
Grizzly source-tree, and hence extracted by 
Columbus. 

Observe that the two described patterns have a 
relatively low complexity. Recall that the two 
patterns described here are among the most 
interesting ones that are detected. So on average the 
complexity of the detected patterns is slightly lower 
that of the patterns described here. 

2.3.2 Results for RIP Worker 

Applying the prototype to the RIP Worker 
source code (108 classes) produced a formal context 
and lattice with the characteristics shown in Table 5. 

Table 5: Characteristics of the order four context for the 
RIP Worker and the corresponding lattice. 

Number of formal objects 52037 
Number of formal attributes 41 
Number of attribute-object relations 170104 
Number of formal concepts 3097 

Again, the number of formal attributes, 41, is 
less than the upper bound |T|·k2, which equals 48. 
The number of formal objects of the order k context, 
|Ok|, does not exceed the predicted upper bound: 
Table 5 represents an order four context, and 
|Ok|=52037≤|D|4=1084≈ 1.4·108, so the number 
of formal objects is relatively low. As with Grizzly, 
this is due to the low connectivity of the classes.  

Like with Grizzly, the size of the lattice is 
approximately linear with the size of the context 
(one order smaller), and the number of formal 
objects is much higher than the number of formal 
attributes. 

With the user-specified size filtering parameters 
both set to five (px=py=5), the prototype produced 
158 order four concepts (with px=py=4: 799). Like 
in Grizzly, the set of patterns found in the RIP 
Worker also contains a lot of similar patterns. Figure 
3 shows two of the patterns found. 
 

L

NM

K

Concept ID=2694
Nr. of formal objects=25
Nr. of formal attributes=5

WZ

YX

Concept ID=2785
Nr. of formal objects=31
Nr. of formal attributes=5  

Figure 3: Two patterns found in the RIP Worker. 

The output of the filtering module for concept 
2694 shows that for class N 25 different classes are 
present, but for K, L and M all pattern instances 
have the same class. This indicates that all instances 
of this pattern are used in the same piece of the 
source code. 

Table 6 shows four examples of pattern 2694. 
All are concerned with job-settings and the 
configuration of the system. The 
PJT_T_SystemParameters class stores information 
about the environment of the system, for example 
supported media-formats and -types. The 
PJT_T_JobSetting class represents the settings for a 
complete job, and is composed of the classes listed 
for N. The class listed for L, PJT_T_Product, is used 
to detect if the machine can handle a certain job-
specification. 

Table 6: Example instances of pattern 2694. 

K L M N 
PJT_T_MediaColor 
PJT_T_MediaWeight 
PJT_T_RunLength 

PJT_T_Syst
em- 

Parameters 

PJT_T_Product PJT_T_Job- 
Setting 

PJT_T_StapleDetails 

Analysis of the 31 instances of the pattern for 
concept 2785 shows that in all cases W and Y refer 
to the same class. X refers to eight different classes 
and Z to four. This indicates that all instances of this 
pattern are used in the same source-code context.  

 

Table 7 shows four example instances of pattern 
2785. None of the listed classes are mentioned in the 
RIP Worker design documentation. Examination of 
the source code shows that all instances are part of a 
GUI library the RIP Worker’s test tools use. 
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Table 7: Example instances of pattern 2785. 

W X Y Z 
CDialog CCmdUI 
CButton CDialog 
CListBox CWinThread 

CWnd 

CEdit 

CFrameWnd 

CDataExchange 
Similar to the result for Grizzly, the patterns 

described for the RIP Worker have a relatively low 
complexity. Since these patterns are the most 
interesting of the detected patterns, the other patterns 
can generally be regarded as uncomplicated. 

2.3.3 Observations 

Quality of the results. When examining the 
prototype’s output for Grizzly and the RIP Worker, 
it is clear that better filtering is required. Recall that 
filtering for equivalent patterns, as defined by (10), 
has not been implemented in the prototype. The 
output contains many equivalent patterns, so in 
practice this filtering is desired too.  

The occurrence of sets of patterns in the output 
with small differences represents a more significant 
problem. A possible filtering strategy might be to 
group highly similar patterns into subsets and 
(initially) show only one pattern of each subset of 
the user. This requires a measurement for the 
difference between patterns. This measurement 
could for example be based on the number of edges 
(class relations) that must be added and removed to 
convert one pattern into another. We leave this as 
future work. 

After filtering the results manually, the 
remaining patterns are of a relatively low 
complexity.  More complex patterns typically have 
one instance and are removed by the pattern 
selection module. This means we are not able to 
achieve our goal of finding patterns that are useful to 
reconstruct architectural views (hypothesis H2).  

Several publications report finding large 
numbers of design pattern instances in public 
domain code and few in industrial code, e.g. 
(Antoniol et al, 1998), (Kersemakers, 2005). We 
speculate that it could be the case that industrial 
practitioners structurally design software in a less 
precise way than public domain developers. 
Obviously, further experiments are needed to 
validate this statement, but it could explain why in 
our case study the number of instances of the found 
patterns remains fairly low.  

Encountered problems. During the fact 
extraction process several problems were 
encountered. First of all, Columbus consistently 
crashed during the compilation of some source files. 
Recall that the source files are compiled with the 

same compiler as with which they were compiled 
during forward engineering. Because they compiled 
without errors at that time, the error during fact 
extraction must either be caused by an 
incompatibility between Columbus and the 
Microsoft Visual C++ compiler, or by an error in 
Columbus itself.  

This problem was encountered once while 
analyzing the RIP Worker and ten times while 
analyzing the full controller. In all cases, skipping 
the source file that triggered the error solved the 
problem. Because this only happened once for the 
RIP Worker, and not at all for Grizzly, this has little 
impact on the results.  

The second problem occurred during the linking 
step of the fact extraction. In this step the linker of 
Columbus combines the compiled source files, 
similar to the task of a linker during the generation 
of an executable. With the RIP Worker and Grizzly 
subsystems no problems were encountered, but with 
the complete controller Columbus crashed during 
this step. A few experiments revealed that this is 
probably caused by the size of the combined abstract 
syntax graphs, which is closely related to the size of 
the source files. Therefore it was not possible to 
extract facts from the full controller with Columbus. 

Execution times. Both subsystems have been 
analyzed on the same test platform. Table 8 shows 
the characteristics of this platform. 

Table 8: Test system characteristics. 

Processor Pentium 4, 2 GHz 
Memory 2 GB 
Operating system Windows 2000 SP4 
Columbus 3.5 
Galicia  1.2 
Java 1.4.2_06 
Table 9 shows the execution times for the RIP 

Worker and Grizzly subsystems for an order four 
context (wall-clock time). The time for lattice 
construction includes the time needed to import the 
formal context into Galicia and export the generated 
lattice to an XML file.  

For Grizzly the total execution time was 7:44:59 
and for the RIP Worker 11:17:17 (hh:mm:ss). 

Table 9: Execution times (hh:mm:ss). 

  Grizzly RIP Worker 
1 Fact extraction 0:01:09 0:42:40 
2 Context generation  0:26:00 0:36:00 
3 Lattice construction  4:41:50 6:57:37 
4 Pattern selection  2:36:00 3:01:00 
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The patterns the prototype detected in the 
Grizzly and RIP Worker source code are relatively 
simple. Possibilities to produce more interesting 
patterns are: 
1. Extending the size of the input to, for example, 

multiple subsystems of the controller. 
2. Increasing the order of the context. This 

increases the number of classes in the patterns, 
and hence their complexity. 

3. Introducing partial matches. 

The third possibility, partial matches, requires 
fundamental changes to the method. If FCA would 
still be used, these changes would increase the size 
of the lattice significantly and hence also the 
execution time of the lattice construction step.  

The first two options have the disadvantage that 
they increase the size of the data that is processed. 
This affects the running time of all modules. Recall 
that the computational complexity of the algorithms 
each of the modules uses is polynomial with the 
number of classes and exponential with the order of 
the context. Based on this, and the executing times 
in Table 9, we concluded that, from a performance 
point of view it is not practical to use the prototype 
to reconstruct architectural views of the complete 
controller: the controller contains about ten to 
twenty times more classes than the two subsystems 
used in the experiment. 

3 CONCLUSIONS AND FUTURE 
WORK 

Pattern detection methods that are based on a pattern 
library have been applied frequently and their 
properties are relatively well known. A disadvantage 
is that they require upfront knowledge of the used 
patterns and their precise implementation. 
Implementation variations make the latter difficult to 
specify. The pattern detection method we applied is 
based on Formal Concept Analysis and does not 
require a pattern library. 

The method proved to be able to detect 
frequently used design structures in source code 
without upfront knowledge of the expected 
constructs, thereby confirming our hypothesis H1 in 
section 2.1.  

However, even the detection of relatively simple 
structures in relatively small pieces of source code 
required a lot of calculations. For performance 
reasons no contexts of orders large than four could 
be analyzed, so the detected patterns consisted of 
four classes or less. Although large numbers of 

pattern instances were detected, these were typically 
confined to a few areas of the source code. Because 
it was not possible to detect patterns with six classes 
or more, we failed to confirm hypothesis H2. 

Since this is inherent to the used algorithms, the 
application of this technique to reconstruct 
architectural views of large object-oriented systems, 
more specific, systems with the size of the 
controller, is not considered practical. It is possible 
to detect design patterns in its subsystems though. 
These have a size of about five to ten percent of the 
complete controller system.  

Besides performance issues, the reduction of the 
large number of similar patterns in the output is also 
important. Based on the complexity of the patterns 
we filtered the output, but the results show that more 
advanced filtering is necessary in order for the 
method to be useful. It might also be possible to 
group similar patterns into groups and show a single 
pattern of each group to the user. The similarity of 
patterns could be based on the number of edges that 
must be added and removed to transform them into 
each other. 

Finding frequently used design constructs in the 
source code essentially finds frequently occurring 
subgraphs in the class graph. An alternative to the 
pattern detection currently used might be to use 
graph compression algorithms that are based on the 
detection of recurring subgraphs. We have built a 
small prototype that uses the Subdue algorithm 
(Jonyer et al, 2001). This algorithm creates a list of 
recurring subgraphs and replaces all occurrences of 
these subgraphs with references to this list. 
However, when this algorithm is used for pattern 
detection, the fact that the algorithm looks for 
perfectly identical subgraphs causes problems. The 
intertwining of structures often encountered in 
practice caused this prototype to find no patterns at 
all in two subsystems (Grizzly and the RIP Worker) 
of the controller. Lossy graph compression 
algorithms might introduce the required fuzziness.  
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