
AN EXPERIMENTAL EVALUATION OF SOFTWARE
PERFORMANCE MODELING AND ANALYSIS TECHNIQUES

Julie A. Street and Robert G. Pettit IV
The Aerospace Corporation, 10549 Conference Center Dr, Chantilly, USA

Keywords: Unified Modeling Language (UML), Software Performance Modeling, UML SPT Profile, Petri nets.

Abstract: In many software development projects, performance requirements are not addressed until after the
application is developed or deployed, resulting in costly changes to the software or the acquisition of
expensive high-performance hardware. Many techniques exist for conducting performance modeling and
analysis during the design phase; however, there is little information on their effectiveness. This paper
presents an experiment that compared the predicted data from the UML Profile for Schedulability,
Performance, and Time (SPT) paired with statistical simulation and coloured Petri nets (CPNs) for a sample
implementation. We then discuss the results from applying these techniques.

1 INTRODUCTION

Software performance requirements are often not
addressed until after applications are developed and
sometimes until after they are deployed. Then the
software has to change, which is very expensive and
can impact the project’s schedule, or high-
performance hardware must be bought, which is also
very expensive.

To remedy this, researchers have developed
performance modeling and analysis techniques for
addressing performance requirements early in the
software lifecycle. There are many different
approaches available; however, there is little
empirical evidence to validate their effectiveness.
This makes the choice of which technique to use
very difficult.

The purpose of the experiment discussed in this
paper is to develop empirical evidence to validate
performance modeling and analysis techniques.
This experiment compares the predicted
performance data from two different performance
modeling and analysis techniques with actual
implementation data. If predicted data is close to the
implementation data, the technique was validated in
the context of the experiment. As more experiments
are conducted, an empirical base on the validity of
the different techniques can be developed. Once this
empirical evidence exists, the choice of selecting a
performance modeling and analysis technique
becomes easier.

The structure of the paper is as follows: Section
2 discusses work related to this paper. Section 3
describes how the experiment was conducted.
Section 4 presents the data and analysis. Finally,
Section 5 provides the main conclusions.

2 RELATED WORK

Software performance modeling and analysis is a
popular research topic; however, little work has been
done specifically on empirical validation. Hooman
et al validate their UML models of embedded
systems and predict performance through coupled
simulations of multidisciplinary tools (Hooman et
al., 2004). Graf et al describe and demonstrate how
their OMEGA-RT UML Profile can be implemented
in a validation tool and applied to case studies (Graf
et al.). Hakansson et al describe how they
successfully conducted performance analysis on a
case study (Hakansson et al., 2004). Bennett and
Field describe how they use the UML SPT Profile in
combination with LSTA, a discrete-event simulation
tool, to analyze a telecommunications billing system
(Bennett and Field, 2004). Woodside et al describe
a tool architecture called PUMA, which interfaces
between UML designs and analysis techniques
(Woodside et al., 2005). This paper is different from
these works because none of them are empirically
based.

417
A. Street J. and G. Pettit IV R. (2007).
AN EXPERIMENTAL EVALUATION OF SOFTWARE PERFORMANCE MODELING AND ANALYSIS TECHNIQUES.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 417-420
DOI: 10.5220/0001336804170420
Copyright c© SciTePress

3 EXPERIMENT

The goal of this experiment was to compare the
accuracy of two software performance modeling and
analysis techniques. Our hypothesis is that the UML
SPT Profile combined with a statistical simulation
will produce more accurate performance data than
coloured Petri nets (CPN) when compared to actual
implementation data.

3.1 Case Study and Metrics

A real-time embedded distributed cruise control
application described by Gomaa in (Gomaa, 2000)
was the case study for this experiment. For practical
reasons, only the auto control subsystem was used
and the distributed aspects of the system were
ignored. The auto control subsystem takes inputs
from an aperiodic cruise control lever and a periodic
auto sensors monitor, which polls the state of the
brake and engine. The inputs are passed into the
cruise control queue and processed by the cruise
control in a first-in-first-out manner. Then the auto
control subsystem sends messages to the car’s
throttle at a periodic rate.

The dependent variables (i.e. performance
metrics) studied in this experiment were: maximum
number of messages in the cruise control queue,
number of messages in the cruise control queue over
time, and throughput in terms of the number of
messages processed per test case duration. To
compare the performance analysis models’ ability to
predict performance under different circumstances,
these dependent variables were collected on several
tests. Each test was characterized by varying the
following independent variables: cruise control lever
input distribution model was varied between an
aperiodic input (uniform distribution between given
minimum and maximum interarrival times) and a
bursty periodic input (periodic bursts with a set
number of inputs at a set interarrival rate between
messages and bursts); and the auto sensors periodic
input rate was also varied.

3.2 Artifact Construction

After the case study and metrics were determined,
the next step was to build the implementation, CPN
model and UML SPT model. The implementation
consisted of 27 Java classes and 1838 source lines of
code (SLOC). SLOC was captured using Code
Counter Pro (Geronesoft).

The CPN model for this experiment was built by
another software engineer using Design/CPN (CPN
group at the University of Aarhus, 2004). The CPN
Editor was used to construct the small modules.

Once all the individual modules were built, they
were integrated into a larger architecture and the
communication paths between modules were
defined.

The UML SPT profile model was built by
another software engineer. The SPT model was
composed of a deployment diagram and multiple
sequence diagrams. The deployment diagram
captured the system’s hardware architecture. The
sequence diagrams outlined the processing steps
required for each type of input. The UML SPT
model was paired with statistical simulation as
described by Minh in (Minh, 2001) for conducting
analysis.

Validation was performed both the CPN and
UML SPT models to ensure they were accurate
representations of the implementation.

3.3 Data Analysis

This experiment compared accuracy, where
accuracy is defined as the ability to produce
maximum queue size and throughput values within a
60 percent deviation of the implementation’s values.
The deviation percentage is the difference between
the predicted value and the implementation value
divided by the implementation value. 60 percent
was selected based on the median deviation
percentage for all the tests. The median deviation
percentage was 65 percent; therefore a 60 percent
threshold ensured that an accurate test performed
better than the median. For queue size over time,
accuracy was determined based on an examination
of the growth trend using Microsoft Excel.

3.4 Experimental Validity

Several measures were taken to ensure the data was
valid. First, to ensure that there was no bias towards
a particular performance model, two different
software engineers constructed the models. Both
engineers were provided with the same case study
information and used the same predicted
performance values in their analysis. Another
concern for the SPT model was the selected analysis
technique. The SPT model can be mapped to
multiple analysis techniques. Therefore, it is
possible that a different technique will produce
different results.

When drawing conclusions from this
experiment, it is important to note the scope of
applicability. This experiment was conducted on
only one application and therefore represents one
data point. The results drawn from this experiment
may or may not be applicable to other applications.
Finally, at the time this experiment was conducted a

ICSOFT 2007 - International Conference on Software and Data Technologies

418

real-time environment was not available, and it is
possible that a real-time environment may produce
different results.

3.5 Data and Analysis

This experiment conducted nine different tests. The
first set of tests, P1–P3, examined the models’
ability to handle periodic inputs. On test P1, where
the periodic input rate was 100ms, the SPT was
accurate on maximum queue size, but exceeded the
60 percent deviation threshold on throughput, as
shown in Table 1. The CPN accurately predicted a
maximum queue size, but was inaccurate for
throughput. When the periodic input rate was
increased to 10ms on test P2, the SPT predicted an
accurate maximum queue size, but was unable to
accurately predict throughput. Both of the CPN’s
predictions were inaccurate. On the last test, P3, the
periodic input rate was increased to 1ms, the SPT
produced an accurate maximum queue size, while
the CPN did not. However, both models predicted
throughputs within the deviation threshold.

Table 1: Periodic Test Results.

 Max Msg in the Queue Throughput
Test Imp. SPT CPN Imp. SPT CPN

P1 1561
1951
(25%)

930
(-40%) 301

108
 (-65%)

1668
(454%)

P2 2773
3665

 (32%)
239

(-91%) 713
195

(-73%)
1667

(134%)

P3 9877
11151
(13%)

859
(-91%) 2031

888
(-56%)

1668
(-18%)

Next, to see if the predicted behavior of the

queue matched the implementation for tests P1-P3,
the queue size over time was plotted. On test P1 and
P2 the implementation’s queue began to backlog
immediately and the SPT exhibited the same
behavior. The CPN model predicted similar
behavior, but it backlogged at a slower rate.
Therefore the CPN was not accurate on P1 or P2. On
test P3 both techniques failed to predict queue size
over time.

The next set of tests, A1–A3, were used to assess
the techniques’ sensitivity to aperiodic inputs. On
test A1, where the aperiodic input was set to occur
between one and 100ms, the implementation had a
small maximum queue size with a throughput
around 400, as shown in Table 2. The CPN
accurately predicted throughput, however it was just
outside the deviation threshold for maximum queue
size. The SPT model was accurate for throughput,
however it was inaccurate maximum queue size.

On test A2, when the aperiodic rate was
increased to occur between one and 50ms, the SPT
failed to predict both metrics. The CPN produced a
low maximum queue size, but gave an accurate
prediction for throughput. On the last test, A3, when
the aperiodic rate was increased to between one and
five milliseconds, both techniques were unable to
predict accurate results for throughput. The SPT
was able to produce a maximum queue; however the
CPN was not.

Table 2: Aperiodic Test Results.

Max Msg in the Queue Throughput
Test Imp. SPT CPN Imp. SPT CPN

A1 6
221

(3583%)
2

(-67%) 398
183

(-54%)
314

(-20%)

A2 171
453

(165%)
2

 (-99%) 403
143

(-65%)
484

(20%)

A3 3415
2642

(-23%)
873

(-74%) 333
102

(-69%)
1668

(401%)

Next, the queue size over time was plotted to see

if the predicted behavior of the queue matched the
implementation for tests A1–A3. For test A1, the
implementation maintained a small queue size
throughout the test. The CPN accurately predicted
the same behavior, while the SPT did not. On test
A2 and A3 both analysis techniques were inaccurate.
 The final tests, B1–B3, were designed to assess
the techniques’ ability to predict performance based
on periodic bursty traffic. A summary of the results
is shown in Table 3. On test B1-B3, where the burst
size was 20, 10, and 5 respectively, the SPT was
accurate on all the tests for both metrics. The CPN
model, however, was inaccurate on all the tests.

Table 3: Bursty Periodic Test Results.

Max Msg in the Queue Throughput
Test Imp. SPT CPN Imp. SPT CPN

B1 2956
2988
(1%)

932
(-68%) 223

104
(53%)

1668
(-648%)

B2 1447
1780
(23%)

434
(-70%) 238

107
(55%)

1668
(-601%)

B3 683
1004
(47%)

2
(-100%) 276

118
(57%)

1102
(-299%)

Next, to see if the predicted behavior was

accurate, the queue size over time was plotted. On
B1 and B2, both the implementation and SPT
backlogged and grew linearly. The SPT predicted
accurate queue behavior. The CPN also produced a
backlog; however, it grew at a slower rate than the
implementation. Therefore the CPN did not predict
accurate behavior on B1 and B2. Finally, on the last

AN EXPERIMENTAL EVALUATION OF SOFTWARE PERFORMANCE MODELING AND ANALYSIS
TECHNIQUES

419

test, B3, the implementation again backlogged and
grew at a linear rate. The SPT had similar behavior,
and therefore was considered accurate. The CPN
predicted no backlog on this test.

4 CONCLUSION

In conclusion, the experimental results showed that
the SPT combined with a statistical simulation was
accurate the majority of the time. With respect to
predicting maximum queue size, the SPT was
accurate on 78 percent of the tests making it more
accurate than the CPN, which was accurate on 11
percent of the tests. When the SPT approach was
inaccurate, it consistently overestimated problems.
On the CPN’s inaccurate tests, it consistently
underestimated performance problems.

The next metric examined was throughput. The
SPT approach produced accurate values on 56
percent of the tests, while the CPN was accurate on
33 percent of the tests. Since the SPT approach was
accurate on the majority of the tests, it was
considered the more accurate technique. On the
SPT’s inaccurate tests, it constantly overestimated
performance problems. On the CPN’s inaccurate
tests, it again underestimated the performance
problems.

The last metric studied was the queue behavior
over time. The SPT was accurate on 56 percent of
the tests and the CPN was accurate on 11 percent of
the tests. Therefore the SPT approach was
considered the more accurate for predicting queue
size over time. On its inaccurate tests, SPT
consistently overestimated the problem or identified
non-existent problems. Again, the CPN consistently
underestimated or missed the performance problems.

In summary, the data suggests that the SPT
Profile combined with statistical simulation is more
accurate than CPNs, which supports the hypothesis.
However, as discussed in section 3.4, the data is
from a single experiment, and may not have broad
applicability. It was also observed that the SPT
consistently overestimated problems and identified
non-existent problems. This would lead to
unnecessary changes in design; however it
guarantees that all existing problems would be fixed.
On the other hand, the CPN consistently
underestimated or missed performance problems.
This would avoid unnecessary change in design, but
not all problems would be fixed. Therefore it is
better to err on the side of overestimation to ensure
that all problems are fixed. This further suggests the
use of SPT with statistical simulation over CPNs

REFERENCES

Bennett, A. J. & Field, A. J. (2004) Performance
Engineering with the UML Profile for Schedulability,
Performance and Time: a Case Study. IN IEEE (Ed.)
12th International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS 2004). Vollendam, The
Netherlands.

CPN Group At The University of Aarhus, D. (2004)
Design/CPN. 4.0 ed., CPN group at the University of
Aarhus, Denmark.

GERONESOFT Code Counter Pro. 1.27 ed., Geronesoft.
Gomaa, H. (2000) Designing Concurrent, Distributed, and

Real-Time Applications with UML, Boston, Addison-
Wesley Object Technology Series.

Graf, S., Ober, I. & Ober, I. A real-time profile for UML
Software Tools for Technology Transfer manuscript.

Hakansson, J., Mokrushin, L., Pettersson, P. & YI, W.
(2004) An Analysis Tool for UML Models with SPT
Annotations. Workshop on SVERTS: Specification and
Validation of UML models for Real Time and
Embedded Systems. Lisbon, Portugal.

Hooman, J., Mulyar, N. & Posta, L. (2004) Validating
UML models of Embedded Systems by Coupling
Tools. Workshop on SVERTS: Specification and
Validation of UML models for Real Time and
Embedded Systems. Lisbon, Portugal.

Minh, D. L. (2001) Applied Probability Models, Pacific
Grove, CA, Brooks/Cole.

Woodside, M., Petriu, D. C., Petriu, D. B., Shen, H., Israr,
T. & Merseguer, J. (2005) Performance by Unified
Model Analysis (PUMA). Fifth International
Workshop on Software and Performance (WOSP 05).
Palma, Illes Balears, Spain.

ICSOFT 2007 - International Conference on Software and Data Technologies

420

