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Abstract: In many software development projects, performance requirements are not addressed until after the 
application is developed or deployed, resulting in costly changes to the software or the acquisition of 
expensive high-performance hardware.  Many techniques exist for conducting performance modeling and 
analysis during the design phase; however, there is little information on their effectiveness.  This paper 
presents an experiment that compared the predicted data from the UML Profile for Schedulability, 
Performance, and Time (SPT) paired with statistical simulation and coloured Petri nets (CPNs) for a sample 
implementation.  We then discuss the results from applying these techniques. 

1 INTRODUCTION 

Software performance requirements are often not 
addressed until after applications are developed and 
sometimes until after they are deployed.  Then the 
software has to change, which is very expensive and 
can impact the project’s schedule, or high-
performance hardware must be bought, which is also 
very expensive. 

To remedy this, researchers have developed 
performance modeling and analysis techniques for 
addressing performance requirements early in the 
software lifecycle.  There are many different 
approaches available; however, there is little 
empirical evidence to validate their effectiveness.  
This makes the choice of which technique to use 
very difficult.   

The purpose of the experiment discussed in this 
paper is to develop empirical evidence to validate 
performance modeling and analysis techniques.  
This experiment compares the predicted 
performance data from two different performance 
modeling and analysis techniques with actual 
implementation data.  If predicted data is close to the 
implementation data, the technique was validated in 
the context of the experiment. As more experiments 
are conducted, an empirical base on the validity of 
the different techniques can be developed.  Once this 
empirical evidence exists, the choice of selecting a 
performance modeling and analysis technique 
becomes easier.  

The structure of the paper is as follows: Section 
2 discusses work related to this paper.  Section 3 
describes how the experiment was conducted.  
Section 4 presents the data and analysis.  Finally, 
Section 5 provides the main conclusions. 

2 RELATED WORK 

Software performance modeling and analysis is a 
popular research topic; however, little work has been 
done specifically on empirical validation.  Hooman 
et al validate their UML models of embedded 
systems and predict performance through coupled 
simulations of multidisciplinary tools (Hooman et 
al., 2004). Graf et al describe and demonstrate how 
their OMEGA-RT UML Profile can be implemented 
in a validation tool and applied to case studies (Graf 
et al.). Hakansson et al describe how they 
successfully conducted performance analysis on a 
case study (Hakansson et al., 2004).  Bennett and 
Field describe how they use the UML SPT Profile in 
combination with LSTA, a discrete-event simulation 
tool, to analyze a telecommunications billing system 
(Bennett and Field, 2004).  Woodside et al describe 
a tool architecture called PUMA, which interfaces 
between UML designs and analysis techniques 
(Woodside et al., 2005).  This paper is different from 
these works because none of them are empirically 
based. 
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3 EXPERIMENT 

The goal of this experiment was to compare the 
accuracy of two software performance modeling and 
analysis techniques.  Our hypothesis is that the UML 
SPT Profile combined with a statistical simulation 
will produce more accurate performance data than 
coloured Petri nets (CPN) when compared to actual 
implementation data. 

3.1 Case Study and Metrics  

A real-time embedded distributed cruise control 
application described by Gomaa in (Gomaa, 2000) 
was the case study for this experiment.  For practical 
reasons, only the auto control subsystem was used 
and the distributed aspects of the system were 
ignored.  The auto control subsystem takes inputs 
from an aperiodic cruise control lever and a periodic 
auto sensors monitor, which polls the state of the 
brake and engine.  The inputs are passed into the 
cruise control queue and processed by the cruise 
control in a first-in-first-out manner.  Then the auto 
control subsystem sends messages to the car’s 
throttle at a periodic rate.   

The dependent variables (i.e. performance 
metrics) studied in this experiment were: maximum 
number of messages in the cruise control queue, 
number of messages in the cruise control queue over 
time, and throughput in terms of the number of 
messages processed per test case duration.  To 
compare the performance analysis models’ ability to 
predict performance under different circumstances, 
these dependent variables were collected on several 
tests.  Each test was characterized by varying the 
following independent variables: cruise control lever 
input distribution model was varied between an 
aperiodic input (uniform distribution between given 
minimum and maximum interarrival times) and a 
bursty periodic input (periodic bursts with a set 
number of inputs at a set interarrival rate between 
messages and bursts); and the auto sensors periodic 
input rate was also varied. 

3.2 Artifact Construction 

After the case study and metrics were determined, 
the next step was to build the implementation, CPN 
model and UML SPT model.  The implementation 
consisted of 27 Java classes and 1838 source lines of 
code (SLOC).  SLOC was captured using Code 
Counter Pro (Geronesoft).   

The CPN model for this experiment was built by 
another software engineer using Design/CPN (CPN 
group at the University of Aarhus, 2004).   The CPN 
Editor was used to construct the small modules.  

Once all the individual modules were built, they 
were integrated into a larger architecture and the 
communication paths between modules were 
defined. 

The UML SPT profile model was built by 
another software engineer.  The SPT model was 
composed of a deployment diagram and multiple 
sequence diagrams.  The deployment diagram 
captured the system’s hardware architecture.  The 
sequence diagrams outlined the processing steps 
required for each type of input.  The UML SPT 
model was paired with statistical simulation as 
described by Minh in (Minh, 2001) for conducting 
analysis. 

Validation was performed both the CPN and 
UML SPT models to ensure they were accurate 
representations of the implementation. 

3.3 Data Analysis 

This experiment compared accuracy, where 
accuracy is defined as the ability to produce 
maximum queue size and throughput values within a 
60 percent deviation of the implementation’s values.  
The deviation percentage is the difference between 
the predicted value and the implementation value 
divided by the implementation value.  60 percent 
was selected based on the median deviation 
percentage for all the tests.  The median deviation 
percentage was 65 percent; therefore a 60 percent 
threshold ensured that an accurate test performed 
better than the median.  For queue size over time, 
accuracy was determined based on an examination 
of the growth trend using Microsoft Excel.   

3.4 Experimental Validity 

Several measures were taken to ensure the data was 
valid.  First, to ensure that there was no bias towards 
a particular performance model, two different 
software engineers constructed the models.  Both 
engineers were provided with the same case study 
information and used the same predicted 
performance values in their analysis.  Another 
concern for the SPT model was the selected analysis 
technique.  The SPT model can be mapped to 
multiple analysis techniques.  Therefore, it is 
possible that a different technique will produce 
different results.   

When drawing conclusions from this 
experiment, it is important to note the scope of 
applicability.  This experiment was conducted on 
only one application and therefore represents one 
data point.  The results drawn from this experiment 
may or may not be applicable to other applications.  
Finally, at the time this experiment was conducted a 

ICSOFT 2007 - International Conference on Software and Data Technologies

418



 

real-time environment was not available, and it is 
possible that a real-time environment may produce 
different results. 

3.5 Data and Analysis 

This experiment conducted nine different tests.  The 
first set of tests, P1–P3, examined the models’ 
ability to handle periodic inputs.  On test P1, where 
the periodic input rate was 100ms, the SPT was 
accurate on maximum queue size, but exceeded the 
60 percent deviation threshold on throughput, as 
shown in Table 1.  The CPN accurately predicted a 
maximum queue size, but was inaccurate for 
throughput.  When the periodic input rate was 
increased to 10ms on test P2, the SPT predicted an 
accurate maximum queue size, but was unable to 
accurately predict throughput.  Both of the CPN’s 
predictions were inaccurate.  On the last test, P3, the 
periodic input rate was increased to 1ms, the SPT 
produced an accurate maximum queue size, while 
the CPN did not.  However, both models predicted 
throughputs within the deviation threshold.   

Table 1: Periodic Test Results. 

 Max Msg in the Queue Throughput 
Test Imp. SPT CPN Imp. SPT CPN 

P1 1561 
1951  
(25%) 

930 
(-40%) 301 

108 
 (-65%) 

1668 
(454%) 

P2 2773 
3665 

 (32%) 
239 

(-91%) 713 
195  

(-73%) 
1667 

(134%) 

P3 9877 
11151  
(13%) 

859 
(-91%) 2031 

888  
(-56%) 

1668 
(-18%) 

 
Next, to see if the predicted behavior of the 

queue matched the implementation for tests P1-P3, 
the queue size over time was plotted.  On test P1 and 
P2 the implementation’s queue began to backlog 
immediately and the SPT exhibited the same 
behavior.  The CPN model predicted similar 
behavior, but it backlogged at a slower rate.  
Therefore the CPN was not accurate on P1 or P2. On 
test P3 both techniques failed to predict queue size 
over time.   

The next set of tests, A1–A3, were used to assess 
the techniques’ sensitivity to aperiodic inputs.  On 
test A1, where the aperiodic input was set to occur 
between one and 100ms, the implementation had a 
small maximum queue size with a throughput 
around 400, as shown in Table 2.   The CPN 
accurately predicted throughput, however it was just 
outside the deviation threshold for maximum queue 
size.  The SPT model was accurate for throughput, 
however it was inaccurate maximum queue size. 

On test A2, when the aperiodic rate was 
increased to occur between one and 50ms, the SPT 
failed to predict both metrics.  The CPN produced a 
low maximum queue size, but gave an accurate 
prediction for throughput.  On the last test, A3, when 
the aperiodic rate was increased to between one and 
five milliseconds, both techniques were unable to 
predict accurate results for throughput.  The SPT 
was able to produce a maximum queue; however the 
CPN was not.     

Table 2: Aperiodic Test Results. 

Max Msg in the Queue Throughput 
Test Imp. SPT CPN Imp. SPT CPN 

A1 6 
221 

(3583%)
2  

(-67%) 398 
183  

(-54%) 
314 

(-20%)

A2 171
453  

(165%) 
2 

 (-99%) 403 
143  

(-65%) 
484 

(20%) 

A3 3415
2642 

(-23%) 
873 

(-74%) 333 
102  

(-69%) 
1668 

(401%)
 
Next, the queue size over time was plotted to see 

if the predicted behavior of the queue matched the 
implementation for tests A1–A3.  For test A1, the 
implementation maintained a small queue size 
throughout the test.  The CPN accurately predicted 
the same behavior, while the SPT did not.  On test 
A2 and A3 both analysis techniques were inaccurate.  
    The final tests, B1–B3, were designed to assess 
the techniques’ ability to predict performance based 
on periodic bursty traffic.  A summary of the results 
is shown in Table 3.  On test B1-B3, where the burst 
size was 20, 10, and 5 respectively, the SPT was 
accurate on all the tests for both metrics.  The CPN 
model, however, was inaccurate on all the tests.   

Table 3: Bursty Periodic Test Results. 

Max Msg in the Queue Throughput 
Test Imp. SPT CPN Imp. SPT CPN 

B1 2956
2988 
(1%) 

932 
(-68%) 223 

104 
(53%) 

1668  
(-648%) 

B2 1447
1780 
(23%)

434 
(-70%) 238 

107 
(55%) 

1668  
(-601%) 

B3 683
1004 
(47%)

2 
(-100%) 276 

118 
(57%) 

1102 
(-299%) 

 
Next, to see if the predicted behavior was 

accurate, the queue size over time was plotted.   On 
B1 and B2, both the implementation and SPT 
backlogged and grew linearly.  The SPT predicted 
accurate queue behavior.  The CPN also produced a 
backlog; however, it grew at a slower rate than the 
implementation.  Therefore the CPN did not predict 
accurate behavior on B1 and B2.  Finally, on the last 
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test, B3, the implementation again backlogged and 
grew at a linear rate.   The SPT had similar behavior, 
and therefore was considered accurate.  The CPN 
predicted no backlog on this test.  

4 CONCLUSION 

In conclusion, the experimental results showed that 
the SPT combined with a statistical simulation was 
accurate the majority of the time.  With respect to 
predicting maximum queue size, the SPT was 
accurate on 78 percent of the tests making it more 
accurate than the CPN, which was accurate on 11 
percent of the tests.  When the SPT approach was 
inaccurate, it consistently overestimated problems.  
On the CPN’s inaccurate tests, it consistently 
underestimated performance problems. 

The next metric examined was throughput.  The 
SPT approach produced accurate values on 56 
percent of the tests, while the CPN was accurate on 
33 percent of the tests.  Since the SPT approach was 
accurate on the majority of the tests, it was 
considered the more accurate technique.  On the 
SPT’s inaccurate tests, it constantly overestimated 
performance problems.  On the CPN’s inaccurate 
tests, it again underestimated the performance 
problems. 

The last metric studied was the queue behavior 
over time.  The SPT was accurate on 56 percent of 
the tests and the CPN was accurate on 11 percent of 
the tests.  Therefore the SPT approach was 
considered the more accurate for predicting queue 
size over time.  On its inaccurate tests, SPT 
consistently overestimated the problem or identified 
non-existent problems.  Again, the CPN consistently 
underestimated or missed the performance problems.  

In summary, the data suggests that the SPT 
Profile combined with statistical simulation is more 
accurate than CPNs, which supports the hypothesis.  
However, as discussed in section 3.4, the data is 
from a single experiment, and may not have broad 
applicability.  It was also observed that the SPT 
consistently overestimated problems and identified 
non-existent problems.  This would lead to 
unnecessary changes in design; however it 
guarantees that all existing problems would be fixed.  
On the other hand, the CPN consistently 
underestimated or missed performance problems.  
This would avoid unnecessary change in design, but 
not all problems would be fixed.  Therefore it is 
better to err on the side of overestimation to ensure 
that all problems are fixed.  This further suggests the 
use of SPT with statistical simulation over CPNs  
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