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Abstract: In iterative/incremental software development, software deliverables are built in iterations - each iteration 
providing parts of the required software functionality. To better manage and monitor resources, plan and 
deliverables, iterations are usually performed during specific time periods, so called “time boxes”. Each 
time box is further divided into a sequence of stages and a dedicated development team is assigned to each 
stage. Iterations can be performed in parallel to reduce the project completion time by exploiting a 
“pipelining” concept, that is, when a team completes the tasks of a stage, it hands over the intermediate 
deliverables to the team executing the next stage and then starts executing the same stage in the next 
iteration. In this paper, we address the problem of optimizing the schedule of a software project that follows 
an iterative, timeboxing process model. A multi objective linear programming technique is introduced to 
consider multiple parameters, such as the project duration, the work discontinuities of development teams in 
successive iterations and the release (delivery) time of software deliverables. The proposed model can be 
used to generate alternative project plans based on the relative importance of these parameters.  

1 INTRODUCTION 

In iterative and incremental development, software 
is built gradually by following a sequence of 
iterations, with each of the iterations delivering a 
part of the final software system (Larman, 2003). A 
common project management technique that has 
been associated with iterative/incremental software 
processes (e.g., Rational Unified Process - RUP, 
Dynamic Systems Development Method - DSDM) is 
timeboxing (Hunt, 2003; Stapleton, 2003). In 
timeboxing, iterations are performed during specific 
time periods, so called “time boxes”. The 
timeboxing model is suitable for software 
development projects in which delivery times are 
crucial and system requirements are stable or, at 
least, they can be grouped into classes of features to 
be developed during different time boxes/iterations.  

The main objective of timeboxing is to deliver 
the final software system as quickly as possible and 
avoid risks of missing project deadlines (Jalote et 
al., 2004). Each time box is divided into a sequence 
of stages (e.g., requirements analysis, design, 
implementation, testing and deployment) that are 
repeated in each time box (Figure 1). A dedicated 

team of experts is usually assigned to each stage, 
i.e., a team for a stage performs only the activities 
for that stage. Iterations in timeboxing can be 
performed in parallel to further improve the project 
performance and reduce the overall project duration. 
Parallelism is achieved by exploiting a “pipelining” 
concept from hardware architectures (Hennesy and 
Patterson, 2004), that is, when a team completes the 
tasks of a stage, it hands over the intermediate 
deliverables to another team executing the next stage 
and then starts executing the same stage in the next 
timeboxed iteration. 

However, the application of a timeboxing process 
model is often associated with some “inherent” 
assumptions/simplifications which require proper 
configuration/resource management procedures 
(Jalote et al., 2004): 
 the number and duration of time boxes are fixed, 
 the planned durations of each stage, in each time 

box, are approximately equal, 
 precedence constraints between stages, in each 

iteration, are simple sequential relationships,   
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Figure 1: The timeboxing process model. 

 requirements, system architecture and 
technology are considered as quite stable to be 
managed separately into different time 
boxes/iterations, 

 development teams, performing the same type of 
activity at respective stages in different 
timeboxed iterations, should be experienced and 
“coherent” enough to ensure high resource 
utilization and avoid idle times/work 
discontinuities in successive iterations. 
A serious drawback of timeboxing is that possible 

work discontinuities affecting the project velocity 
(XP, 2006) cannot be easily handled. For example, 
even with a highly experienced team of designers, 
execution of activities in the corresponding stage of 
a particular time box/iteration cannot be performed 
“immediately” after the same (or a different) team 
has completed the activities of the design stage in 
the previous time box. In reality, due to the different 
scope of the design activities (database system 
design, user interface design etc.), software projects 
require larger amount of resources (e.g., multi-
disciplined designers), thus raising coordination 
issues, transition/communication delays and 
resource time losses between design stages in 
successive iterations. Consequently, there is a 
learning curve associated with any team to become 
familiar with the features to be implemented at each 
stage and the corresponding user requirements 
(Hanakawa et al., 1998). Furthermore, in a multi site 
software development project (Ebert and De Neve, 
2001), members of development teams may be 
drawn from several locations, thus introducing 
additional communication gaps/coordination delays. 
Even when the system architecture is quite fixed 
(e.g., in a software project developing a web 
application), the set of features to be considered 
during the design stage of a specific iteration 
depends on the outcomes of the previous 
requirements stage and any new requirements 
introduced by the end-user. In such cases, the 

development of a software project based on a “rigid” 
timeboxing approach is getting much more complex 
and should be supported with more systematic and 
holistic methodologies that address diverse 
scheduling decision elements, regarding the overall 
project performance.   

This paper, contributes to further promote the 
applicability of the timeboxing process model in 
software projects that require more effective 
resource management and planning, by exploring the 
multi objective approach in planning and scheduling 
decisions. In particular, we propose a multi objective 
linear programming (LP) model for scheduling 
projects which employ timeboxing (TB projects). 
The model includes a list of criteria (such as project 
duration, iteration completion/release time of 
software increments and work gaps), which are 
important for TB project managers in making 
decisions regarding the overall project performance. 
Thus, the scheduling problem of TB projects is 
regarded as a multi criteria decision that can be 
formulated by linear programming techniques. Such 
a Multi Criteria Decision Analysis (MCDA) 
approach is based on a parametric objective function 
which, according to the values of its parameters, 
aims either at a single criterion optimization or at a 
multi-objective optimization, by combining different 
criteria into a single cost criterion for the whole 
project. 

The rest of the paper is organized as follows: 
Section 2 describes the background of our approach. 
Section 3 presents a formal linear programming 
formulation for scheduling TB software projects. 
Section 4 presents the application of the model to a 
software project example that follows practices of 
iterative/timeboxed planning as well as the project 
schedule evaluation under individual criteria. 
Section 5 presents the project schedule evaluation by 
considering multiple criteria; the model utilization to 
assist software project managers in selecting among 
alternative project schedules is also discussed. 
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Finally, conclusions and directions of future research 
are discussed in section 6. 

2 BACKGROUND  

While MCDA approaches have been applied in other 
fields of software engineering and software project 
management, there is a lack of attention to the 
problem of efficiently scheduling iterative software 
development, in general, and TB projects, in 
particular. For example, in (Lai et al., 2002; 
Santhanam and Kyparisis, 1995) MCDA techniques 
have been proposed to assist the problem of 
selecting a software development project from a set 
of projects by considering the cost of the respective 
investment; in (Wang and Lin, 2003; Ruhe et al., 
2003) MCDA techniques have been suggested to 
select and prioritise software requirements; in 
(Stamelos and Tsoukias, 2003) a multi criteria 
model has been applied to evaluate the software 
quality; while in (Barcus and  Montibeller, 2006) 
MCDA has been employed to support work 
allocation in distributed software development 
teams. 

With regard to TB project scheduling, Jalote et 
al., (2004) examine the cost of unequal stages to the 
overall performance and resource utilization of a TB 
project. In their paper, the pipelining concept from 
hardware architectures is exploited to provide a 
process model for TB projects and, consequently, to 
determine the overall project duration, in case that 
time boxes are decomposed into unequal stages. 
Each stage is considered equal to the longest stage; 
the frequency of deliverables produced (i.e., the 
project velocity), as well as the project duration are 
determined by the longest stage. The model 
application results in “slack time” for the teams 
performing the “slower” stages (i.e., resources 
under-utilization). The problem is handled in an ad-
hoc way by reducing the size of teams for the slower 
stages. In addition, the suggested approach assumes 
a simplified nature for TB projects where: i) the 
number/duration of timeboxes/stages is fixed and 
pre-specified, ii) there are no transition delays (work 
gaps) between stages in successive iterations, and 
iii) in each timeboxed iteration, stages proceed at a 
sequential manner. Hence, the model does not take 
into account multiple decision elements for 
scheduling TB projects, such as the project duration, 
the completion time of each iteration that determines 
the time of the next software release increment, 
possible precedence relationships due to 
technological constraints between stages, as well as 

transition delays/work discontinuities between 
stages in successive iterations. 

To alleviate the above limitations, in this paper 
we try to exploit recent advances of MCDA in other 
project management areas which exhibit analogous 
characteristics to TB software projects. For example, 
many instances of construction engineering projects 
consist of a set of activities that are repeated at 
different locations/units (Mattila and Abraham, 
1998). After an activity is completed in one site, it is 
repeated in the next site either at a horizontal 
(highway segments, railways bridges, tunnels, 
pipelines, sewers etc.) or a vertical flow (high-rise 
and multi-story buildings, multi-housing projects, 
etc.) These projects are known in the construction 
engineering literature as Linear and Repetitive 
Projects (LRPs) (Hassanein and Moselhi, 2005). 
Scheduling of LRPs, in practice, could involve 
multiple control variables than just minimizing the 
project duration or achieving resource continuity, 
which are the objectives in conventional project 
scheduling techniques like PERT/CPM and RSM 
(Repetitive Scheduling Method), respectively 
(Kallantzis and Lambropoulos, 2004; Yang and 
Ioannou, 2004). Alternative project schedules, 
comparisons and cost trade-offs are often required to 
arrive at an acceptable or optimum project schedule. 
In this aspect, the scheduling problem in LRPs has 
been recently considered as a multi objective 
problem that can be addressed by linear 
programming techniques (Hassanein and Moselhi, 
2005; Hyari and El-Rayes, 2006; Ipsilandis, 2007). 
In the following, a multi objective linear 
programming scheduling model, originally defined 
for LRPs (Ipsilandis, 2007), is adapted to schedule 
software projects which employ timeboxing. The 
model has the capacity to provide optimum 
schedules, reflecting not only single but multiple 
objectives, and assist software project managers in 
producing and selecting among alternative schedules 
of a TB project. 

3 THE MULTI OBJECTIVE 
NATURE OF TB PROJECTS 

In a TB project, a list of criteria important to the 
software project manager in his/her decision making 
regarding the overall project performance may 
include the following:  
 Project duration. 
 Resource idle time: in TB projects, work gaps 

between stages in successive timeboxed 
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iterations cannot be ignored. Although the same 
stage is repeated sequentially in different 
timeboxes, violating the continuity of the same 
stage between successive timeboxes introduces 
work gaps and time losses that increase the 
overall project cost and duration. 

 Iteration completion time: The completion of 
each iteration and, consequently, the time of the 
next software release increment are affected by 
the precedence relationships/technological 
constraints between stages and the duration of 
each stage. The iteration completion time 
identifies a proper choice/milestone (i.e., a 
minimum bound) for the duration of the 
corresponding time box and, thus, specifies the 
iteration deadline. The project manager can then 
identify the amount of functionality to be 
developed at each iteration, that is, the 
functionality that can be “fit” into a time box. 
Iterations result in some working software 
released to the customer for early feedback or to 
the Quality Assurance team. The final iteration 
results in the final software product. 

 Slack time: Reducing a stage slack time may 
result in achieving a high level of work 
continuity and resource utilization but, at the 
same time, introduces higher risk, regarding the 
completion time of iterations and the overall 
project duration. 

 Number of iterations: A TB project requires a 
good estimation of the software features to be 
developed and released after each iteration. We 
assume that each iteration introduces an 
additional fixed cost for the project but, at the 
same time, splits the software system into 
smaller parts which could improve the overall 
cash flow and keep management complexity 
under control. 

In any TB project, there is a set of M stages and P 
project dependency relationships (with or without 
time-lag). The project is divided into N separate 
iterations in a “linear” way, where, without loss of 
generality, the following assumptions hold: i) all 
stages are performed in all iterations, ii) a stage 
cannot be performed in any iteration before the same 
stage is completed in the previous iteration, and iii) 
the set of precedence dependencies remain the same 
in all iterations (i.e., the same planning method is 
followed in all iterations). 

Let i = 1,2,…,M denote the project stages and      
j = 1,2,…,N denote the project iterations. Scheduling 
of a TB project can be formulated as a linear 
programming model as follows. 
 

Model Variable and Parameters.  
Define: 

dij , the duration of stage i in iteration j,  
sij, fij , the start and finish time respectively of 

stage i in iteration j, 
lij , the minimum elapsed time for starting stage 

i in iteration j+1, after finishing stage i in iteration j, 
Pi  , the set of predecessor stages to stage i, 
E , the set of all stages without successors, 
WBi , the total duration of work-breaks for stage i 

because of discontinuities in successive iterations, 
UCj , the completion time of iteration j, 
Dj , the promised delivery/release time for the 

software part produced in iteration j, 
cj , the unit cost of delay in finishing iteration j 

after the deadline (timebox), 
fi , the unit cost of work-breaks in stage i. 

 
Constraint definitions. 
Define: 
 Stage duration constraints: 

 fij = sij + dij ∀ i=1, 2…M, j=1, 2… N             (1) 
 Project linearity constraints: 

  sij+1 ≥ fij + lij ∀  i=1, 2… M, j=1, 2… N-1       (2) 
When lij = 0, the constraint takes the form of the 
common finish-to-start relationship. 
 Technological dependencies: 

 sij ≥ fkj ∀ i=1, 2… M, j=1, 2…N, k ∈ Pi           (3) 
 Iteration completion time: 
 UCj ≥ fkj ∀ j=1,2…N, k∈E                               (4)  

UCj is the completion time for iteration j and UCN is 
equal to the project duration. 
 Resource delays (work-breaks): 

)
N -1

i ij+1 ij
j=1

= (s f ,       i = 1,...,MWB − ∀∑  

M

i
i=1

= WBWB ∑                                     (5) 

Global Objective function.  
Depending on the values of the parameters cj and fi 
the following general objective function: 

 Minimize .( ) .
N M

j j j i i
j=1 i=1

c UC D f WB− +∑ ∑          (6) 

can be used accordingly, to achieve different 
objectives or for trade-offs between various criteria, 
as follows: 
Project duration (cN =1, rest of cj and fi equal to 0): 

 MinimizeUCN                                                 (7) 
Total work-break time (all fi = 1, all cj = 0): 

 Minimize WB                                                  (8) 
Iteration completion time (all fi  = 0, cj = 1): 
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 Minimize
M

i
i=1

UC∑                                            (9) 

Total cost of work-breaks (all cj = 0):  

 Minimize .
M

i i
i=1

f WB∑                                       (10) 

Delay cost  (all fi  = 0): 

 Minimize .( )
M|

j j j
i=1

c UC D−∑                         (11) 

Trade-offs between costs of project delays and 
resource delays (work-breaks): 

 Minimize .( ) .
N M

j j j i i
j=1 i=1

c UC D f WB− +∑ ∑     (12) 

4 CASE-STUDY EXAMPLE 

In this section, we demonstrate the type of answers 
and analysis that can be supported by the proposed 
model through the use of a hypothetical short-term 
software project example that follows the principles 
of the agile ICONIX process (Rosenberg et al. 
2005). In ICONIX, the project processes are use-
case driven, like in RUP, but without a lot of the 
project management overhead that the RUP 
introduces. The project example follows a minimal 
set of 6 stages/steps which are executed in an 
iterative/incremental approach. These stages are: 
Domain Modelling (stage A), Use-Cases Analysis 
(stage B), Requirements Review (stage C), 
Preliminary Design & Review (stage D), Detailed 
Design & Review (stage F) and Coding & Testing 
(stage F).   

 
Figure 2: Precedence and PERT network. 

Multiple iterations occur between developing the 
domain model (stage A) and analyzing the use cases 
(stage B). Other iterations exist, as well, as the 
development proceeds through the project life cycle. 

Although the project does not require a lot of 
bookkeeping, in order to over-utilize the small 
development teams working at each stage (2-3 
experts), all iterations should be somehow 
“timeboxed”. The final software application is 
planned to be delivered after 6 iterations, of the 6 
discrete stages specified above. A stage-specific 
development team executes the activities at the 
corresponding stage following the sequence of 
iterations. All stage dependencies are finish-to-start 
(FS), as shown in the precedence network diagram 
on the left of Figure 2 along with the most likely 
estimate of the duration of each stage at each of the 
6 iterations. The network also depicts precedence 
constraints between stages within iterations (e.g., 
Use-Cases Analysis and Requirements Review 
stages take place in parallel after Domain Modelling 
is completed).  

Although the initial objective was to keep project 
management complexities as low as possible, the 
resulting PERT diagram for all six iterations 
portrays a multiplicative complexity for the whole 
project (Figure 2). The critical path of the entire 
project consists of stages A and C in iteration 1, the 
sequence of stage E in all iterations, and stage F in 
iteration 6. 

4.1 CPM ES & LS Schedules 

The schedule produced from the Critical Path Early 
Start Method (CPM ES) minimizes the project 
duration and, at the same time, the completion time 
(the release time for software parts) in all iterations. 
In general, obtaining a partial software delivery as 
early as possible could affect negatively the software 
quality but positively the financial performance of 
the project, in cases where customer payments are 
contingent upon partial deliveries. In such a case, the 
objective must be set to minimizing the completion 
time of all or certain iterations (that is to minimize 
as much as possible the time boxes of iterations), 
even if work continuity is sacrificed. Note that an 
iteration completion time denotes a lower bound for 
the corresponding time box. 

Setting the objective function as in Eq. 9 the LP 
solution coincides with the CPM ES schedule which 
yields for the project example a duration equal to 48 
working days, with iteration completion times and 
work-breaks set as shown in Figure 3. In the 
corresponding linear scheduling diagram, the 
progress of each stage through the project iterations 
is represented by a piecewise straight line. The slope 
of the line corresponds to the production rate of the 
specific stage at each iteration. Horizontal segments 
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on the progress line correspond to work-breaks (i.e., 
work interruption) between the execution of the 
same stage in successive iterations. Vertical 
segments represent specific cases, where a stage is 
not included in the corresponding iteration. 

 
Figure 3: Linear scheduling (CPM - ES). 

CPM is insufficient in addressing work 
continuity objectives and, consequently, does not 
consider utilization levels of development teams. 
Work-breaks cannot be eliminated or even reduced 
by scheduling stages according to the Latest Start 
(LS) time, as it is demonstrated in Figure 4.  

 
Figure 4: Linear Scheduling (CPM - LS). 

Pushing stages to their LS time moves work-
breaks from the last project stages to those in the 
beginning. In the specific project example, the LS 
schedule introduces even more work-breaks, while, 
at the same time, produces delays in 
intermediate/partial deliveries (i.e., timebox 
violations). Additionally, the LS schedule fails to 
address planning for agility aspects (Rosenberg et al. 
2005), since it consumes all the “slack time” for 
teams performing the stages, hence making the 
project performance more vulnerable to unexpected 
delays/interrupts (e.g., major design errors, changes 
in user requirements etc.). 

4.2 Minimizing Work-Break Time 

Setting the 48 days CPM duration as the constraint 
of Eq. 4 (UC6=48), and selecting the objective 
function of Eq. 8, the LP model produces a schedule 
that minimizes the total resource work-break time, 
while maintaining the overall project completion 
time as set by the CPM schedule. The resulting 
schedule for the project is shown in Figure 5. The 
minimum project duration of 48 days can be 
achieved with a minimum of 26 days of work-breaks 
concentrated at stages B and C. Further reduction of 
stages work-break time cannot be achieved without 
extending the project duration beyond 48 days. 

 
Figure 5: Minimization of work-breaks under CPM 
duration. 

If the CPM duration constraint is relaxed, work-
breaks can be further reduced to a minimum of 5 
days, causing however a delay in the delivery of the 
project, the duration of which is extended from 48 to 
64 days, as depicted in Figure 6.  

 
Figure 6: Minimization of work-breaks without duration 
constraints. 

The work-break at stage C is eliminated, while at 
stage B is reduced to 5 days. The completion time of 
all iterations is also pulled to 16 days later than in 
the previous schedule. A saving of 21 days in work-
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breaks is traded-off with a project delivery delay of 
16 days. In the next section, trade-off issues between 
work-breaks and software parts delivery/release 
times are further investigated by using LP sensitivity 
analysis.  

5 TRADE-OFF ANALYSIS 

All schedules derived under the previous conditions 
were based on a single criterion each time. 
Alternative schedules optimized with respect the 
different evaluation criteria as they are defined in 
Eqs. 7-11, can also be easily derived by the LP 
model. The objective function defined in Eq. 12 
consolidates the criteria of project duration, iteration 
completion time/time box duration (release time of 
each software part), and work-break into a single 
composite criterion. A necessary condition is to 
estimate the relative unit cost of each of the above 
project parameters.  

Work-break costs may vary among different 
stages, according to the effort and scarceness of the 
resources (team members) involved in each stage. 
The same holds true with the cost associated with 
delays in completion/delivery time of different 
iterations (i.e., the cost of violating timebox 
constraints) which can affect the overall cost of the 
project, either directly (i.e., delay penalties) or 
indirectly (i.e., financial cost due to late cash 
receipts or delays in revenue generation). However, 
the sensitivity analysis results on the parameters of 
the objective function of Eq. 12 can be used to 
establish optimum schedules at different levels of 
cost relations, with no need to have accurate 
estimates of the exact cost, as it is demonstrated in 
the following two examples.  

5.1 Trade-off between Project 
Duration Delay and Work-Breaks 

The first example demonstrates a trade-off analysis 
between the cost of delays in project completion and 
that of work-breaks. Delays are measured in time 
units as deviations from the earliest finish date of the 
project as it is set by the CPM or from any 
predefined delivery date set by the project manager 
and/or the final user. It is also assumed that 
intermediate delays in completing individual project 
iterations do not impose any additional cost to the 
project, and that the cost of work-breaks is the same 
for all stages. In this case, the objective function 
(Eq. 12) of the model is equivalent to:  
 Minimize c(UCN) + f(WB) or 

 Minimize c{UCN +( f/c)WB}                        (13) 
where c and f denote the daily cost of project delay 
and work-break, respectively.  

The results of the sensitivity analysis on the 
values of the coefficient f/c of the objective function 
in Eq. 13 set optimality ranges, associated with 
alternative optimum schedules as shown in Figure 7. 
For the specific project example three optimality 
ranges are identified: When the work-break unit cost 
ranges between zero and up to 50% of the delay cost 
(Range I), the optimum scheduling results in project 
duration of 48 days (minimum possible) with a 
maximum work-break time of 26 days. When the 
work-break unit cost ranges between 50% to 100% 
of the delay cost (Range II), it is more economical to 
let the project duration slip by 5 days in order to gain 
a reduction of 16 days in work-breaks. Finally, when 
the work-break cost exceeds the lateness cost (Range 
III), the optimum schedule is the one that reduces 
work-breaks to the minimum of 5 days, which 
results in extending the project duration by 16 days. 

 
Figure 7: Trade-off between project completion delays and 
work-breaks. 

5.2 Trade-off between Iteration 
Completion Delays 
and Work-Breaks 

In the second example, we examine the scenario 
where a penalty cost is associated with delivery 
delays in the completion of individual project 
iterations. Delivery delays/time box violations could 
be measured as deviations from the earliest finish 
dates of the project iterations (Figure 3) or from a 
promised time box specified by the project manager 
and/or the customer for each software release. The 
choice does not affect at all the range analysis that 
follow, since the cost coefficients of the objective 
function remain unchanged. For simplicity purposes 
we assume that the same penalty applies to delays in 
any timeboxed iteration. Also, as in the previous 
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case, the cost of work-breaks is assumed to be the 
same for all stages. In this case, the objective 
function (Eq. 12) of the LP model can be written as:  

Minimize .( ) .
N M

j j j i i
j=1 i=1

c UC D f WB− +∑ ∑ or 

Minimize ( )⎧ ⎫
+ −⎨ ⎬

⎩ ⎭
∑ ∑ ∑

N M N

j i j
j=1 i=1 j=1

fc UC WB c Dc    (14) 

Since the second part of Eq.14 is constant, the 
analysis to define ranges of optimality is based on 
the level of the f/c ratio. The results shown in Figure 
8 indicate 10 optimality ranges corresponding to 10 
different optimum solutions, according to the 
relation of the work-break to the iteration 
completion cost. A schedule which minimizes the 
work-break time (5 days) is optimum only when the 
associated work-break cost is at least 6 times the 
cost paid for iteration delays, and it is achieved by 
introducing a total of 108 days of delay in the 
completion of all iterations. As the relative size of 
the work-break to iteration delay cost drops, 
alternative solutions that allow for work-breaks may 
be more cost efficient.  

 
Figure 8: Trade-off between iteration completion delays 
and work-breaks. 

A notable break point in optimality conditions 
occurs at the point where work-break cost is 3 times 
the cost of delays. Under this level total delays in the 
iterations are kept below 18 days in total (average 3 
days per iteration) while above it, delays range from 
33 to 108 days (about 5,5 to 18 days per iteration). 
Figure 8 gives a graphical representation of the 
results. Any distinct segment of a cost coefficient 
ratio defined by the sensitivity analysis, corresponds 
to an optimal schedule associated with specific 
project duration, delays in iteration completion and 
work-breaks. The number of alternative optimum 
solutions, the trade-off brake points and levels 
depend on the constraints of the specific problem 
that define the set of all feasible schedules.  

6 CONCLUSIONS 

Project scheduling in iterative software projects 
which employ a timeboxing process model is 
generally not a single dimension decision process. A 
scheduling decision should take into account more 
than a single factor and, most of the times, trade-offs 
are required between iteration completion times 
(violations of time boxes), project duration and 
work-breaks for teams working in the same stages in 
successive project iterations. In this paper, we 
proposed a multi objective linear programming 
model to address these issues and overcome some 
simplifications of conventional timeboxing. In the 
proposed model, the planning duration of iterations 
is not a priori fixed, the durations of each stage in 
each respective time box may be not equal, 
precedence constraints between stages in each 
iteration are not simple sequential relationships, and, 
finally, it is possible to consider a wider range of 
software projects, where work discontinuities exist 
between stages in successive iterations. The model 
has the capacity to provide optimum schedules for 
iterative projects which follow timeboxing 
disciplines, reflecting not only single but multiple 
objectives and assists software project managers in 
selecting among alternative schedules based on the 
relative magnitude of different cost elements. In this 
sense, the presented model provides software 
managers with the capability to consider alternative 
schedules besides those defined by minimum 
duration or minimum work-break criterion.  

A fully integrated software implementation of 
the proposed approach in a model-based 
environment that supports the graphical 
representation of software development processes 
and the process managerial analysis as well 
(Gerogiannis et al., 2006) will enhance its 
applicability to real-world software projects. 
Although the model implementation, as it stands, 
can handle the problem formulation of various types 
of timing constraints, there are other issues that need 
further research. One such issue is the formal 
modeling of developers’ learning curves (Hanakawa 
et al., 2002) to consider measures of software 
productivity and estimates for projects progress. 
Another research area that we plan to consider is the 
risk level associated with the alternative scheduling 
decisions, as it is indicated by the slack time of the 
iteration stages and the probability of meeting the 
objectives set (software delivery times, work-breaks, 
etc.), since unexpected events in one stage or 
iteration (e.g., major changes in user requirements) 
may affect not only the duration of the project and 
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the iteration completion/delivery times but also the 
work continuity in project resources. Similarly, the 
use of simulation techniques could provide further 
insight on the stability of the alternative optimum 
solutions defined by the trade-off approach.  
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