
SPECIFICATION AND PROOF OF
LIVENESS PROPERTIES IN B EVENT SYSTEMS

Olfa Mosbahi and Jacques Jaray
LORIA, INRIA Lorraine, Nancy University, France

Keywords: Automated systems, Event B method, Liveness properties, Language TLA+, Verification.

Abstract: In this paper, we give a framework for defining an extension to the event B method. The event B method
allows us to state only invariance properties, but in some applications such as automated or distributed systems,
fairness and eventuality properties must also be considered. We first extend the expressiveness of the event B
method to deal with the specification of these properties. Then, we give a semantics of this extended syntax
over traces, in the same spirit as the temporal logic of actions TLA does. Finally, we give verification rules
of these properties. We denote by temporal B model, the B model extended with liveness properties. We
illustrate our method on a case study related to automated system.

1 INTRODUCTION

The paper deals with liveness properties of automated
systems. In such systems, we distinguish a software
part : thecontroller and anoperative partformed by
a physical device and its environment.

The event B method provides us with techniques
and tools for specifying, refining, verifying invariant
properties and implementing systems. B is not well
suited to deal with liveness properties. We define an
extension of B in order to capture liveness properties.
We describe the syntax of the extension and define the
semantics in terms of traces in the same spirit of the
language TLA+. We also give the verification rules of
these properties.

Several related works concern B extensions for
capturing and proving liveness temporal properties. J-
R. Abrial and L. Mussat in (Abrial and Mussat, 1998)
proposed an extension consisting in a dynamic invari-
ant clause containing linear temporal logic formulae
(LTL). In order to allow verification by theorem prov-
ing, the user has to provide the model with decreas-
ing functions, a variant and a loop invariant. Such
items are necessary for the prover but are indeed not
part of the specification. Furthermore, finding vari-
ant and loop invariant is not an easy task. D.Bert
and R.Barradas (Barradas and Bert, 2002) have pro-
posed a method for the specification and proof of live-
ness properties in B event systems under fairness as-
sumptions. They give proof obligations in order to
prove basic progress properties in B event systems un-

der two types of assumptions : minimal progress and
weak fairness. They define proof obligations in terms
of weakest preconditions, which allow us to prove ba-
sic liveness properties as usual B proof obligations.
They suggest the use of UNITY ”Leadsto” operator to
specify more general liveness properties. The seman-
tics of these properties is defined in terms ofweakest
preconditionsbut in our work, we give a semantics in
terms oftraces.

The paper is organized as follows : section 2
presents an overview of the event B method, section 3
presents an overview of the language TLA+, section 4
gives a description of our proposal using a case study
: we give the syntax, the semantics of liveness proper-
ties and then the verification rules necessary to prove
these properties under fairness assumptions. Finally,
section 5 ends with a conclusion and future work.

2 OVERVIEW OF THE EVENT B
METHOD

The event B method (Abrial, 2003) is based on the B
notation (Abrial, 1996). It extends the methodologi-
cal scope of basic concepts such as set-theoretical no-
tations and generalized substitutions in order to take
into account the idea offormal models. Roughly
speaking, a formal model is characterized by a (finite)
list x of state variablespossibly modified by a (finite)
list of events; an invariantI(x) states some properties

25
Mosbahi O. and Jaray J. (2007).
SPECIFICATION AND PROOF OF LIVENESS PROPERTIES IN B EVENT SYSTEMS.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 25-34
DOI: 10.5220/0001342400250034
Copyright c© SciTePress

that must always be satisfied by the variablesx and
maintained by the activation of the events. General-
ized substitutions provide a way to express the trans-
formations of the values of the state variables of a for-
mal model. An event consists of two parts : aguard
(denotedgrd) and an action. A guard is a predicate
built from the state variables, and anaction is a gen-
eralized substitution (denotedGS).

An event can take one of the forms shown in the
table 1. LetBA(x,x’)be the before-after predicate as-
sociated with each event shape. This predicate de-
scribes the event as a logical predicate expressing the
relationship linking the values of the state variables
just before(x) and just after(x′) the event ”execu-
tion”. In the table below,x denotes a vector built on
the set of state variables of the model. In the gen-
eral substitutionx : p(x0,x), x denotes thenew value
of the vector, whereasx0 denotes itsold valueandt
represents a vector of distinct local variables.

Table 1: Event forms.

Event Before-after Guard
Predicate BA(x, x’)

BEGIN P(x,x′) TRUE
x : P(x0,x)
END;
SELECT G(x) G(x)∧Q(x,x′) G(x)
THEN x: Q(x0,x)
END;
ANY t ∃t.(G(t,x) ∃t.G(t,x)
WHERE G(t,x) ∧R(x,x′, t))
THEN x: R(x0,x, t)
END;

Proof obligations are associated to events and state
that the invariant conditionI(x) is preserved. We next
give the general rule to be proved. It follows immedi-
ately from the very definition of the before-after pred-
icate,BA(x,x′) of each event :

I(x)∧BA(x,x′) ⇒ I(x′)

The B model has the following form :

MODEL 〈name〉
SETS〈sets〉
CONSTANTS 〈constants〉
PROPERTIES 〈properties of sets and constants〉
VARIABLES 〈variables x〉
INVARIANT 〈invariants I(x)〉
ASSERTIONS 〈A(x)〉
INITIALISATION 〈initialization of variables〉
EVENTS 〈events〉
END

An abstract B model has a name; the clauseSETS
contains definitions of sets; the clauseCONSTANTS
allows us to introduce information related to the
mathematical structure. The clausePROPERTIES

contains the effective definitions of constants. The
clauseASSERTIONS contains the list of theorems
to be discharged by the proof engine. The clause
VARIABLES contains a (finite) list of state vari-
ables possibly modified by a (finite) list of events; the
clauseINVARIANT states some properties that must
always be satisfied by the variables and maintained
by the activation of the events. The clauseEVENTS
contains all the system events which preserve the set
of invariants.

2.1 Refinement

Construction by refinement (Back and v. Wright,
1998; Back and K-Sere, 1989) is a technique suitable
for the development of complex systems. The refine-
ment of a formal model allows us to enrich a model
in a step by step approach. It is used to transform an
abstract model into a more concrete version by modi-
fying the state description (Spivey, 1988). This is es-
sentially done by extending the list of state variables,
refining each abstract event into a corresponding con-
crete version, and adding new events.

The essence of the refinement relationship is that
it preserves already proved system properties. The in-
variant of an abstract model plays a central role for
deriving safety properties and our method focuses on
the incremental discovery of the invariant; the goal
is to obtain a formal statement of properties through
the final invariant of the last refined abstract model.
Atelier B (ClearSy, 2002), the toolkit supporting the
B method, generates the proof obligations associated
with a model or a refinement. It also provides au-
tomatic and iterative proof procedures to discharge
these proof obligations.

2.2 Example : A Parcel Sorting Device

In this section, we present an example of reactive sys-
tem : a parcel sorting device (Jaray and A.Mahjoub,
1996) which will be taken to illustrate our proposed
approach. We just give the abstract model of the sys-
tem and not the refinement steps. The problem is to
sort parcels into baskets according to an address writ-
ten on the parcel. In order to achieve such a sort-
ing function we are provided with a device made of
a feeder connected to the root of a binary tree made
of switches and pipes as shown in the figure 1. The
switches are the nodes of the tree, pipes are the edges
and baskets are the leaves. A parcel, thanks to gravity,
can slide down through switches and pipes to reach a
basket.

A switch is connected to an entry pipe and two
exit pipes, a parcel crossing the switch is directed to

ICSOFT 2007 - International Conference on Software and Data Technologies

26

Feeder
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 Baskets

Figure 1: Router.

an exit pipe depending on the switch position. The
feeder releases one parcel at a time in the router, the
feeder contains a device to read the address of the par-
cel to be released. When released, a parcel enters
a first switch (the root of the binary tree) and slides
down the router to reach a basket. The controller can
activate the feeder and change the switches position.
For safety reasons, it is required that switch change
should not occur when a parcel is crossing it. In order
to check this condition, sensors are placed at the entry
and the exits of each switch.

We consider a simplified version of the system
with only safety properties to illustrate a specification
with the event B method and we will deal in the fol-
lowing with liveness properties (eventuality and fair-
ness) to explain our approach.

Abstract Model of the System

the abstract model of the system is given in the figure
2.

1 2 3 4 5 6 7 8 Baskets

channel

Feeder

Figure 2: Router.

The sorting device.The sorting device consists of a
feeder and a sorting layout. The feeder has two func-
tions: selection of the next parcel to introduce into the
sorting layout and opening the gate (releasing a par-
cel in the sorting layout). We introduce the eventsse-
lect andreleaseto capture the two functions. In order
to produce the abstract model of the sorting layout,
we have to notice that a given state of the switches

forms achannellinking the entrance to a unique sort-
ing basket. A basket is an element of a set named
Baskets. Channels and sorting baskets are in a one
to one correspondence. Therefore, the abstract model
of the sorting device can be reduced to a single vari-
ablechanneltaking the value of the sorting basket it
leads to, namely a value in the setBaskets. Thechan-
nel value is changed by the eventset channel. It is
worth noticing that the abstraction forces a ”sequen-
tial functioning” of the sorting device, i.e. the value
of the channel remains unchanged as long as the par-
cel released in the sorting device has not reached a
sorting basket.
Parcels. Parcels, as part of the environment, are rep-
resented as elements of a set we namePARCELS. We
use a total function (adr) from PARCELSto the inter-
val Basketsto refer to the parcels address. We give
the status ”arrived” to the parcel which has reached
a sorting basket. The variable (arrived) is a function
from PARCELSto Baskets. The goal of the sorting
system is to decrease the set of the parcels to sort. The
variablesorted represents the set of sorted parcels.
The remaining parcels are defined by the expression
PARCELS - sortednamedUNSORTED. As pe is un-
defined when the sorting device is empty, we have in-
troduced a setPPARCELSof which PARCELSis a
proper subset;pe is an element ofPPARCELSand
assignment of any value inPPARCELS - PARCELS
stands for ”undefined”. The expressionPPARCELS -
PARCELSwill be referred asNOPARCELS. The se-
lection of a parcel is an event which may be activated
once the device is free and the variablepe is unde-
fined, which means it does not exist a parcel being
sorted.
Moving parcels. In our abstraction a parcel takes no
time to travel from the feeder to a basket. A parcel
arrives in the basket to which the channel leads up.
When the eventcrossparcel occurs, the current par-
cel sorting is finished and then, of course, the current
parcel becomes undefined.
The Controller. The controller has to ensure right
parcel routing. Two events are added for the con-
troller : Set channel and Release. The event
Set channelassigns to channel the value ofadr(pe).
The eventReleasechanges the state of the sorting de-
vice from free to busy. The model of the automated
system is presented in Figure 3.
Simulation of the B model with ProB.We have used
ProB (Leuschel and Butler, 2003), witch is an simu-
lator and model checker for the (B/Event-B) Method.
It allows fully automatic animation of many B spec-
ifications, and can be used to systematically check a
specification for errors. ProB’s animation facilities al-
low users to gain confidence in their specifications,

SPECIFICATION AND PROOF OF LIVENESS PROPERTIES IN B EVENT SYSTEMS

27

MODEL Parcel Sorting
SETS PPARCELS; SortingState= {free , busy}

CONSTANTS PARCELS, adr, Baskets

PROPERTIES
PARCELS⊂ PPARCELS∧ PARCELS6= ∅ ∧
Baskets6= ∅ ∧ adr∈ PARCELS→ Baskets

VARIABLES
arrived, channel, sorting, pe, sorted, ready to sort

INVARIANT
arrived∈ PARCELS 7→ Baskets∧ channel∈ Baskets
∧
pe∈ PPARCELS∧ sorting∈ SortingState∧
ready to sort∈ BOOL∧ sorted⊆ PARCELS∧
(sorting = busy⇒ channel = adr(pe))∧
(sorting = busy⇒¬ ready to sort)∧
(ready to sort⇒ channel = adr(pe))∧
(ready to sort⇒ pe∈ PARCELS)∧
∀p.(p ∈ PARCELS∧ p ∈ dom(arrived) ⇒
arrived(p) = adr(p))
DEFINITIONS
UNSORTED== PARCELS- sorted;
NOPARCELS== PPARCELS- PARCELS

INITIALISATION
arrived := {} || channel :∈ Baskets|| sorting := free
||
pe :∈ NOPARCELS|| sorted :={} ||
ready to sort := FALSE
EVENTS
selectparcel = ANY p Where p∈ UNSORTED∧

pe∈ NOPARCELS∧ sorting = free
THEN pe := p
END;

set channel = SELECT sorting = free ∧ pe ∈
PARCELS

∧ ¬ ready to sort
THEN channel := adr(pe)||
ready to sort := TRUE
END;

release = SELECT sorting = free ∧ pe ∈
PARCELS∧

ready to sort
THEN sorting := busy||
ready to sort := FALSE
END;

crossparcel = SELECT sorting = busy
THEN arrived(pe) := channel ||
sorted := sorted ∪ { pe} ||
pe :∈ NOPARCELS || sorting :=

free
END

END

Figure 3: Abstract model of the sorting device.

and unlike the animator provided by the B-Toolkit,
the user does not have to guess the right values for the
operation arguments or choice variables. ProB con-

tains a model checker and a constraint-based checker,
both of which can be used to detect various errors in
B specifications. ProB enables users to uncover errors
that are not easily discovered by existing tools. Fig-
ure 4, shows the simulation of the abstract model of
the system.
Verification of the B model . All generated proof
obligations are verified with the B clickn Prove tool.

setup_constants({q,r,s},{e,f,g,h},{(q,e),(r,f),(s,g)})

initialise_machine({},e,free,p,{},FALSE)

Select_parcel

set_channel

release

cross_parcel

PARCELS={q,r,s},Baskets={e,f,g,h},adr(q,e),
adr(r,f),adr(s,g)

arrived={},channel=e,sorting=free,
pe=p,sorted={}

arrived={},channel=e,sorting=free,
pe=q,sorted={}

arrived={},channel=e,sorting=free,
pe=q,sorted={},ready_to_sort

arrived={},channel=e,sorting=busy,
pe=q,sorted={}

channel=e,sorting=free,pe=p,
sorted={q},arrived(q,e)

Figure 4: Model checking of the router abstract model.

Requirement of liveness properties.In our example,
we need to consider the dynamics of the system. Our
model must take into account the following properties

1. Every parcel introduced in the entry eventually
reaches one of the baskets, this property is de-
scribed with :
∀p.(p∈UNSORTED⇒♦arrived(p)∈Baskets)

2. Every parcel introduced in the entry must reach
the basket corresponding to its destination ad-
dress, this property is described with :
∀p.(p∈UNSORTED) arrived(p) = adr(p))

3. Weak fairness conditions on the events is assumed
: WF(select parcel)∧WF(cross parcel)∧
WF(set channel)∧WF(release)

These properties can not be specified in the clause
INVARIANT. We need to extend the expressivity of
event B to take into account such properties.

ICSOFT 2007 - International Conference on Software and Data Technologies

28

3 OVERVIEW OF THE
LANGUAGE TLA +

TLA+ is a language intended for the high level speci-
fication of reactive, distributed, and in particular asyn-
chronous systems. It combines the linear-time tempo-
ral logic of actions TLA (Lamport, 1994), and mathe-
matical set theory. The language has a mechanism for
structuring in the form of modules, either by exten-
sion, or by instance. The semantics of TLA is based
on behaviors of state variables. It can be viewed as a
logic built in an incremental way in three stages :

1. predicates whose semantics is based on states.

2. actions whose semantics is based on pairs of
states.

3. temporal formulas of actions whose semantics is
based on state behaviors of variables.

A TLA specification of a system denoted by
Spec(S) looks like : Init ∧�[Next]x∧L where :

1. Init is the predicate which specifies initial states,

2. x is the list of all state variables and�[Next]x
means that either two consecutive states are equal
onx,x′ = x (stuttering), orNext is an action (a re-
lation) that describes the next-state relation, usu-
ally written as a disjunction of more elementary
actions,

3. L is a fairness assumption (strong or weak) on
actions. WFunprimedvar(S)(S) defines the condi-
tion of weak fairness over the system S and
SFunprimedvar(S)(S) defines the condition of strong
fairness over the system S, whereprimed var(S)
are primed occurrences of the system variablesx
and as is conventional, a primed occurrencev′ of
a state variablev denotes the value ofv in the
state following the transition described byNext.
unprimedvar(S) are unprimed occurrences of the
system variablesx and an unprimed occurrence
denotes the value of a variablev in the state be-
fore the transition.

In the sequel we will focus on the extension of the
event B method with liveness properties, their syntax,
their semantics and verification rules.

4 ASSIGNING TEMPORAL
MEANING TO B MODELS

This section defines an extension to event B in order
to deal with liveness properties. The most important

construction we need is the”leads to” eventuality op-
erator as in TLA and Unity which expresses require-
ments on behaviors, i.e. sequence of states. In order
to assess eventuality properties we must state assump-
tions on the fair occurrence of events. Such assump-
tions are stated using the TLA operatorsWF andSF.
WF(e) assumes that the evente is weakly fair, i.e. the
eventeoccurs infinitely often provided that it is even-
tually always enabled.SF(e) assumes that the evente
is strongly fair, i.e. the evente occurs infinitely often
provided that it is infinitely often enabled.

We indeed integrate some pieces of the language
TLA+ into the event B models and we deal with proof
obligations of ”temporal” B models.

In the following, we start with the syntax of the
extension, then we give a semantics and verification
rules of liveness properties over traces as it is done in
TLA+. We suggest the use of TLA+ operators because
the two methods are very close with respect to their
foundations.

4.1 Syntax of the Extension

In order to establish liveness properties we must as-
sume some progress conditions on the system. As
long as we have to verify that an event system sat-
isfies safety properties, it is sufficient to refer to a pair
of states (before and after states of a triggering event).
But in order to prove temporal properties we need
to introducebehaviors(sequences of states) starting
from the initial state and where two consecutive states
si andsi+1 are such that some event enabled insi and
leads to the statesi+1.

Before defining the syntax of formulae which ex-
tends B expressivity, we start with some definitions.
State and rigid variables. The state of a system is
composed of a denumerable set of flexible or state
variables (V). Let (X) be a denumerable set of rigid
variables. These variables are not modified by pro-
gram transitions and hence keep the initially chosen
value during a program run (logical constant). A state
is a valuation of flexible variables.
Terms and States.A term t is defined recursively as
follows :
t ::= c | x | f (t1, ..., tn) wherec is a constant,x is a
variable (x ∈ [V ∪X]) , t1, ..., tn are terms andf is a
function symbol with arityn.
Atomic propositions. An atomic propositionap is a
formula of the form :
ap ::= p(t1, ..., tn) wherep is a predicate symbol with
arity n andt1, ..., tn are terms.
State predicates. A state predicatesp is a formula
defined by the following grammar
sp::= ap | ¬sp | sp∨ sp | sp∧ sp | sp⇒ sp | sp⇔

SPECIFICATION AND PROOF OF LIVENESS PROPERTIES IN B EVENT SYSTEMS

29

sp| ∃x sp| ∀x sp.

In our extension, we introduce transition and live-
ness formulae.
Transition formulae. A transition formula describes
state transitions. A transition formulaac is a formula
of the form :

ac ::= GS(e) | [e]sp | 〈e〉sp wheree is an event,
GS(e) is its generalized substitution andsp is a state
predicate.
Safety properties. Safety properties are formulae of
the form
F ::= �sp | �(sp⇒�sp) , wheresp is a state predi-
cate.
Liveness properties. Liveness properties (fairness
and eventuality) are formulae defined as follows:

- Eventuality properties are expressed with formulae
of the form :
F G (F leads to G) defined as�(F ⇒ ♦G)
and means that everyF will be followed by G,
whereF andG are formulae of the form :F ::=
sp| ♦F | �F | WF(e)|SF(e).
Wheresp is a state predicate,WF(e) andSF(e)
are respectively the weak and strong fairness of
the evente.
These properties are added in the clause EVEN-
TUALITY.

- Fairness properties are expressed with formulae of
the form :

- WF(e) defined as♦�grd(e) ⇒�♦GS(e). It is
the weak fairness condition of an evente and
it means that the evente occurs infinitely often
provided that it is eventually always enabled,

- SF(e) defined as�♦grd(e) ⇒ �♦GS(e). It is
the strong fairness condition of an evente and
it means that the evente occurs infinitely often
provided that it is infinitely often enabled,

Where :

• e is a B event,

• grd(e) is the guard of this evente(state predicate),

• GS(e) is the generalized substitution of the event
e. It is a transition formula containing both
primed and unprimed occurrences of states vari-
ables, such as a before-after predicate.

These properties are added in the clause FAIRNESS.

4.2 Semantics of the Extension

In our extension, we deal with properties over state se-
quences (fairness and eventuality properties). This is
why we need a semantics over sequence of states and

have to explain how we can view events as a relation
over primed and unprimed variables and we will use
this point to find the extension of the event B method.
A systemSis modelled as a set of possible events trig-
gering actions, when guards are true. An evente as it
was shown in the table 1, is defined by a guard de-
notedgrd(e) (condition for triggering or enabledness
condition) and by a relation over a set of flexible vari-
ables (V) denotedGS(e) (relation stating the transfor-
mation of variables). According a TLA+ module, we
consider three kinds of properties :

- State propertieswhich denote properties on states
of the systemS and are interpreted over states.
These properties are state predicates,

- Relational propertieswhich denote relations onS
between pairs of states, which we call transition
formulae,

- Temporal Propertiesstate properties over traces and
use state properties, relational properties and tem-
poral operators (�, ♦, , ...), which we call live-
ness properties.

Properties are interpreted over traces (sequences
of states). We introduce notations for characterizing
systems :

- V is the set of state variables of the systemS, v is a
state variable;x is the current value ofv andx′ is
the next value ofv. Primed Var(S) = {x′|v∈V}
andUnprimedVar(S) = {x|v∈V}.

- Init (S) specifies the initial values of state variables
of the systemS.

- Events(S) specifies the set of possible events ofS;
it means that we list the possible events defined in
the figure 1. An event e is defined as follows :

e, grd(e) thenGS(e)

- Next(S) is a formula over primed and unprimed
variables ofS corresponding to the relation over
States(S), namely→, whereStates(S) is the set
of states of the systemS. Next has the following
form :
Next(S), R(e1)(x,x′)∨∨R(en)(x,x′)
whereR(ei)(x,x′) is a relation corresponding to
one of the event forms presented in the table 1.
R(ei)(x,x′) , P(x,x′) ∨ (G(x) ∧ P(x,x′)) ∨
(∃t.(G(t,x)∧P(x,x′, t)))

- → is a relation over States(S) simulating the execu-
tion of the systemS.

- Invariants(S) is a set of properties over States(S)
invariant forS. ϕ is in Invariants(S), if

1. Init (S) ⇒ ϕ

ICSOFT 2007 - International Conference on Software and Data Technologies

30

2. ∀ s0,si ∈ States(S) : s0,ξ |= Init (S)∧ (s0 →∗

si) ⇒ si ,ξ |= ϕ
- Traces(S) is the set of traces (state sequences) gen-

erated from Init(S) using→. A trace is denoted
by σ = s0s1.....si , and satisfying the following
constraints :

1. s0,ξ |= Init (S) (the initial states0 satisfies the
initial condition),

2. ∀i ∈ N : (si → si+1)∨ (si = si+1) any two suc-
cessive states (si ,si+1) either satisfy the before-
after predicateBAe(x,x′) for some evente and
some variablesx, or agree on the values of all
system variables (called stuttering steps)

Let σ ∈ Traces(S), A propertyϕ over states se-
quence of the systemS is a state property, a relational
property or a temporal property; the semantics over
traces unified semantics over states and pairs of states
as follows :

1. a state propertyϕ is a trace property as follows :
σ,ξ |= ϕ, if s0,ξ |= ϕ.

2. a relational propertyϕ is also a trace property by
extending the semantics over pairs of states into
a semantics over traces as follows :σ,ξ |= ϕ, if
(s0,s1),ξ |= ϕ.

Temporal properties contains state properties,
relational properties and temporal combination of
these properties. Our extension is the same one than
TLA+ and a systemS is specified by the following
temporal expression :

Specification(S) , ∧ Init(S)
∧�[Next(S)]<unprimedvar(S)>

∧WFunprimedvar(S)(S)
∧SFunprimedvar(S)(S)

Where:
Init(S) states initial conditions,
�[Next(S)]<unprimedvar(S)> states how traces are
built,
WFunprimedvar(S)(S) defines the condition of weak
fairness over the systemSand
SFunprimedvar(S)(S) defines the condition of strong
fairness over the systemS.

WFunprimedvar(S)(S) and SFunprimedvar(S)(S)are
defined as follows :

WFunprimedvar(S)(S) ,V
E∈WF Events(S)WFunprimedvar(S)(E)

and
SFunprimedvar(S)(S) ,V

E∈SF Events(S) SFunprimedvar(S)(E)

WhereWF Events(S) is the set of weakly fair
events andSF Events(S) is the set of strongly fair
events. WFunprimedvar(S)(E) is the weak fairness
associated to the eventE and SFunprimedvar(S)(E) is
the strong fairness associated to the eventE. Each
event is associated with a fairness condition which
will be a weak or strong or undefined.

In the event B,BAe(x,x′) is the before-after pred-
icate for an event; this is a first-order formula built
from the constants declared for the system specifi-
cation, as well as primed and unprimed occurrences
of the system variablesV. The before-after predi-
cateBAe(x,x′) in B method is interpreted by the for-
mula Next in TLA+. In TLA+, or an actione, the
enabled conditionEnabled(e) is defined by existen-
tially quantifying over the primed occurrences of the
state variables; thus, the state predicateEnabled(e) is
true of those states that have a successor state related
by an occurrence of the evente.

Enabled(e), ∃x′ : BAe(x,x′).
The guard grd(e) in B is interpreted by the

conditionEnabled(e) in TLA+.

We can summarize the semantics of temporal B
notations over traces by the following equivalences in
TLA+:

grd(e) , Enabled(e)
BAe , Next

Interpretation of formulae

Let σ = s0s1... be a behavior, i.e. a sequence of
states andξ a valuation of the rigid variables ofS.

Let [|x|]ξsi be the value of the variablex in the state

si , [| f (t1, ..., tn)|]
ξ
si gives the semantics of the term

f (t1, ..., tn) in the statesi .

[|x|]ξsi =

{

ξ(x) where x∈ X;
si(x) where x∈V.

[| f (t1, ..., tn)|]
ξ
si = [| f |]([|t1|]

ξ
si ,, [|tn|]

ξ
si)

In the following, we denote bysi ,ξ |= sp the
satisfaction of the state predicatesp in the statesi of
a transition system and byσ,ξ |= F the satisfaction
of the temporal formulaF over a traceσ ∈ Traces(S).

Proposition formulae
si ,ξ |= ap iff apholds in the statesi

State formulae
si ,ξ |= sp iff spholds in the statesi

SPECIFICATION AND PROOF OF LIVENESS PROPERTIES IN B EVENT SYSTEMS

31

Boolean formulae
si ,ξ |= ¬sp iff si ,ξ |= sp is false
si ,ξ |= sp1∧sp2 iff si ,ξ |= sp1 andsi ,ξ |= sp2
si ,ξ |= sp1∨sp2 iff si ,ξ |= sp1 or si ,ξ |= sp2
si ,ξ |= sp1 ⇒ sp2 iff si ,ξ |= ¬sp1 or

(si ,ξ |= sp1 andsi ,ξ |= sp2)
si ,ξ |= sp1 ⇔ sp2 iff si ,ξ |= sp1 ⇒ sp2 and

si ,ξ |= sp2 ⇒ sp1
si ,ξ |= (∃x) sp iff (∃x) ∈V : si ,ξ |= sp
si ,ξ |= (∀x) sp iff (∀x) ∈V : si ,ξ |= sp

Transition formulae

(s,s′),ξ |= GS(e) iff s
e
→ s′

s,ξ |= [e]sp′ iff for every execution of the
evente, if s

e
→ s′ then the states′,ξ |= sp′

This formula is satisfied by a state which evolves
to a states′ satisfyingsp′ for every execution of the
evente.

si ,ξ |= 〈e〉sp′ iff it exists an execution of the
evente, such that ifs

e
→ s′ then the states′,ξ |= sp′

This formula is satisfied by a state which can
evolve to a state satisfyingsp′ by the execution of the
evente.

Temporal formulae
We interpret a temporal formula on behaviors. In

the definitions below,σ|i ,ξ |= F means that formula
F holds of the suffix ofσ from point i onwards.

σ,ξ |=�F iff σ|i ,ξ |= F for all i ∈ N

The formula�F asserts that F is true at all times
during the behaviorσ.

Leads-to property F G
This formula asserts that every suffix satisfying

the temporal propertyF is followed by some suffix
satisfying the temporal propertyG.

σ,ξ |= F G iff for all i ∈ N, if σ|i ,ξ |= F
then σ| j ,ξ |= G for somej ≥ i

F G≡�(F ⇒ ♦G) where♦G = ¬�¬G

Weak fairness property
A behavior is weakly fair for some evente iff e

occurs infinitely often provided that it is eventually
always enabled(WF(e) ≡ ♦� grd(e) ⇒�♦GS(e)).

σ,ξ |= WF(e) iff it exists j ∈ N such that for
all i ≥ j, σ|i ,ξ |= grd(e) then for alln∈ N, it exists
m∈ N such that for allk≥ n+m, (si ,sk),ξ |= GS(e)

Strong fairness property
A behavior is strongly fair for some evente iff

e occurs infinitely often provided that it is infinitely
often enabled(SF(e) ≡�♦ grd(e) ⇒�♦GS(e)).

σ,ξ |= SF(e) iff for all i ∈ N , it exists
j ∈ N such that for alll ≥ i + j, σ|l ,ξ |= grd(e)
then for all n ∈ N, it existsm∈ N such that for all
k≥ n+m, (si ,sk),ξ |= GS(e)

4.3 Verification Rules of Liveness
Properties

In this section, we give verification rules (WF, SFand
LATTICE) to prove liveness properties under fairness
assumptions.
Under weak fairness
Let S be an extended B event system and
WFEVENTS(S) is the set of events of the system
Ssatisfying the weak fair assumption. Let[e]P be the
weakest pre-condition which ensures thatP is true
after the execution of the evente. Let 〈e〉P(¬[e]¬P)
be the conjugate weakest pre-condition, i.e. the state
from which it is possible for an evente to ensureP.
The following rule is used to prove a leads-to formula
under a weak fairness assumption.

WF.

I ∧P∧¬Q⇒ [e](P∨Q) f or all event e o f S
it exists an event e o f S where:

I ∧P∧¬Q⇒ 〈e〉 true∧ [e]Q
e∈WFEVENTS(S)

S|= P Q

In this rule, P and Q are state predicates,I is
the invariant of the B event systemS. By the first
premise, any successor of a state satisfyingP has
to satisfyP or Q, so P must hold for as long asQ
has not been true. By the second premise, it exists a
successor of a state satisfyingP must satisfyQ and
ensures that in every state, the evente is enabled
(〈e〉 true means the feasibility condition of the event
e), and so the assumption of weak fairness ensures
that e eventually occurs, unlessQ has become true
before. Finally, the third premise ensures thate is an
event for which weak fairness is assumed.

Proof of a liveness property under weak fairness.
To see why the rule is correct, assume that
σ = s0,s1, ...si , ... is a behavior satisfying
�I ∧WFEVENTS(S), and thatP holds in si . We
have to show thatQ holds of some statessj with j ≥
i. Let s0 be the initial state andsi satisfiesP. Suppose
that no next state satisfiesQ, so all next states must
satisfyP. By the second premise, it exists a successor

ICSOFT 2007 - International Conference on Software and Data Technologies

32

of a state satisfyingP in which an evente is enabled
and always its execution carry out in a state satisfying
Q (contradiction). So, from a statesi satisfyingP,
we can reach a statesj(j ≥ i) satisfyingQ with the
execution of an eventeunder weak fairness.

Under strong fairness
Let Sbe a B event system andSFEVENTS(S) is the set
of strong fair events. As similar to the previous rule,
the following rule is used to prove a leads-to formula
from a strong fairness assumption.

SF.

I ∧P∧¬Q⇒ [e](P∨Q) f or all event e o f S
it exists an event e o f S where:

I ∧P∧¬Q⇒ [e]Q
S|=�(I ∧P∧¬Q) ⇒ ♦grd (e)
e∈ SFEVENTS(S)

S|= P Q

In this rule, P and Q are state predicates, I is
again an invariant,e is an event for which strong
fairness is assumed. We assume thatσ is a behavior
satisfying�I ∧ SF(e) and that P holds of a state
si . We have to show thatQ holds of somesj with
j ≥ i. By the first premise, any successor of a state
satisfyingP has to satisfyP or Q. By the second
premise, it exists an evente∈ S where its execution
from a state satisfyingp evolves the system to a state
satisfyingQ. The third premise ensures that in all
of these states, the evente is enabled, and so the
assumption of strong fairness ensures that eventually
e occurs, unlessQ has become true before, in which
case we are done. Finally, the last premise ensures
thate is an event for which strong fairness is assumed.

Using LATTICE rule
The Lattice rule is used to verify complex liveness
properties using well-founded relations.(S,≺) is
a binary relation such that there does not exist an
infinite descending chainx1 ≺ x2, ... of elements
xi ∈ S. FandG are temporal formulae.

LATTICE.

(S,≺) is a well− f ounded relation over S
∀x∈ S: F(x) G∨ (∃y∈ S: (y≺ x)∧F(y))

(∃x∈ S: F(x)) G (x not f ree in G)

In this rule,x andy are rigid variables such thatx
does not occur inG andy does not occur inF . The
second hypothesis of the rule is itself a temporal for-
mula that requires that every occurrence ofF , for any
valuex∈ S, be followed either by an occurrence ofG,
or again by someF , for some smaller value y. Be-
cause the first hypothesis ensures that there cannot be
an infinite descending chain of values in S, eventu-
ally G must become true. This rule allows us to de-
rive liveness properties by induction over some well-

founded ordering.
Other verification rules

P Q Q R
P R

(trans)
P Q R Q

P∨R Q
(dis j)

P⇒ Q
P Q

(dedu)
P Q

(∃x : P(x)) (∃x : Q(x))
(exists)

These rules can be used to prove complexLeadsto
formulas.

Application to the example.
We try now to prove the following property :
∀p.(p∈UNSORTED) arrived(p) = adr(p)).

Let P ≡ ∀p.(p ∈ UNSORTED), Q ≡
arrived(p) = adr(p) and I be the invariant of
the systemS. Let e be an event ofS. We have :
I ∧ P∧ ¬Q ⇒ [e](P∨ Q) f or all event e o f S.
With the event cross parcel, we have :
I ∧P∧¬Q ⇒ 〈cross parcel〉 true∧ [cross parcel]Q
ande∈WFEVENTS(S). So by applying the ruleWF,
we haveS|= P Q.

5 CONCLUSION

In this paper, we have built an extension of the event
B method to deal with fairness and eventuality prop-
erties. We have proposed a semantics of the extension
over traces, in the same spirit as TLA+ does and we
have given verification rules in the axiomatic of the
event B method.

In future work, we plan to define new required
proof obligations. Moreover, the B prover may not be
enough powerful for proving new proof obligations.
Future work will explore also, the question of the re-
finement and the properties of refinement, within the
extended language.

ACKNOWLEDGEMENTS

Thanks to Stephan Merz for comments on an earlier
draft of this paper.

REFERENCES

Abrial, J.-R. (1996). Extending B without changing it
(for developing distributed systems). In Habrias, H.,
editor, Proceedings of the 1st Conference on the B
method, pages 169–191.

Abrial, J.-R. (2003). B# : Toward a synthesis between Z and
B. In Bert, D., Bowen, J. P., King, S., and Waldén, M.,
editors,ZB’2003 – Formal Specification and Devel-
opment in Z and B, volume 2651 ofLecture Notes in

SPECIFICATION AND PROOF OF LIVENESS PROPERTIES IN B EVENT SYSTEMS

33

Computer Science (Springer-Verlag), pages 168–177,
Turku, Finland. Springer.

Abrial, J.-R. and Mussat, L. (1998). Introducing dynamic
constraints in B. In Bert, D., editor,B’98 : The 2nd
International B Conference, volume 1393 ofLecture
Notes in Computer Science (Springer-Verlag), pages
83–128, Montpellier. Springer Verlag.

Back, R.-J. and K-Sere (1989). Stepwise refinement of ac-
tion systems. InMathematics of Program Construc-
tion., pages 115–138, Berlin - Heidelberg - New York.
Springer.

Back, R.-J. and v. Wright, J. (1998).Refinement Calculus:
A Systematic Introduction. Graduate Texts in Com-
puter Science. Springer-Verlag.

Barradas, H. R. and Bert, D. (2002). Specification and proof
of liveness properties under fairness assumptions in B
event systems. InIFM, pages 360–379.

ClearSy (2002). Atelier b. Technical Note Version 3.6, Aix-
en-Provence(F).

Jaray, J. and A.Mahjoub (1996). Une mthode itrative de
construction d’un modle de systme ractif .TSI, 15. .

Lamport, L. (1994). The temporal logic of actions.ACM
Transactions on Programming Languages and Sys-
tems, 16(3):872–923.

Leuschel, M. and Butler, M. (2003). ProB: A model checker
for B. In Araki, K., Gnesi, S., and Mandrioli, D., edi-
tors,FME 2003: Formal Methods, LNCS 2805, pages
855–874. Springer-Verlag.

Spivey, J.-M. (1988). Understanding Z, A Specification
Language and its Formal Semantics.Tracts in The-
oretical Computer Science, 3. Cambridge University
Press.

ICSOFT 2007 - International Conference on Software and Data Technologies

34

