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Abstract: As currently implemented by most data mapping systems, linguistic matching often boils down to string
comparison or to a synonym look-up in a dictionary. But these solutions have proved to be inefficient for
dealing with highly heterogeneous data sources. To cope with data source heterogeneity more efficiently, we
introduce INDIGO, a system which computes semantic matching by taking into account data sources’ context.
The distinctive feature of INDIGO consists in enriching data sources with semantic information extracted
from their individual development artifacts before mapping them. As explained in this article, experiments
conducted on two case studies proved the relevance of this approach.

1 INTRODUCTION

Considering their omnipresence in matching solutions
(Noy and Musen, 2001; Hu et al., 2006; J. Madhavan
and Rahm, 2001; Euzenat and et. al, 2004), linguistic
matching strategies deserve to be further developed
and improved. Current strategies commonly resort
to two main evaluation techniques: (1) string com-
parison metrics and (2) lexical similarity functions.
String metrics compare concept names according to
their string characteristics (e.g. number of shared
characters, similar string lengths, etc.). As for lexi-
cal functions, they assess similarity between concept
names rather by comparing their respective meanings.
Hence, each concept name is looked up in some exter-
nal dictionary (e.g. WordNet) in order to extract the
set of words that are semantically related to it (e.g. by
synonymy, hyponymy, etc.). But in practice, unfortu-
nately, neither string metrics nor lexical-based func-
tions prove to be robust matching techniques when
data sources to be aligned are very heterogeneous. In
particular, lexical-based functions rarely perform well
since general dictionaries on which they rely do not
consider domain specificities and can even muddle up
matching with irrelevant synonyms or homonyms. A
reference to the context is often mandatory to clear
up ambiguities. Hence, this article introduces IN-

DIGO1, a system which implements an innovative so-
lution based on the exploration of the data sources’
informational context. The informational context of
a data source is composed of all the available textual
and formal artifacts documenting, specifying, imple-
menting this data source. It therefore conceals pre-
cious supplementary information which can provide
useful insights about the semantics of data sources’
concepts.

INDIGO distinguishes two main sets of documents
in the informational context (cf. (Bououlid and Va-
chon, 2005)). The first set, called thedescriptive con-
text, gathers all the available data source specification
and documentation files produced during the different
development stages. The second set is called the op-
erational context. It is composed of formal artifacts
such as programs, forms or XML files. To get con-
textual semantic information, INDIGO focuses on the
first set of documents i.e. the descriptive context2.
Given their descriptive nature, these documents are
more likely to reveal concept names semantically re-
lated to the ones found in the data sources. INDIGO

explores the descriptive context to extract the words

1INteroperability and Data InteGratiOn
2The operational context is explored for other purposes,

such as for elaborating complex matching (Bououlid and
Vachon, 2007).
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found in the vicinity of some data source concept
name found within a phrase in a document. These
neighboring words will be useful to evaluate similar-
ity between concepts. Extracted words are integrated
and related to their corresponding concept in the data
source. In INDIGO, this enhancement of a data source
with information gathered from its context is called
data source enrichment.

To show the benefits of data source enrichment,
INDIGO was compared to two well-known matching
approaches, that is Similarity Flooding (Melnik et al.,
2002) and V-Doc (Y. Qu and Cheng, 2006). The ex-
periment consisted in applying each matching sys-
tem over the two following case studies: (1) Match-
ing of two database schemas taken from two open-
source e-commerce applications:Java Pet Store(Mi-
crosystems, 2005) andeStore(McUmber, 2003) and
(2) Matching of two real data sources describing
courses taught at Cornell University and at the Uni-
versity of Washington.

The rest of the paper is organized as follows. Sec-
tion 2 surveys recent work on linguistic matching.
Section 3 describes the current implementation of IN-
DIGO’s Context AnalyzerandMappermodules. Ex-
perimental results of our two case studies are pre-
sented and commented in Section 4. Concluding re-
marks and comments on future work are given in Sec-
tion 5.

2 RELATED WORK

As pointed out in section 1, there are essentially
two categories of techniques for linguistic matching:
string comparison metrics and lexical-based match-
ing methods. Concerning string metrics, the most
popular are certainly the following (Euzenat and et.
al, 2004): Levenstein, Needleman-Wunsch, Smith-
Waterman, Jaro-Winkler and Q-Gram. As for lexical-
based metrics, they were mostly developed within
the framework of specific mapping systems such as
ASCO (B.T. Le and Gandon, 2004) and HCONE-
merge (K. Kotis and Stergiou, 2004) to serve their
own application objectives. Both of these systems
resort to WordNet to collect additional semantic in-
formation (sets of words) about the concept to be
matched. For instance, ASCO searches for synonyms
while HCONE-merge looks for hyponyms.

Among the numerous linguistic matching solu-
tions mentioned in the literature, we had a closer
look at two systems frequently cited by researchers
for their performances and which were available on
the net: Similarity Flooding (SF)(Melnik et al., 2002)
and V-Doc (Y. Qu and Cheng, 2006). We selected

those two applications to experimentally compare
them with our own system INDIGO.

Similarity Flooding (SF) is a generic algorithm
used to match different kinds of data structures
called models. Models can be composed of data
schemas, data instances or a combination of both.
The SF algorithm converts both source and tar-
get models into some proprietary labeled directed
graph representation (G1 andG2). It then applies
an iterative fixed point based procedure over these
two graphs to discover matches between their re-
spective nodes.

V-Doc is the linguistic matching module of Falcon-
AO (Hu et al., 2006), a matching system for on-
tologies. V-Doc constructs for each entity in the
ontologies to be aligned, avirtual documentcon-
sisting in a set of words extracted from the name,
label and comment fields of the entity and of its
neighbors within the ontology. It then compares
virtual documents using the well-known TF/IDF3

technique.

INDIGO aims at the same objectives as the above
systems. From a conceptual standpoint, it belongs to
the category of systems relying on multiple strategic
matchers (A. Doan and Halevy, 2003; Do and Rahm,
2002). It distinguishes itself by taking into account
the informational context of data sources in its align-
ment process.

3 INDIGO’S ARCHITECTURE

To handle both context analysis and semantic match-
ing, INDIGO presents an architecture composed of
two main modules: aContext Analyzerand aMap-
per module. TheContext Analyzermodule takes the
data sources to be matched along with related context
documents and proceeds to their enrichment before
delivering them to theMappermodule for their effec-
tive matching.

3.1 Context Analyzer

The role of theContext analyzerconsists in parsing
the artifacts related to a data source with the aim to
extract pertinent semantic information and to enrich
this data source with it. Our implementation targets
two types of enrichment: (1) enhancement of a data
source with complex concepts4 and (2) enhancement

3Term frequency/Inverted Document frequency.
4This kind of enhancement will not be discussed in this

article because it is not directly involved in linguistic match-
ing (c.f. (Bououlid and Vachon, 2007) for details).
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of a data source with related concept names. To be
more specific about the semantics of a given concept,
the descriptive context is searched for entities which
may relate to this concept. The following heuristics
is proposed to identify these relations: ”Two concepts
that are often brought upone near the otherare likely
to be closely related.”

Name

Product

PetStore

SupplierOrder

Figure 1: Graph of dependencies between concepts of the
Pet Storeapplication.

In thePet Storeapplication (our first case study),
the database model reveals thatnameis an attribute
of the product entity. In other respects, documen-
tation files clearly show thatorder and supplier are
concepts frequently appearing in the vicinity of the
productconcept. For each concept referenced by path
s in the XML data source, a graph is constructed to
trace presumed dependencies between concepts. We
call such a graph aconcept dependency graph(CDG).
Let sbe the XML path of a concept in the data source
and letConcepts(s) be the set of concepts composing
s. A CDG for s is a graph that

1. links eachc∈Concepts(s) to its successorc′ in s
(with c′ ∈Concepts(s)). The position of a concept
in the list thus obtained is called itslevel.

2. links each c ∈ Concepts(s) to a list elist(c)
of enrichment concepts extracted from the data
source’s context. The position of a concept in
elist(c) is called itsrank.

Figure 1 shows aCDG stressing the connection
of theproductconcept with itsnameattribute and the
Pet Storedatabase to which it belongs. These con-
cepts are vertically ordered on the figure. TheCDG
also shows the relation ofproductwith two enriching
concepts,order andsupplier, which were often found
close by in the data source’s context. These concepts
appear horizontally ordered.

The design of INDIGO’s Context Analyzer(Fig-
ure 2) comprises two main modules, each being spe-
cialized in a specific type of information extraction.
To be specific, it is composed of aConcept Name Col-
lector and aComplex Concept Extractor, providing
the necessary support for the two kinds of enhance-
ment mentioned previously.

enhancer
Concept nameContext

generatorpreprocessor
Context

Complex concept
collector

Concept name

analyzer
Meta−

extractor

Figure 2: Architecture of the Context Analyzer.

As illustrated on Figure 2, these two analyzer
modules are headed by a meta-analyzer which coor-
dinates their respective tasks. At the lowest level, the
architecture provides utility modules to pre-process,
generate and enrich data sources with context infor-
mation.

3.1.1 Meta-analyzer

This module explores the set of documents constitut-
ing the informational context of the data source. It
classifies each of them into either the formal or infor-
mal category. Then it addresses formal documents to
theComplex Concept Extractorand informal ones to
theConcept Name Collector.

3.1.2 Concept Name Collector

Given a concept name of a data source, theCollec-
tor gathers from the descriptive context all names fre-
quently surrounding it. TheCollector chooses then
the closest ones to enrich the concept name with them.
Actually, theCollector executes the data source en-
richment process in two main stages: acontext pre-
processingstep followed by adata source enhance-
mentprocedure.

Context preprocessing. The Collector relies on
two internal modules respectively namedContext
PreprocessorandContext Generatorto generate what
we called thecontextualized concept fileof a data
source (abbreviatedCC-file). This file is written in
XML . For each concept name in the data source, it
gathers a set of nouns surrounding the concept in the
data source’s context documents. These nouns are
saved by theCC-file in some normalized form which
prevents that a single concept appearing in different
guises (e.g.inventoryandinventories) be considered
as two distinct nouns. Let us consider thePet Store
application for example, whose database contains a
table namedSKU (i.e. Stock Keeping Unit). The
Context Preprocessorwill thus parse the set of doc-
uments it was addressed and will gather all sentences
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containing the concept nameSKU. Sentences are then
filtered by theContext Generatorto keep noun-type
words in their normalized form. The order in which a
word first appears in a sentence is of course preserved.

SKU inventory item...

...store instance SKU inventory...

...item SKU.
1

K=2

PetStore

SKU
112

21

Inventory Item

Figure 3: Enhancement of the SKU concept (generation of
the corresponding part of the CDG).

Data source enhancement. TheCC-file elaborated
during the previous step is used by a third internal
module of theCollector, calledConcept Name En-
hancer, to generate aCDG for each data source con-
cept. Let us consider the enhancement of theSKU
concept. Over each sentence of theCC-file relating
to SKU, the Concept Name Enhancerapplies a po-
sition marker which tags each name surrounding the
SKUword with a distance value. This value indicates
how many names separate the tagged name from the
word SKU, be it on the left or on the right. The left
part of Figure 3 shows the tagging process. From
there on, each tagged name is collected together with
its distance tag and its frequency rate. Tagged names
are sorted in descending order of frequency rates and
proximity toSKU. Best candidates are retained to en-
rich theSKU concept. A threshold value is used to
limit the number of enriching concepts to be kept.
In the previous example, given a thresholdK=2, the
namesitem and inventoryare retained to enrich the
SKUconcept and are thus added toSKU’s CDG.

3.2 Mapper Module

After the enhancement of data sources with the newly
extracted information, theMapper module proceeds
to the matching phase. Allowing for multiple match-
ing strategies, its architecture is organized as a hier-
archy of modules where internal nodes are called co-
ordinators and where leaves represent aligners. Each
aligner implements a specific matching strategy based
on a particular similarity measure. For instance, a
name-based aligner can be used to compute matches
between concepts according to the similarity of their
names. As for coordinators, they combine predic-
tions of their respective children to elaborate their
own matching proposal.

3.3 Context-based Alignment

Context-based alignment is executed as follows. First,
a mapping is computed between two given data
sources without considering their context. Then,
for each pair of concepts acontext similarity factor
(CSF) is assessed by comparing their respectiveCDG
(cf. Section 3.1). TheCSF is a normalized value be-
tween 0 and 1 which is used to rate the augmentation
of concepts’ similarity by taking into account the sim-
ilarity of their respective context.

To show how aCSF is calculated, let us consider
the respectiveCDG of a source and of a target con-
cept, SN and TN, as illustratred on Figure 4.SNi j
(resp. TNi j ) denotes the concept occupying leveli
and enrichment rankj in theCDG of the source con-
cept (resp. target concept). Each row of aCDG
denotes a context level, while each column denotes
a concept ranking regarding relevance to the context
(recall that rank 1 denotes the most relevant concept).
The evaluation of theCSF betweenSNandTN is as
follows.

First, we split up equally each list of enrichment
concepts into some predefined number of subsets.
Figure 5 depicts the splitting, intow boxes, of the en-
richment concepts in aCDG. On a same level, boxes
should contain almost the same number of enrichment
concepts. Considering there arepi concepts on leveli
and thatpi = w∗ki +r i , the firstr i boxes will therefore
containki + 1 = ⌈pi/w⌉ concepts while the follow-
ing w− r i others will haveki of these. LetSBi , with
i ∈ {1, ...,w}, denote theith box in a source concept’s
CDG. SBi, j thus corresponds to the set of enrichment
concepts of levelj in box SBi . Note that the CDG
of the target concept, illustrated on Figure 4, has been
splitted up exactly the same way as theCDG of the
source concept. Then, similarity between boxesSBis
andTBit , whereis, it ∈ {1, ...,w}, is given by the fol-
lowing formula:

BoxSim(SBis,TBit ) =

∑min(n,m)
l=1 λl Inter(SBis,n−l+1,TBit ,m−l+1)

∑min(n,m)
l=1 λl

Inter(SBis,n−l+1,TBit ,m−l+1) is a function return-
ing 0 if SBis,n−l+1∩TBit ,m−l+1 is empty, and returning
1 otherwise.λ is a positive constant, superior to one,
which is empirically settled.

Finally, thecontext similarity factor(CSF) evalu-
ated between the respectiveCDG of a source and of
a target concept is given by the following formula:

CSF=
∑w

i=1 αw−|i−n(i)|BoxSim(SBi ,TBn(i))

wαw

wheren(i) is the nearest target box index toi such as
BoxSim(SBi ,TBn(i)) 6= 0.
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Figure 4: CDG of a source and of a target name.
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Figure 5: Splitting of a concept name’sCDG.

4 TESTS AND EVALUATION

Two types of tests have been targeted: (1) the impact
of contextualization on linguistic matching and (2) the
comparison of INDIGO with the state of the art.

4.1 Impact of Contextualization

For this experiment, theMapperwas configured with
five name-based aligners, that is one for each of the
five well-known string metrics (i.e. Jaro-Winkler,
Smith-Waterman, Levenshtein, Needleman- Wunch
and Q-Gram) mentioned in section 2. Each aligner
was individually tested on the first case study, i.e. the
mapping of thePetStore’s data source overeStore’s,
with and without contextualization being taken into
account. Table 1 describes the results obtained when
fixing the enrichment threshold toK = 30 and the
context splitting parameter tow = 5. The two con-
stantsλ andα were respectively set to 4 and 2. Re-
sults show that data sources contextualizing has a pos-
itive impact on the performance of name-based align-
ers. In the case of theQGramdistance, thef-measure
of the alignment process increased by 127%.

4.2 Comparison with Other Semantic
Matching Systems

INDIGO was confronted with both the Similarity
Flooding algorithm and the V-Doc System. For this
experiment, theMappermodule was configured with

a single matching strategy, namely a sole aligner
based on theJaroWinklermetric. Each system was
executed over the two case studies thus computing:
(1) the mapping of thePetStore’s data source overeS-
tore’s and (2) the mapping of course data source of
Cornell universityover the one ofWashington uni-
versity. To be precise, two versions of the second
case study were experimented on: a version over re-
duced course data sources and the original one. Cor-
responding test results are summarized in Table 2. In
particular, the two last rows present the results ob-
tained with INDIGO for both (1) non context-based
and (2) context-based alignments.

In all alignment tests, INDIGO succeeded in im-
proving its performance thanks to contextual data
source enrichment. It did not globally surpass all the
other systems but managed to get very close to the
best one (i.e. SF) thanks to data source contextualiza-
tion. Indeed, INDIGO’s global performance was in-
creased by 14% with contextualization, what brought
it close to SF’s results by less than 1.8%. Finally, it
is worth noting that INDIGO did surpass all the other
systems in thePetStore/eStorecase study thanks to
data source contextualization. This proves that IN-
DIGO’s context-based approach is particularly use-
ful for matching data sources that are very heteroge-
neous.
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Table 1: Performance variations due to data source contextualization observed in the mapping ofPetStore’s data source over
eStore’s using INDIGO.

Non context-based Context-based Variation
prec. rec. f-m. prec. rec. f-m. prec. rec. f-m.

Jaro-Winkler 44.44 13.79 21.04 31.11 20.9 25 −30% +51% +19%
Smith-Waterman 34.78 18.39 24.05 39.62 24.14 30.00 +14% +31% +25%
Levenshtein 48.15 14.94 22.80 53.85 16.09 24.77 +16% +7% +10%
Needleman-Wunch 43.75 8.05 13.59 23.91 12.64 16.53 −45% +57% +22%
Q-Gram 66.67 9.20 16.17 60.53 26.44 36.80 −9% +187% +127%

Table 2: Comparison of INDIGO’s performance with Similarity Flooding and the V-Doc matching results.

PetStore/eStore mini-cornell/mini-washington cornell/washington average
prec. rec. f-m. prec. rec. f-m. prec. rec. f-m. prec. rec. f-m.

SF 41.66 14.92 21.97 1.0 79.41 88.52 60.0 72.22 65.54 34.22 55.51 58.67
V-Doc 66.66 2.98 5.71 65.62 61.76 63.63 17.36 46.29 25.25 49.88 37.01 31.53
Indigo(1) 44.44 13.79 21.04 83.87 78.79 81.85 34.51 73.58 46.99 54.27 55.38 49.96
Indigo(2) 31.11 20.9 25 84.38 81.82 83.08 58.06 67.92 62.61 57.85 56.88 56.9

5 CONCLUSIONS

This paper presents INDIGO, an innovative solution
to linguistic matching. INDIGO relies on an architec-
ture composed of two main modules: aContext An-
alyzerand aMappermodule. TheContext Analyzer
enriches data sources with semantic information ex-
tracted from artifacts belonging to their respective en-
vironments before delivering them to theMapperfor
their effective alignment. Tests conducted over two
case studies proved that data source contextualizing
can improve the alignment process performance. In
particular, INDIGO was compared to two renowned
matching systems in the domain and outperformed
them in the case of data source candidates presenting
higher heterogeneity.
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