
Applying Component Concepts to Service Oriented
Design: A Case Study

Balbir Barn and Samia Oussena

Thames Valley University, Computing Department
Wellington Street, Slough, SL1 1YG, UK

Abstract. This paper argues that appropriate modeling methods for service
oriented development have not matured at the same pace as the technology
because the conceptual underpinning that binds methods and technology has not
been sufficiently articulated and developed. The paper describes an adaptation
and enhancement of component based techniques to support the development of
a service oriented method. As a result of the evaluation of using component
concepts to support service oriented design, an integrated conceptual model
describing how concepts from services and components are related is presented.
The experimental data derives from a complex case study from the Higher
Education Enterprise arena.

1 Background

Currently there is a focus on enterprise application integration using distributed
architecture principles and in particular, there is a convergence to so-called Service
Oriented Architecture (SOA) for application design and integration [19]. While
enterprise systems have attained a degree of technical integration in many cases, the
full benefits of business integration that could be gained from seamless support of
business processes may only be partially realized. The developing principles around
SOA are placing importance on a solid understanding of business processes and
aligning developed or procured services to support those processes [11]. Thus
methodologies that can support process led application development and assembly
will acquire greater utility.

1.1 The Problem

Service Oriented Architecture is a disruptive technology because of the opportunity it
provides to rethink the way systems are created and evolved. However there is still a
relative lack of robustly applied and practical methodology support for such an
approach. This observation has also been noted by Quartel et al [22] where they
observe that technological developments should be supported by modeling methods
and languages to support service-oriented design. One example where the
methodology issues have been addressed to some extent is the recent work by Erl
where there has been an effort to recognize that service-oriented analysis is an

Barn B. and Oussena S. (2007).
Applying Component Concepts to Service Oriented Design: A Case Study.
In Proceedings of the 1st International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 31-41
DOI: 10.5220/0001349200310041
Copyright c© SciTePress

important element in the design of effective SOA [9]. However, here, the focus has
been to derive services from a business process orchestration specification.

In contrast, Component Based Development (CBD) has reached a level of maturity
where there is a significant body of knowledge addressing methodology requirements
as well as technological issues. Given this, the research question addressed in this
paper is:

“Can component based development concepts, methods and techniques support
service oriented design?”

A service based architecture presents multiple concerns or architectural viewpoints.
Consequently, the focus of the research question is further refined to address the
functional viewpoint – that is, what an application (based on SOA) must do in order
to support the business requirements of the user. Thus example areas that are not
addressed in this paper are: the issues that arise at the boundaries between design and
deployment of service-centric systems; and binding of services based on run-time
monitoring of service-centric systems.

1.2 The Contribution of this Paper

This paper outlines an approach to service oriented design by drawing on the lessons
learnt and the best practices from component based practices. The focus of this paper
is on service identification and partitioning of applications into services and how such
techniques can be captured in model based form. Further, the paper proposes an
approach to business process partitioning that provides a model based migration
strategy to process implementation using technologies such as Business Process
Execution Language (BPEL). The paper also contributes an integrative view of
services, components and business processes to further emphasize the benefits of
pursuing this particular approach. Some of the observations and evaluation of
software tools applied in the methods outlined also indicate that there are issues of
tool usage which can help to inform tool selection and deployment.

The remainder of this paper is structured as follows: The reader is introduced to the
background case study informing this research in section 2. Section 3 addresses the
core of the paper and focuses on the comparison of concepts underpinning both
component modeling and service oriented architecture with reference to relevant
literature. Section 4 provides an evaluation of some of the results in the context of the
case study and provides further details on the integrated conceptual model. Section 5
concludes the paper and outlines areas for further work.

2 Case Study

This section provides a short description of the context of the case study for which the
business process modeling and subsequent application design was performed.

The e-Framework [16] is an initiative by the U.K's Joint Information Services
Committee (JISC) and Australia's Department of Education, Science and Training
(DEST) to build a common approach to Service Oriented Architectures for education
and research. As part of this initiative, in 2005, JISC requested projects to develop

32

reference models for a number of domain areas. The work described in this paper is
derived from one of the projects.

The Course Validation (CV) process is one of the most important business
processes within Higher Education Institutions (HEIs) and between HEIs and other
institutions. New courses and the continuation of existing courses are the direct
outputs of this process.

Further, the process is case-based, knowledge centric and highly collaborative.
Each instance of the process is a case and will focus typically on different subject
domains and therefore require different knowledge bases and experts to support the
process. Only the essential framework (the rules and governance) of the process
remain standardized.

The scope of the application domain is as follows. Course Validation can include
the specification of new courses at various levels (e.g. undergraduate and
postgraduate). Course Specifications address areas such as rationale, appropriateness,
justification, marketing analysis, resources required, economic viability of the
courses, and detailed descriptions of the courses in terms of outcomes, aims and
objectives and so on. Much of the scope of course validation is determined by local
institutional constraints (e.g. relationship to other courses and university regulations)
but there are wider requirements that impose a significant overhead on the
developmental process for validating new courses. These wider requirements are
determined by the UK national bodies such as the Quality Assurance Agency (QAA)
[21].

Even though HEIs may differ in the implementation of business processes to
support course validation the constraints imposed by external bodies such as the QAA
provide some standardization for the validation process and its outputs. These
constraints are a basis for defining a canonical business process for supporting course
validation.

A case study approach to the problem was adopted as there are several examples in
IS research where there is evidence that case study based methodologies are well
suited for exploring business processes in an organizational setting. Examples include
those described in Huang et al [12] and Sedora et al [23]. Case studies provide an
opportunity to take an interpretivist stance on how the systems and structures in place
are based on the meanings of concepts and how people use those concepts. A case
study also allows in-depth exploration of issues. However, given the nature of the
course validation process it was important to get an understanding of how different
types of institutions implemented their own course validation processes.
Consequently we explored in depth, the course validation processes at four
institutions.

After a period of business analysis, process models of course validation processes
at each of the institutions were constructed. Accompanying information and data
supporting these processes were also modeled. All modeling at this stage was
performed using the IBM Rational XDE Toolset. The visual models were evaluated
and an approach to synthesizing the models from each institution into a single
canonical model was developed and then applied. This approach includes rules for
identifying variances between processes and is described in more detail elsewhere [3].

The result was a pair of canonical models for the process and the information
which were used as input to the software design and implementation stages to develop
a set of software services that allowed us to automate part of the business process.

33

The remainder of the paper focuses on how the canonical process and information
models were partitioned into a set of services to support the software design phase
using a component based design approach.

3 Related Work and Approach

The approach taken in this research is based on three key principles: Firstly, the
importance of systemizing the relationship between Component Based Development
(CBD) and Services; secondly, to consider application partitioning from the
perspectives of both business process partitioning and data partitioning; and finally
the requirement to articulate a unifying conceptual model that addresses methods,
business processes, components and services. Also critical to the approach taken in
this paper, was the need to ensure that a model driven approach was followed. This
was accomplished by, ensuring as far as possible, that all activities, artifacts and
transformations were performed within one or more software tools. As the evaluation
section indicates issues emerged during this process.

The central thesis of the paper argues that Component Based Development (CBD)
provides a natural evolution to service oriented architectures because of the
conceptual similarities and overlaps between the two software architecture
approaches. In this section, the conceptual mappings between components and
services are presented based on review of existing work. These mappings indicate the
strong correlation between these two approaches thus indicating that it is instructive
to look to CBD for appropriate methods and techniques to apply to SOA.

One important strategic distinction between the two approaches is the focus of
integration strategies to address heterogeneous application architectures. While CBD
at least, conceptually can be used to provide an application architecture that makes it
possible to mix different implementation technologies, the evidence to date has
indicated that this capability has not really been taken advantage of. For example,
there are software component libraries for the Microsoft platform and similar libraries
for the J2EE platform. SOA, on the other hand, has at its heart, standards and
technologies that support interoperability. The use of XML based standards and
protocols such as XML, SOAP, WSDL and UDDI allows services to be implemented
in a particular technology while allowing access to the service from varying technical
platforms using the so-called “wire” standards. A core common concept underpinning
both CBD and service oriented design is the notion of an interface specification – a
precise description of the behaviour of a software implementation. Interfaces can be
used to provide wrappers to existing applications / modules such that it is possible to
continue to use legacy applications in new technological environments. SOA is
particularly suited to this approach and is potentially the most significant benefit
arising from adopting a SOA strategy by an organization.

However, while a component can conceptually support more than one interface, a
service has only one interface (in WSDL 1.1). Additionally, WSDL does not provide
a mechanism for representing detailed behavioural semantics such as pre/post
condition pairs. In separate work Estier et al demonstrate similar mappings and
observations and in fact also use similar terminology such as “core”. Their focus was
on providing a “Contract” basis to service design rather than model based

34

specification and generation [8]. Other work has developed a UML profile for
describing WSDL (and therefore Web Services) to support WSDL generation from
UML models – although the reported work proposes that implementation of add-ins
for WSDL generation to commercial products such as Rational Rose is part of
planned work [18]. Nonetheless this work while mapping to UML and not
components would appear to further substantiate the validity of looking to CBD
practice for methodology support.

The mappings indicate that we can leverage approaches and maturity of CBD
practice to the design and implementation of web services by tailoring existing
methods for software development.

Probably the most refined and detailed articulation of a component based method is
work done by D’Souza and Wills in their description of Catalysis [7]. This method
was later used to underpin the development of Cool:Spex [1, 2] (an early product to
focus explicitly on application design using component based principles) and also
other CBD methods [5]. Some of the CBD techniques from Catalysis and their
derivatives that we can use include: component identification (or application
partitioning), component specification, and component dependency management.

Application partitioning – the act of identifying discrete pieces of functionality into
independent chunks of software is core to notions of component based development.
However, CBD assumes a data centric view of partitioning. For example Erl describes
such components as Entity Services. One proven approach to component partitioning
and therefore service partitioning is that described by Cheesman and Daniels [5].
Their approach is based on using the information model (business concept model) as a
starting position from which to make application partitioning decisions using an
algorithm based on identifying core types and other types related to the core type.

However, despite the detail, complexity and scope available in the Catalysis
method (and its variants), there has been relatively light attention to process
modeling. This lesser emphasis is critical as process modeling is a crucial element for
SOA where the orchestration of services to support an application is central to
application assembly. The substantial standardization effort in business process
execution (BPEL4WS) and prevalence of tools for choreographing applications from
a set of services provides an indication of its importance.

This paper proposes that while data centric partitioning is one concern, it is also
necessary to have a parallel and equivalent view of process partitioning. When
processes are long, complex and require significant human intervention at various
stages then the need for process decomposition is even more transparent. The case
study used in this paper illustrates this point.

The Rational Unified Process (RUP) [14, 15] provides some guidance to this vis a
vis the distinction business use cases standard use cases. This is an example of
process decomposition. However, there is in-sufficient guidance and somewhat
ambiguous rules for how business use cases map to use cases. Other ways of
managing the modeling of process complexity for example to use roles – i.e. focusing
only on the activities and their collaborations performed by specific roles [20] were
considered inappropriate because the underlying process model was based on
transformation (that is: input transformed by activity to output) rather than more
communication/coordination views of processes.

One established approach is the use of “Event Consequences” – that is a business
event is a trigger to a sequence of activities that are performed in response to the

35

event. There is a rich body of knowledge which supports the notion of business
process understanding using this approach for example [6, 24]. The set of activities
that are triggered can then be viewed as a sub-process of the overall business process.
Such a sub-process provides a better level of granularity for describing analysis
scenarios for support the design and implementation stages of a software development
process. An additional benefit of using events to partition a business process is the
potential direct modeling transformation into BPEL specifications where there are
modeling concepts for supporting events and their subsequent triggering of
consequences of actions.

Summarizing, CBD practice provides a useful conceptual toolbox that need to be
enhanced with a more detailed treatment of process modeling techniques in order to
be useful to application development using SOA.

4 Case Study Example and Evaluation

Much of the anticipated benefits of a SOA approach are assumed to be the rapid
assembly via orchestration of applications comprising one or more services. A pre-
requisite for orchestration is a detailed understanding of the business process to be
supported and the (ideally) model based specification. Thus the starting premise of the
project approach is to precisely describe the business process using an appropriate
modeling toolset.

The business analysis phase for the Course Validation (CV) domain produced two
complex models – the process model and the information model.

4.1 Process Partitioning

Given the CV process complexity in particular, a way for decomposing the process
into more manageable sub-processes was required. The CV process already had
natural groupings of activities (these were distinct stages in the process) however,
even these groupings were difficult to manage and it was necessary to define smaller
sub-processes.

When a business process is a type of collaborative case process such as Course
Validation then an especially useful form of partitioning is to identify situations in the
business process where there is delay in the process because there is a need for an
external event to occur. Once the event has arisen, new activities are undertaken.
These groupings of activities are treated as sub-processes.

To support these sub-processes user scenarios were also developed. A user
scenario is an evocative way of instantiating a route through a part of the business
process. User scenarios are effective in extracting requirements because they express
functionality in the language of users [4, 25] and for the implementation phase in this
project they also provided additional context to development staff who were not
involved in the original analysis stages of the project. During the development phase
– the implementation team found the scenarios useful but still needed to elaborate
additional sequence diagrams to further identify operation requirements.

36

Thus, in our process modeling we introduced the notion of sub-process scenarios.
A sub-process scenario comprising one or more activities is triggered by an event
such as a time or data event. This scenario and its accompanying user story can then
be analyzed by the software designer to identify operations and allocate them to
specific components/services.

4.2 Service Identification

Identification and modeling of services is the core of what is presented in this paper.
It is argued that there is lack of methods and techniques to support service
identification and modeling and currently most effort is focused advice and guidance
on programming issues. It would appear that modeling advice is largely derived from
object oriented analysis. Here it is proposed that given the conceptual closeness
between services and components, it is possible to utilize techniques from CBD. In
essence, the domain model or information model in our example is partitioned into
“components” by firstly identifying types which are deemed to be core – that is
business types or objects which are essential to the organization and then traversing
associations to other types that are detailing – that are providing additional details to
the core type. This subsetting provides a natural component boundary. Each
component identified is then allocated an interface type which will house the
operations for the component. This model thus corresponds to the service as follows:
Component Interface is equivalent to Service; Core Type and detailing type are
equivalent to the Port Types with their associated Messages and subsequently the
elements and their schema. This approach bears comparison with Estier et al. who
have similarly used CBD principles in their work on service contracts.

During the service partitioning activity a number of rules / hints emerged – the use
of which has the potential for better quality component / service models. For example
if two core types are related by a mandatory association (at both ends) it is still better
to treat the core types as housed in separate components.

Often, components have a cross-relational dependency manifested via an
intersecting detailing type. When this pattern occurs, one relationship is often
“specifying” and the other is a “usage”. In such situations, the intersecting type should
always become the detailing type in the component that owns the “specifying”
relationship. We anticipate further useful rules and hints as we continue to refine the
component models.

4.3 Process Led Application Assembly

Once the components / services have been identified in this manner, the sub-process
scenarios and their accompanying textual narratives are used to map activities from
the process to an operation on a service. Service responsibility is based primarily on
determining the types (information) being manipulated in the process and then
allocating the service behaviour to the component/service that owns that type. The
results of applying this technique to each of the sub-process scenarios is a set of
components/services with behaviour allocated to them. In theory, then each

37

component/service model can then be used to generate the required WSDL
specification to support the web service.

In practice, this is where the violation of core model driven development principles
unfolded. As intimated earlier, our key goal was to take a model driven approach to
specify a business process and the accompanying information model; partition the
models into a set of services; and then assemble services together to implement the
business process. In order to do this, we would use software tools to model and
generate the required elements. During the specification and design work toolset
issues meant that the domain modeling (business analysis) was done using IBM
Rational XDE as it was clear that the preferred toolset IBM Rational Software
Architect (RSA) was not yet mature enough with its support for UML 2.0. However,
the RSA implementation environment was considered to be superior to XDE so when
the business analysis modeling and the partitioning into components/services was
completed, the XDE models were imported without loss of data into RSA. Further
modeling refinements were undertaken within RSA.

 Issues during the design modeling phase also made it clear that it would have been
better to create separate RSA models of each component (within the same overall
project) as it made generation of WSDL and other XML easier and less error prone.

On generation to WSDL services, it became apparent that while the model
structure to represent a component/service was correct (in that, all the required
information to generate a WSDL spec was present), WSDL generation was not
possible and the only generation of data that was achieved was the XSD schemas for
the data requirements of the services. This represented a significant drawback to our
proposed approach and the team is currently investigating alternative methods of
WSDL generation with RSA..

Fig. 1. Toolsets and transformations of models.

JBuilder was selected as the preferred toolset for designing the BPEL processes as
again RSA and the Eclipse Plugin for BPEL process design did not fully support the
design requirements. In this case the user interactions (user tasks) were not supported
by the Eclispe Plugin. Within JBuilder, WSDL was handcrafted using further data
from the text based user stories.

5 An Integrated Model for Component and Service Method
Concepts

Having described the methodology for identifying and describing services from a
business process basis, this section now proposes how the methodology and concepts

38

need to be integrated to produce an overarching conceptual model which can be used
to provide a basis for method refinement, tool construction and good practice.

 Process
Model Event Scenario

Activity Activity Type

Operation

Information
Model

Component
Specification

Service
Type Model

Pre-Post Pair

- _Event Scenario

*

- _Activity

*

- _Activity*

1

*

*

- expresses
- Interface Spec

*

- _Type Model

1

Type
- _Type

*

*
*

related To

owns*

* refers to

*

parameter type

*

refers To

Business Rule

- _Business Rule

*

- _Business Rule *

Fig. 2. SOA Integrated model.

The diagram above provides a UML model of the principal concepts involved. The
Process model is decomposed into a set of Event Scenarios which are themselves a
grouping of activities which have an ordering defined ultimately by UML semantics
for activity modeling. An Event Scenario or Sub-Process provides a natural mapping
to BPEL workflows.

In parallel, the domain information model is partitioned into a set of Services using
CBD practice. A service has a set of operations which may or may not be specified by
pre/post specification pairs. The types used by the operations of a service are grouped
by the notion of an interface type model. These types can be used as the XSD schema
for a WSDL specification. Activities are mapped to operations on the services via the
Service/Activity matrix (or sequence diagram). Activities are classified as either
manual (therefore not implemented, but their interfaces are specified), event receipt or
normal. This classification is modeled by the Activity Type concept. This paper has
not discussed business rules (constraints or invariants), in detail. In general, during the
analysis phase, business rules were captured using Constraint annotations in the
various models. However, we are planning further work to more formalize the capture
of business rules using technologies such as XRules.

A further benefit of using an underlying meta model to describe methods is that
development of techniques and concepts can be engineered allowing tailoring of
method elements to support specific project requirements [13].

6 Conclusions and Further Work

This project set out to explore the interaction between SOA and model driven
development. The case study and modeling approach has demonstrated that there is

39

sufficient conceptual equivalence between component based approaches and service
oriented architecture to warrant the use of CBD methods to identify and model
services. From a complex process model, it was possible to partition the process into
manageable sub-processes which could be orchestrated as BPEL workflows (albeit
handcrafted).

The selection and deployment of the particular set of tools used in the project have
been used to implement services and their process definitions with some success –
with the primary problem centred around the model based generation to WSDL specs.
The overheads and risks incurred by the use of such tools for bespoke application
development using SOA remain significant and it is not clear how successful such a
tool deployment strategy would be. It is possible that further investigation and
increased expertise in tools such as RSA could help mitigate these risks.

Consequently, the project team is minded to conclude that SOA remains a
significant challenge and perhaps best suited to application integration rather than
bespoke development. As a result of this experiment, further work is being planned on
the use of Business Process Management Toolsets such as Intalio Designer. One
potential use of the conceptual model (after further research and validation) presented
in figure 1 could be its use as a evaluation tool for the selection of tools (single or
combined) However, SOA does require an emphasis on a business process modeling
and research presented in this paper provides some enhancements to process modeling
to ease the move from CBD to SOA. As we continue to develop services from new
sub-process scenarios it is likely that we will refine our component partitioning
strategy and the rules and hints to support the strategy. The use of the sub-process
scenarios as model based input to Business process execution (BPEL) will also be the
subject of further evaluation and study.

References

1. Barn, B.S., Brown, A.W., Cheesman, J.: Methods and Tools for Component Based
Development. In Tools 98: Technology of Object-Oriented Languages and Systems,
(1998)

2. Barn B.S., Brown A.W. Enterprise-Scale CBD: Building Complex Computer Systems from
Components. In: 9th International Conference on Software Technology and Engineering
Practice (STEP'99), Pittsburgh, Pennsylvania, USA (1999)

3. Barn, B.S., Dexter, H., Oussena, S., Petch, J. An Approach to Creating Reference Models
for SOA from Multiple Processes In: IADIS Conference on Applied Computing, Spain
(2006)

4. John Carroll. “Five Reasons for Scenario-Based Design” in Proceedings of the 32nd Hawaii
International Conference on System Sciences – 1999.

5. Cheesman, J., Daniels, J. UML Components. Addison-Wesley (2001)
6. Cook, S., Daniels, J. Designing Object Systems: Object-oriented Modelling with Syntropy.

Prentice Hall (1994)
7. D'Souza, D. F., Wills, A. C. Objects, Components, and Frameworks with UML: The

Catalysis Approach. Object Technology Series. Addison Wesley, Reading Mass., (1999)
8. Estier, T., Michel, B., Reinhard, O. Modeling Services using Contracts: Identifying

dependencies in Service-Oriented Architectures. In: EMMSAD 2006 Workshop – CAISE
(2006).

40

9. Erl, T. Service Oriented Architecture – Concepts, Technology and Design. Prentice-Hall,
USA (2005).

10. Frankel, D. Model Driven Architecture, OMG Press (2004)
11. Frankel, D.: Business Process Trends. BPTrends http://www.bptrends.com/

publicationfiles/07%2D05%20COL%20BP%20Platform%20%2D%20Frankel%2Epdf
(2005)

12. Huang J.C., Newell S., Poulson B., Galliers R.D. Deriving Value from a Commodity
Process: a Case Study of the Strategic Planning and Management of a Call Center. In:
Proceedings of the Thirteenth European Conference on Information Systems (Bartmann D,
Rajola F, Kallinikos J, Avison D, Winter R, Ein-Dor P, Becker J, Bodendorf F, Weinhardt
C eds.), Regensburg, Germany. (2005)

13. Henderson-Sellers, B. Method engineering for OO systems development. Comm.. ACM 46,
10 (Oct. 2003), 73-78. DOI= http://doi.acm.org/10.1145/944217.94424

14. IBM-Rational: The Rational Unified Process (RUP),http://www-
306.ibm.com/software/awdtools/rup/ (2001)

15. Kruchten, P. Rational Unified Process, Addison Wesley (1999)
16. E-learning Framework: http://www.elframework.org/ (2006)
17. Low, G. C., Rasmussen, G., Henderson-Sellers, B. Incorporation of distributed computing

concerns into object-oriented methodologies; Journal of Object-Oriented Programming.
(1996) Vol. 9, no. 3, pp. 12-20

18. Esperanza Marcos, Valeria de Castro, and Belén Vela (2003) “Representing Web Services
with UML: A Case Study”. In M.E. Orlowska et al. (Eds).: IC-SOC 2003, LNCS 2910,
pp.17-27, 2003.

19. Ort, E. “Service-Oriented Architecture and Web Services: Concepts, Technologies, and
Tools” http://java.sun.com/developer/technicalArticles/WebServices/soa2/ (2005)

20. Ould, M. A.: Business Process Management: A Rigorous Approach, BCS, ISBN: 1-
902505-60-3 (2005)

21. QAA: http://www.qaa.ac.uk/
22. Dick Quartel, Remco Dijkman and Martin van Sinderen. “Methodology Support for

Service-oriented Design with ISDL”, ICSOC, 2004.
23. Sedera W., Rosemann M., Doebeli G. A process modelling success model: insights from a

case study. In Proceedings of the Eleventh European Conference on Information Systems
(Ciborra CU, Mercurio R, de Marco M, Martinez M, Carignani A eds.), Naples, Italy.
(2003)

24. Texas Instruments. A guide to Information Engineering using the IEF™. TI Part Number:
2739756-0001. (1990)

25. Van Helvert, J & Fowler, C.J.H. (2004) Scenario-based User Needs Analysis. In Ian
Alexander and Neil Maiden (eds) Scenarios & Use Cases Stories through the System Life
Cycle. Wiley: London

41

