
USING RULE-BASED ENGINE TO SUPPORT TEST
VALIDATION MANAGEMENT OF COMPLEX

SAFETY-CRITICAL SYSTEMS

Valentina Accili, Giovanni Cantone
Dip. di Informatica, Sistemi e Produzione, Università di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy

Christian Di Biagio, Guido Pennella
MBDA-Italy spa, Via Tiburtina km 12,400, 00131 Rome, Italy

Fabrizio Gori
Eisys S.p.A., via Torre Rigata 5, 00131 Rome, Italy

Keywords: Automatic Validation, Validation Rule, Automatic Software Test, Distributed and parallel systems.

Abstract: Testing and validating software components in distributed architecture environments are critical activities
for our reference company, where those activities have been performed in a non-automatic way up to now,
so spending time and human resources. As a consequence, we were charged to design and construct a
flexible system, the Automated Test Manager (ATM), for the automatic software testing and automatic
validation of test results. In this paper we focus on the subsystem ATM-Console that handles the validation
aspect of the ATM system. This subsystem reuses an Open Source Rule-based Engine, which is able to meet
our purposes. Based on results from a case study, the paper reports that introducing the ATM-Console in
field could very significantly improve the efficiency of test validation.

1 INTRODUCTION

The reference company for this paper develops
safety-critical systems. We have are involved with
the need of that company to improve the correctness,
completeness, consistency, security, and quality of
the software part of those systems.

Because the architecture utilized company-wide
is based on multiple distributed and parallel
subsystems, the test and validation process could be
not deterministic and involve very heavy jobs,
especially if testing is accomplished and managed
without automatic supports.

Automated Test Manager (ATM) is our answer
to some of those needs. ATM is a distributed
software system designed and developed to
automatically test and validate real distributed
systems. ATM is built on two main subsystems, as
in the followings:

• ATM - Common Core (Grillo, 2007), which
aims to test automatically the interactions
that occur between the real components of
the system by simulating the behavior of
some of those components.

• ATM - Console, which is in the focus for
this paper. This subsystem takes care of the
remote control of automated test sessions,
and validation management. ATM-Console
provides the function of an at-once
validation configuration: through a user-
friendly GUI it is possible to edit the Rules
that will train the validation process, which
a Rule-based Engine will execute (JBoss,
2006).

Based on the needs placed by the enactors of the
current non-automatic software validation process,
the goals of this paper are twofold: (i) To sketch on
the subsystem ATM - Console, as developed to
perform an automatic software test validation, and

136
Accili V., Cantone G., Di Biagio C., Pennella G. and Gori F. (2007).
USING RULE-BASED ENGINE TO SUPPORT TEST VALIDATION MANAGEMENT OF COMPLEX SAFETY-CRITICAL SYSTEMS.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 136-143
DOI: 10.5220/0001349901360143
Copyright c© SciTePress

(ii) To provide a remote control for the other ATM
component, which is in the responsibility of
performing the test.

In the remaining of the present paper, Section 2
analyzes previous work on automatic software
validation, Section 3 describes the adopted method
to perform automatic validation, Section 4 presents
the architecture and the functionalities of the ATM-
Console. Section 5 shows results from a case study,
which involved the ATM-Console. Some final
remarks and forward to future work conclude the
paper.

2 RELATED WORK

Such as other authors (Liu, Yang, Wang, 2005)
(Min, Yang, Wang, 2006), we propose an automatic
expert system-like validation subsystem: the
validation activity is based on a Validation
Knowledge Base, which is divided in three parts:

• Validation Data Knowledge Base, which is
built by parsing test results. Knowledge is
arranged as an object-oriented knowledge
representation (S. Walczak, 1998) (Liu,
Yang, Wang, 2005).

• Validation Rules Knowledge Base, which is
composed by validation rules as provided
by end-users.

• Validation Techniques Knowledge Base,
which is in the responsibility of
determining whether the validation activity
was or was not successful.

Our approach substantially differs from the
others known from the literature (Liu, Yang, Wang,
2005) (Min, Yang, Wang, 2006). We perform
automatic test and validation on real distributed and
parallel systems to verify if their components run
properly. Instead those other approaches validate
distributed simulation systems, i.e. they test the
credibility of their simulation model; in fact, they
also provide an automatic tool, but use it to compare
the outputs from a simulator with the corresponding
outputs from the real system.

The originality of this paper consists in the
novelty of using a Rule-based Engine as the
“Validator” (Liu, Yang, Z. Wang, 2005): given the
Validation Data Base and the Validation Rules Base,
our ATM-Console is able to detect which validation
rules are actually verified by matching the given
Validation Rules with Validation Data.

3 A RULE-BASED ENGINE FOR
AUTOMATED VALIDATION

It involves complex verifications, like checking the
periodical transmission of a message, to enact
automated validation of functional tests in
distributed, interactive, and real time systems. So
our decision was to use a Rule-based Engine to
achieve the automatic validation activity.

A Rule Engine can be viewed as a sophisticated
interpreter of logical implications: in fact, it
evaluates and executes rules that are expressed in
terms of if-then statements.

The power of those rules lies both in their ability
to separate knowledge from its implementation
logic, and in the fact that we can change those rules
without having to act on artifacts in source code.

It dictates a Java runtime API for rule engines,
the specification for the Java Rule Engine API (JSR
94) (Sun, 2005), as developed by the Java
Community Process (JCP) program. In fact, such an
API provides a simple means to access a rule engine
from an up to date Java Platform.

Drools (JBoss, 2006), Fair Isaac Blaze Advisor
(Fair Isaac, 2007), ILOG JRules (ILOG, 2007), and
Jess (Sandia, 2007) are instances of JSR 94
compliant rule engines. ATM-Console adopts JBoss'
Drools (Dynamic Rule Object-Oriented Language
System) rule engine (JBoss, 2006), because it is a
solid inference engine, completely Open Source,
well documented, and with an Eclipse plug-in,
which is useful for debugging.

Drools uses the Rule Based approach to
implement an Expert System; more correctly, it is
classified as a Production Rule System, which
focuses on knowledge representation to express
propositional and first order logic in a concise, non-
ambiguous, and declarative manner. The “brain”
(JBoss, 2007) of such a Production Rules System is
an Inference Engine. In order to infer conclusions,
which result in actions, this inference engine
matches facts, the data, against the Production Rules
(also called Productions or just Rules in the
followings). A Rule, in Drools, is a twofold structure
with Left (LHS) and Right (RHS) Hand Sides.

The syntax for a rule is:

when
 <condition>
then
 <action>;

When the condition is met, the action is

executed. As already mentioned, first order logic is

USING RULE-BASED ENGINE TO SUPPORT TEST VALIDATION MANAGEMENT OF COMPLEX
SAFETY-CRITICAL SYSTEMS

137

used for representing a condi t ion. Multiple
conditions (and/or actions) can be utilized in a when
construct (and its then part).

The inference engine performs Pattern Matching,
i.e. the process of matching new or existing facts
against rules. There is a number of algorithms that
inference engines can use for pattern matching,
including: Rete (Forgy, 1982), Treat (Miranker,
1990), Leaps (Don Batory, 1994). The Drools tool
implements both Leaps and Rete, but ATM-Console
is based on the latter (Forgy, 1982).

The Production Memory stores the rules, and the
Working Memory stores the facts that the inference
engine matches against. Facts are asserted into the
Working Memory where they may then be modified
or retracted.

The reference environment supports a large
number of rules and facts, and conflicting rules
could occur. Agenda is the name that Rete gives to
the component that manages the execution order of
the conflicting rules, if any is active, by using a
Conflict Resolution Strategy. When a Rule is
activated, it is placed onto the Agenda for potential
future execution. It is called the Consequence of a
rule, the set of actions that the rule’s RHS includes.

The engine operates recursively in a 2-phases
mode:

• Working Memory Actions, which define
where most of the work takes place. There
are two loci for such an Action: the main
Java application process, and the
Consequence set. Once a Consequence has
finished or the main Java application
process invokes the method
f ireAllRules() , the engine switches to
the next phase.

• Agenda Evaluation, which attempts to
select a rule to fire, whether such a rule is
not found yet, but it might still exit;
otherwise it switches the phase back to
Working Memory Actions, and the process
begins again and proceeds until the Agenda
is empty.

As effect of a Working Memory Action, some
rules may become fully matched and eligible for
execution; a single Working Memory Action can
result in multiple eligible rules. When a rule is fully
matched, an Activation is created and placed onto
the Agenda. Such an Activation keeps its references
with that rule and the matched facts.

Conflict resolution is required when there are
multiple rules on the agenda. As firing a rule may
have side effects on the Working Memory, the rule
engine needs to know in what order the rules should

fire (for instance, firing rule A may cause rule B to
be removed from the agenda).

The Drools engine supports two types of conflict
resolution strategies: Salience and LIFO.

Salience is a subtype of the Natural numbers. It
allows end-users to specify that a certain rule has
higher priority than other ones. In a selection, higher
salience rules are always preferred to lower priority
rules. LIFO strategy is then applied to rules with the
same priority.

The LIFO strategy enacts a last in, first out
policy. It is based on the value of a counter, which
Working Memory Actions assign to rules. Multiple
rules, which receive the same counter value, are
placed in a common Agenda Group if and only if the
same Action created them. In case, they are
randomly selected for execution.

The ATM-Console subsystem allows end-users
to edit the LHS part of Validation Rules through a
Java based Graphical User Interface. An end-user
can both enter these Rules from the scratch, at every
validation session, by editing the ATM-Console's
Validation Rules Editing Form, and/or load them
from an XML repository.

Every time an end-user edits a new rule, this
enters the XML Rules Repository. As already
mentioned, it is possible to define validation logic
without affecting artifacts at the source level code,
which makes dynamic and flexible the validation
logic, in the user view.

Parsing files where the interactions between
components are stored, as a result of a test, creates
facts, which constitute the Working Memory.

In order to perform a Validation, the Rule Set and
Facts are the only inputs needed by the Rule Engine.

4 ATM - CONSOLE

ATM – Console is a software subsystem which
provides: (i) an instrument to remotely configure and
control the ATM – Common Core: the emulating
subsystem; (ii) a flexible and easy-to-use
environment to configure a validation session for
test results.

4.1 Architecture

The ATM-Console system consists of four macro-
units:

1. Test Configuration: Manages the test
configuration activity, by: (i) providing the
end-user with the simulation configuration
files, as available in the ATM-CC, (ii)

ICSOFT 2007 - International Conference on Software and Data Technologies

138

getting the files this user selects, and (iii)
sending this selection to the ATM-CC.

2. Test Control: Manages the test phase,
displays information concerning test
progress, and shows operator-consent
requests to end-user.

3. Validation Configuration: Manages the
validation configuration activity during
which the end-user edits the Validation
Rules and/or selects them from the XML
repository.

4. Validation Control: Builds both the
Working Memory by parsing test results,
and the Production Memory by utilizing the
DRL (Drools Rule Language) session file,
as written by the previous macro-unit; it
also manages the validation task by running
the Rule Engine.

4.2 Remote Control

An ad-hoc, RPC-based protocol allows the ATM-
Console to remotely communicate with the ATM-
CC subsystem. A proper interface exposes the
ATM-Console’s responsibilities, which consist in:

• Getting connection with the remote ATM-
CC subsystem.

• Asking ATM-CC for the XML
configuration file by specifying the
involved ATM-CC’s configuration
directory.

• Communicating the selected configuration
to the ATM-CC.

• Sending operator-commands (Start and
Stop Simulation) to the ATM-CC.

• Asking for information about the
progression of an ATM-CC simulation.

• Sending operator-consents, if any requested
by the ATM-CC to set the remaining of a
requested simulation.

• Asking the ATM-CC for, and getting test
results.

• Communicating results from a validation
session.

4.3 Usage for Test Validation

At the end of a test session, the operator can perform
the Validation Configuration; by such a use case, as
already mentioned, the ATM-Console allows the
operator to edit Validation Rules from the scratch
and/or load some of them from an XML Repository

in which all previously defined validation rules are
stored.

Rules that are present in the Repository are
shown in an easy-to-read Rule Repository Table.

As we want to validate distributed system tests,
objects of our validation are the interactions between
the constituting components. These interactions are
characterized by messages as exchanged between
components. An example of validation Rules is:
“Verify if the message X, with field constraints
F1,F2,...Fn, has been sent on the connection Y
within Z seconds.”

The end-user can set one or more test results
files, in order to verify the presence of every
expected message. All these files will be used to
build and populate the Validation Data Knowledge
Base, as the next section describes.

Additionally, the ATM-Console’s Rule Editing
Form gives end-users the possibility of binding
multiple rules, so composing complex rules.
Concerning this point, an example follows (where
the keyword “s ince” means to test for the
occurrence in the past):
“Verify if the message X2, with field constraints set
to F21,F22,...F2n, has been sent on the connection
Y2 within Z2 (= Z1 + ΔT2) seconds since the
message X1, with field constraints set to
F11,F12,...F1m, was sent on the connection Y1
within Z1 seconds.”

Every rule the user edits is added to the Rule
Set and finally the DRL rule is written.

4.4 Validation Data Knowledge Base

Let us focus now on the construction of the Drools’
Working Memory. As already mentioned, we
perform distributed systems test validation by
checking the exchange of messages between
system's components. The remote subsystem ATM-
CC stores these messages in some files, which the
ATM-Console gets from the ATM-CC at the
beginning of a Validation session. Based on the
contents of these files, the ATM-Console builds the
Validation Data Knowledge Base, i.e. the Working
Memory.

As JBoss Rule Engine requires, we model facts
as “beans”; they are asserted into the Working
Memory. Facts are thus Java objects of any kind,
which a rule can access together with their attributes
by proper access methods. The Rule Engine does not
clone facts at all; it just utilizes object references.
The ATM-Console creates objects by parsing test
result files, and asserts facts in the Working
Memory.

USING RULE-BASED ENGINE TO SUPPORT TEST VALIDATION MANAGEMENT OF COMPLEX
SAFETY-CRITICAL SYSTEMS

139

Because of the messages variety, it is variable
the number of fields in a message, thus the attribute
f ie lds of the class Message has been represented
as a Lis t of Fields; this to take advantage of some
features of the JBoss Rule Engine, as we will see in
the next section. So message’s fields are represented
as objects to assert in the Working Memory.

4.5 Validation Techniques Knowledge
Base

There are many methods to validate a test, including
subjective validation methods and statistical
validation methods. Subjective validation methods
include Turing testing (Turing, 1950), sensitivity
analysis (Archer, Saltelli, Sobol, 2006), and graph
methods (Bollobas, 1998) (Jungnickel, 2003); they
are easy to use, but depend on the subjectivity of the
person who performs in the role of analyzer.
Statistical validation methods include confidence
intervals, hypothesis testing, and time series (Archer,
Saltelli, Sobol, 2006); they are used to quantitatively
compare real outputs with human-generated or
simulation-generated outputs, and give “objective”
conclusions, in the limits established by the
statistical level of significance, and test power
obtained (Wohlin, Petersson, and Aurum, 2003). Of
course, our case takes in consideration real outputs
and simulation-generated outputs.

As already mentioned, it is in the context of
safety-critical distributed systems any of the
application that we have to test. Consequently, it is
strictly constrained the set of test validation criteria
that we can apply to test-results. In our approach, in
order to complete with success, a validation has to
meet all the defined rules, i.e. to verify each end-
user given rule, rather than statistical selected ones.

4.6 Knowledge Base for Validation
Rules

Let us consider now the construction of the
Production Memory, where Production Rules are
stored.

A Production Rule System's Inference Engine is
stateful and able to enforce truthfulness or “Truth
Maintenance” (JBoss, 2006): in practice, logical
expressions are declared to hold for actions, that is
the state of an action depends on the inferences that
still remain true; when it is no longer true the logical
dependant action is undone.

There are two exemplar modes of execution for a
Production Rule System: Forward Chaining, and
Backward Chaining.

Backward Chaining is goal-driven: we start by
providing a conclusion that the engine tries to
satisfy. If it can't, then it searches for limited
conclusions, i.e. sub-goals that help to satisfy an
unknown part of the current goal. The engine
continues to enact that process until either the initial
goal is proven or there are no more sub goals to
analyze. Prolog models a kind of a Backward
Chaining engine.

Forward Chaining is data-driven: facts are
asserted into the working memory, which results in
one or more rules being concurrently true and
scheduled for execution by the Agenda. The process
starts when a fact is provided; this fact propagates,
and the process ends in a conclusion. Drools is a
Forward Chaining engine.

A Drools’ Production Rule has the following
further attributes, many of which we already
mentioned above:

• sal ience, which determines the priority of
the rule in execution.

• agenda-group, which allows the user to
partition the Agenda, so enhancing on the
execution control: only rules in the focus
group are allowed to fire.

• auto-focus: when a rule is activated, if
the value of this attribute is true and the
rule's agenda-group does not have focus
then it is given focus to such a group,
allowing that rule to potentially fire.

• act ivat ion-group: rules that belong to
the same named activation-group will only
fire exclusively. In other words, it cancels
the activations of the remaining rules, so
removing their chances to fire, the first rule
that fires, in an activation-group.

• no-loop: when a fact is modified as a
consequence of a rule activation, it may
cause that rule to activate again, causing
recursion. This attribute helps in managing
such occurrences.

Rules are written in DRL files, the Drools
preferred file format. DRL files eventually are
simple text files in which multiple DRL rules,
functions etc. are stored.

When the user has finished with editing, the
Validation Configuration unit first converts rules
from the input format to DRL, and then writes these
DRL rules to a the Rule File for input to the Rule
Engine.

Example 1 presents some details about a Rule in
DRL language.

ICSOFT 2007 - International Conference on Software and Data Technologies

140

Example 1: A Rule in DRL language.

rule rule0
no-loop true
salience 103
when
 f0: Field(key == "VALUE",
 value == "REACHED")
 m : Message(msgType == "AAAA",
 fields contains f0)
 r: Rule(ruleID == 1)
 then
 r.setVerified(true);

 modify(r);
end

In order to achieve the result wanted for every
end-user given rule, the ATM-Console first creates a
Java object Rule, which contains the message
information that we want to verify, and then it builds
an entry for that information in the DRL file.

Apart from the facts coming from test output
files, the ATM-Console also asserts Rule objects in
the Working Memory. The subsystem uses those
objects to bind rules, so implementing dependence
relationships.

As Example 2 shows, when a rule has been
verified, the ATM-Console sets the isVer if ied
object attribute to true, which propagates to linked
rules, so activating their checking.

Example 2: Rule binding.

rule rule3
no-loop true
salience 4
when
 f0: Field(key == "VALUE",
 value == "START")
 m : Message(msgType == "AAAC",
 fields contains f0)
 r: Rule(times: receivedTimes,
 ruleID == 8)
 r0: Rule(ruleID == 2,
 isVerified == true)
 eval(r.verifyBoundRuleTime(
 times, r0);
then
 r.setVerified(true);
 modify(r);

Additionally, concerning Rule’s programming
good practices, Example 2 shows that it should be as
lower the sal ience of a rule as greater is the
number of binds of that rule: i.e. the greater a rule
depends on other rules, the lower should be its
priority. By the way, let us also note that, in order to
avoid recursion, the attribute no- loop was set to
true both in Example 1 and Example 2.

Moreover, those examples show that using the
following pattern, the ATM-Console can test
whether there is an object (o) of class Class in the
Working Memory, which attributes a1 and a2 are
set as x and y, respectively:

o:Class (a1 == x, a2 == y)
Furthermore, Example 2 shows another

important issue: based on the DRL, it is possible to
invoke Java functions indirectly by the eval
instruction, in case of LHS part of a rule, otherwise
directly (rule’s RHS).

Every change that can affect rules' checking has
to be notified to the Working Memory, which
contains all asserted facts, and this is made by
invoking the method modify(o) for the modified
object o .

If a fact isn’t yet true, it can be removed from the
Working Memory by calling the method
retract(o) .

As already mentioned, fields are stored in
Message object as a variable List, and thanks to the
Drools' operator contains, the ATM-Console can
easily verify if any of the fields of a Message's
instance contains specified key and value.

5 CASE STUDY

This section describes a comparative study between
the execution’s modality of the validation activity,
as currently many industrial sites adopt, the
reference company for this paper included, and the
modality introduced by the sub-system ATM-
Console.

Because it is very high the complexity of the
systems that we are addressing, like Command and
Control systems or safety critical systems, many
loops are performed on development and testing in
the software life-cycle. In practice, testing and
validation are continually repeated until the system
satisfies all the defined requirements. Currently, the
reference company validation activities are manually
performed. Due to the confidential nature of data
object of this study, the reference company does not
allow to disclose details about the test results.

In case of manual validation, the effort of
validation activities depend on the following factors:

• Human Knowledge (HK): Validation
implies the knowledge of the problem
domain.

• Analysis of Results (AR): Validation always
implies an analysis on test results

Practically, analyzing and correlating many
thousands of complex messages are the activities to

USING RULE-BASED ENGINE TO SUPPORT TEST VALIDATION MANAGEMENT OF COMPLEX
SAFETY-CRITICAL SYSTEMS

141

perform for manual validation. Those messages are
stored and eventually distributed on many files.
Typically, each message has hundreds of fields to
check.

Vice versa, it is independent on HK and AT, the
automatic validation, as executed through the ATM-
Console system. In fact, it describes test cases and
procedures for qualification testing, the Software
Test Description (STD), as defined in the MIL 498
standard (DOD, 1994). In practice, the STD reports
on a list of indications, like:

• Do (Test object)
• Control ... (Validation object), where such

a control is like Verify if X exists
after/before/within Y.

Let us note explicitly that a standard compliant
ATM end-user is in the only responsibility of
entering the STD information into the ATM GUI.

The STD document is arranged in a tree
structure. The root level defines a list of Formal
Qualification Testing (FQT); each FQT defines a set
of Tests Cases. Each Test Case includes many
Checks.

Referring to application systems as the industry
nowadays typically develops, and taking into
account average values, an STD contains 250
FQT(s), each FQT defines 20 test cases, each made
up on 10 Checks.

In case of manual validation, let each test case be
performed in the average period AT. This results
from the sum of two times, AT1 and AT2:

• AT1: Localization of the Meaning
Information (e.g. e set of messages).
Typically, the end user has to locate, inside
the test result files (thousand of lines), the
information that is meaningful for the test
case.

• AT2: “Meaning Delay”. Time necessary to
check the detected meaningful information.

The following factors influence AT1:
• Total of the expected messages.
• Message throughput (average m/s).
• Duration test time.
• Triggers’ complexity (boundary place).
• Number of source files.

The following factors influence AT2:
• Verification difficulties.
• Number of field for each message.
• Message heterogeneity.
• Number of messages.

To the best of our knowledge, it is observed
that on average, for a single human resource, AT1 is
5 minutes, and AT2 is 10 minutes.

The overall time to manually perform a typical
STD verification activity follows:

ManMonths

ANANATATAT TCFQTV

8

**)(21

≅

≅+=

where: ATv indicates the average time to complete a
validation activity, ANFQT is the average number of
the expected FQT for a validation activity, and ANTC
is the average number of expected Tests Cases for
every FQT.

In case of ATM-Console-based automatic
validation, only the time necessary to insert
validation rules affects the validation time. For such
insertion activity, we observed an average time of 10
minutes for every test case, which is made up on an
average of 10 Checks of medium difficulty, and with
several links between the various Checks.

As it has been previously mentioned, the
reference company’s software systems are subjected
to repeated validation activities. Thus, ATM-
Console introduces a remarkable improvement in
terms of saving both time and human resources: in
fact, starting from the second validation activity, in
which the whole Rule Set concerning the various
test cases is already available, we observed that the
execution validation time duration is 20 seconds for
each test case in the average.

Therefore, in case of automatic validation, it
shows:

ManMonthsANANAT

ANANATAT

TCFQTTC

FQTTCinsVAUT

5)**(

)**(

≅+

+=

where: ATins=10 minutes is the average time for
inserting the test case in the GUI form, and
ANTC=20, ANFQT=250. Additionally, ATTC=20
seconds indicates the average time to execute the
automatic validation of such a test case.

Rather, for the subsequent validation activities, it
disappears the last equation’s first addend, which
represents the insertion time of the Checks’
characteristics, thanks to the ATM-Console’s feature
to hold the history of any test case. Therefore, it
shows:

ManHours

ANANATAT TCFQTTCVAUT

27

)**(

≅

≅=

This outstanding result concerns just the
validation activities, without taking care of the time
for inserting rules, and reports a 97,8%
improvement. Also taking in count the insertion of
the validation rules, it registers a 25% improvement
the time spent for automatic validation compared to
the manual validation.

ICSOFT 2007 - International Conference on Software and Data Technologies

142

Because the considerations above result from a
case study, their validity is threaten and they need
confirmation by extensive accreditation in field.

6 CONCLUSIONS AND FUTURE
WORK

In order to configure the validation rules and execute
the validation process of medium/large safety-
critical systems by utilizing the power offered by an
open-source Rule Based Engine, this paper
presented the concept and architecture of a novel
flexible subsystem that we designed and developed
to remotely control the simulation of some
application system components (one simulated
component in the present version of the subsystem)
and their interactions with the remaining real
distributed components for failure identification.

Results from an industrial case study shows that
the presented subsystem could provide great support
in performing distributed systems testing, saving
management and execution efforts that relate to
tedious complex operations, and assuring a very
interesting return on investment.

Using rule engines to perform test validation of
safety-critical systems could have a large exploit in
future, such as is happening in the application
domain of business management. In such a scenario,
it could deliver significant benefits the improvement
of the presented subsystem by including validation
criteria for test configuration and providing features
to select the criterion to apply from a given set of
those criteria.

ACKNOWLEDGEMENTS

Authors would like to thank people in the Division
of Applied Software Research of the MBDA-Italy
Spa for the support provided in analysis, design, and
realization of the ATM-Console subsystem.

REFERENCES

Archer G., Saltelli A., Sobol I. M., 1997 Journal of
Statistical Computation and Simulation. Taylor &
Francis.

Bollobas B., 1998. Modern Graph Theory, Springer
Verlag.

DOD, 1994. Software Test Description,
http://www2.umassd.edu/swpi/DOD/MIL-STD-
498/STD-DID.PDF.

Fair Isaac, 2007. Blaze Advisor Online Documentation.
http://www.fairisaac.com/fic/en/product-
service/product-index/blaze-advisor/, 29 March 2007.

Forgy C. L., 1982. Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, North Holland Conference, pp. 17 – 37.

Grillo A., Cantone G, Di Biagio C., Pennella G., 2007.
Automatic Test Management of Safety Critical
Software: The Common Core - Behavioral Emulation
of Hard-Soft Components, Proceedings of ICSOFT
2007 (to appear).

ILOG, 2007. JRules Online Documentation.
http://www.ilog.com/products/jrules/, 29 March 2007.

JBoss, 2007 JBoss Rules Online Documentation
http://labs.jboss.com/portal/jbossrules/docs.

Jungnickel D., 2003. Graphs, Network and Algorithms,
Springer.

Liu F., M. Yang, Z. W.-S. Wang, 2005. Design and
development of an expert system-like validation tool
for distributed simulation systems., In Fifth IEEE IC
on Machine Learning and Cybernetics, CS Press.

Min F.-Y., Yang M., Wang Z.-C., 2006. An intelligent
validation system of simulation models. In Fifth IEEE
International Conference on Machine Learning and
Cybernetics.

Miranker D.P., 1990. TREAT: A New and Efficient Match
Algorithm for AI Production Systems. In Research
Notes in Artifical Intelligence. Pitman Publishing Ltd.

Don Batory, 1994. The LEAPS Algorithms. In
Technical Report 94-28, Department of Computer
Sciences, University of Texas at Austin.

Sandia Lab., 2007. Jess Online Documentation.
http://herzberg.ca.sandia.gov/jess, 29 March 2007.

Sun, 2007. Getting Started With the Java Rule Engine API
(JSR 94): Toward Rule-Based Applications.
http://java.sun.com/developer/technicalArticles/J2SE/J
avaRule.html.

Turing A., 1950 Computing machinery and intelligence. In
Mind, vol. LIX, no. 236, pp. 433-460.

Walczak S., 1998. Knowledge Acquisition and
Knowledge Representation with Class: the Object-
oriented Paradigm. In Expert Systems with
Applications, No. 15, pp.235 - 244.

Wohlin, C., Petersson, H., and Aurum, A., 2003.
Combining data from reading experiments in Software
Inspections. In Juristo, N. and Moreno, A. (eds.)
Lecture Notes on Empirical Software Engineering,
World Scientific Publishing.

USING RULE-BASED ENGINE TO SUPPORT TEST VALIDATION MANAGEMENT OF COMPLEX
SAFETY-CRITICAL SYSTEMS

143

