
MORE EXPRESSIVE PLANNING GRAPH EXTENSION

Joseph Zalaket and Guy Camilleri
Département informatique, Université Saint-Esprit de Kaslik,B.P. 446 Jounieh, Liban
IRIT CSC, Universit́e Paul Sabatier,118 route de Narbonne, 31062 Toulouse, France

Keywords: AI Planning, planning graph, numerical planning, functional planning.

Abstract: The most of the real world problems have characteristics that can not be handled like pure propositional
expressions. Many classical planners have been extended to deal with more expressive problems which require
features like temporal actions, numeric functions, conditional effects, ... etc. Extensions have been made to
planners like (D. and D., 1999), MetricFF02, (Do and Kambhampati, 2001), which use the planning graph as
their base structure. However, each of these extensions deals with the one or the other of the features required
for more expressive planning problems without being able to integrate all or at least an important combination
of these features. In this paper, we propose an extension to the planning graph structure to deal with more
expressive planning problems that can contain real word data characteristics, such as: symbolic, temporal and
numeric data.

1 INTRODUCTION

The domain independent-planning still a complex
problem. The most of the domain-independent plan-
ners are able to solve symbolic planning problems
but, real-world problems necessity dealing with more
complex types of data such as temporal and numeric
data. This kind of data requires features like numeric
function and temporal actions to be added and sup-
ported by the planning process. Some planners have
been extended to deal with some real world knowl-
edge, and thus, to support one or the other of these
features. Planners like SAPA (Do and Kambham-
pati, 2001) and Metric-FF (Hoffmann, 2002) have
extended their heuristic search to deal with numeric
knowledge. However, to combine multiple features
which can be necessary to solve some more real-
world problems in a domain-independent planner still
a complex task. In the other hand, many planners
are using the planning graph structure as their base
for exploring the state space due to its compact struc-
ture. After its introduction in Graphlan (Blum and
Furst, 1995) as its basic expansion graph, the plan-
ning graph became the subject of multiple extensions
to solve directly some more expressive problems like

temporal Graphplan (TGP) (Smith and Weld, 1999)or
to serve as a base to calculate heuristic function for
such problems like in like SAPA (Do and Kambham-
pati, 2001) and Metric-FF (Hoffmann, 2002). In this
paper we propose a general extension to the planning
graph, which allow it to deal with functions appli-
cation. The functions that we propose can be incor-
porated into the action effects and/or the action pre-
conditions. This extension allows the planning graph
to support all types of features that are necessary to
deal with more expressive planning problems, such as
problems that contain numeric and temporal knowl-
edge. In our extension we introduce the application
of functions during the planning graph expansion, in
a way that the results of these functions can be in-
corporated within the nodes of this graph and thus
they can be treated as any other type of nodes. Us-
ing functions application will allow us to deal with
any combination of features required for solving some
real world problems as the functions that we propose
can be written in any programming language without
restrictions to their implementation. Therefore, the
extended planning graph can be used directly as an
expansion phase graph as in Graphlan-like planners
(Blum and Furst, 1995), (Smith and Weld, 1999) to

424

Zalaket J. and Camilleri G. (2007).
MORE EXPRESSIVE PLANNING GRAPH EXTENSION.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 424-427
Copyright c© SciTePress



solve planning problems or it can also be used as the
base graph to calculate heuristics as in FF-like plan-
ners (Hoffman, 2001), (Hoffmann, 2002).

We first present the motivation for our work in sec-
tion 2. We then present an overview of the planning
graph structure in section 3. We present the extension
to the definition of the planning problem in section
4. We explain the planning graph extension to han-
dle numerical variables and functions application in
section 5. We finally conclude this paper in section 6.

2 MOTIVATION

Many extensions have tried to adapt the planning
graph to solve more expressive planning problems
than those that can be expressed in pure propositional
STRIPS language. Real-world problems have com-
plex characteristics. Most of these characteristics can
be modeled with the PDDL3.0 (A. and D., 2005) lan-
guage which is the mostly used by recent planners.
Therefore, PDDL3.0 gives the possibility of express-
ing optimization criterion such that maximization or
minimization of resource consumption, without be-
ing able to represent all king of resource handling.
The extension that we propose to the planning graph
structure aims to allow this graph to supprot the exe-
cution of functions. Functional Strips (Geffner, 1999)
and FSTRIPS (Schmid et al., 2000) have studied the
integration of functions to solve planning problems.
Functional Strips and FSTRIPS use functions instead
of relations, which allow reducing the generated lit-
erals in a planning problem. In our work we intro-
duce the function application which allow us to rep-
resent complex numerical and conditional effects, as
well as complex preconditions and goals. For exam-
ple, to plan the motion of a robot that is expected
to travel from an initial position to a target position
in the presence of physical obstacles in its environ-
ment. To avoid collisions between the robot and the
obstacles we have to use trigonometric functions that
allow the robot to follow a circular path in the en-
vironment (BAK M. and O., 2000). Trigonometric
expressions are simple to be solved by classical pro-
gramming languages, but they can not be expressed
in classical AI planning languages like PDDL3.0. For
this reason our extension to th planning graph is based
in the integration of functions written in any program-
ming language. Inspiring from the representation of
functions in object-oriented databases. We add to the
problem definition written in PDDL3.0 the declara-
tion of external functions by specifying their execu-
tion path. In addition to their capabilities of solving
numerical problems like the circular movement of a

robot, external function are able to handle all kind of
conditional and probabilistic effects. To avoid all kind
of side effects we restrict all the formal parameters of
a function to be constant, which mean a function can
only return a value without updating any state vari-
able. This returned value is affected to one state vari-
able at a time.
The use of non-bijective functions requires that their
application in the search space could be done only in
forward. As the planning graph is constructed in pro-
gression, thus it can support the application of this
kind of functions.

3 PLANNING GRAPH

Because The planning graph introduced in Graphplan
(Blum and Furst, 1995) is the basis of our extension,
we briefly summarize the planning graph structure
without detailing how it is used by the Graphplan al-
gorithm.

A planning graph consists of a sequence of levels,
where level 0 corresponds to the initial state. Each
level contains a set of literals and a set of actions. The
actions of a level are those that have their precondi-
tions satisfied and mutually consistent by the literals
of the same level. The literals of a next level i+1 are
the effects of the applicable actions of previous level
i. The literals that satisfy the preconditions of action
instances at the same level are connected with these
actions via direct edges. Also, the action instances
are connected via direct edges with their literals
effects at the next level.

The planning graph is expanded up to a level in
which all the literals of the goal are present and con-
sistent. Then, a solution extraction phase can start
in a way that for each sub-goal at the last level n, it
tries to find an action instance at level n-1 that has
this sub-goal as an add effect. The preconditions of
the selected action instances become the new set of
sub-goals at level n-1 and so on until reaching the ini-
tial state (level 0).

4 PLANNING PROBLEM
EXTENSION

Each distinct instance of the world is called a state,
denoted bys. The set of all possible states is called a
state spaceS. S is formed by two disjoint sets: a set
of logical propositionsP and the set of numeric vari-
ablesN, such thatS= {(p,n)/p∈ P,n : N → R}.

MORE EXPRESSIVE PLANNING GRAPH EXTENSION

425



We denote byP(s) the subset of logical propositions
of a statesand byN(s) the subset of its numeric vari-
ables.
A state transition functionst transformss into s′ =
t(s,a) by 3 ways:

• Adds logical propositions toP(s)

• Removes logical propositions fromP(s) (when
propositions become false)

• Assigns new values to existing numeric variables
in N(s)

An action a is defined as a tuple〈arg, pre,e f f〉,
where:

• arg is the list of arguments made by variables
which represent constant symbols and/or numeric
variables inN.

• pre= preP∪ preN is the list of preconditions.
preP defined overP are propositional pre-

conditions
preN are numeric preconditions, such that:

∀c ∈ preN, c = (nθg), where n ∈ N, θ ∈
{<,≤,=,>,≥} andg is an external function or
an expression.
Definition-1: An expression is an arithmetic ex-
pression over N and the rational numbers, using
the operators +, -, * and /.
Definition-2: An external function is written in a
high level programming language on the form of
type f(n1,n2, ,nm) where arguments n1,n2, ,nm∈
N. The function and all its arguments (if exist) are
declared as constants in a way that the function
calculate and return a value without affecting any
numeric state variable.

• e f f = e f fP∪e f fN is the list of effects.
e f fP defined overP are positive and negative

propositional effects that add or remove litterals.
e f fN are numeric effects, such that:

∀e∈ e f fN, e= (n := g), wheren∈ N andg is an
external function or an expression.

A planning problem is defined as:

1. A nonempty state spaceS, which is a finite or
countably infinite set of states.

2. For each states∈ S, a finite set of applicable ac-
tionsA(s).

3. A state transition function f that produces a state
s′ = f (s,a) ∈ S for everys∈ Sanda∈ A(s).

4. An initial statesI ∈ S.

5. A set of goal conditionsG satisfied insG ∈ S.

The set of goal conditionsG = GP∪GN, where:
GP defined overP are propositional goals andGN
are numeric goals that should be satisfied in the
goal statesG, such that:∀l ∈GN, l = (nθg), where
n ∈ N, θ ∈ {<,≤,=,>,≥} andg is an external
function or an expression.

5 PLANNING GRAPH
EXTENSION

In this section we present an extension to the plan-
ning graph structure to support numeric variables han-
dling and external functions executions. We start the
creation of the planning graph by instantiating the
propositional variables of all the actions of the plan-
ning problem. This instantiation is done once before
the graph expansion by substituting the propositional
variables by all the combinations of the world ob-
jects. Therefore, none of numeric variables are substi-
tuted before the planning graph expansion process.//
We initialize the fact level 0 to the initial state of the
planning problem then we loop while the goal is not
satisfied at the current fact level which is initially the
level 0. For each one of the previously instantiated
actions, we test first if all the propositional precondi-
tions preP exist in the current level. If the first test
is successful then we proceed to test the numerical
conditionspreN otherwise, we skip this second test.
If the numerical preconditionspreN of the action are
satisfied in the current level we add this action to the
applicable actions list of the current action level. For

rotate(Position p1, Position p2, robot r)
pre: p1 6= p2, at(r, p1), fcos(cont shortθ)≺ 1
eff: at(r, p2), ¬at(r, p1), θ :=frotation(const shortθ)

Figure 1: An action with external functions.

example, in the action rotate (fig.1) the first condition
p1 6= p2 is tested at the propositional instantiation of
the actions as the condition concerns only world ob-
jects which are not covered by a relation (not a literal)
or an external function. This kind of tests avoids in-
stantiating non useful actions from the beginning. The
second conditionat(r, p1) is a literal so it belongs to
the propositional preconditionspreP and it is tested
first for choosing the applicable actions at the current
level. Suppose thatat(r, p1) exists in the current fact
level thus, the algorithm will proceed by testing the
external function ”fcos()” for the value of the formal
parameterθ passed from the current fact level. If the
value returned by ”fcos()” is less than 1, then this ac-

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

426



tion will be added to the applicable actions of the cur-
rent action level.

At each action level, the numeric variables of an
action are instantiated just before the action applica-
tion at this current level. This instantiation is done
by replacing the variables by the corresponding val-
ues from the current fact level. This technique of
”‘on the fly”’ instantiation allows avoiding the flood
of numeric values and can be used for continuous and
discrete numeric values. Only the variables that are
parameters of external functions and the right hand
side numerical variables of expressions are instanti-
ated from the current fact level. All these on the fly
instantiated variables are added implicitly to the ac-
tion preconditions by direct edges. These edges to
implicit preconditions will allow us to follow the trace
of the functions application within the planning graph
during the extraction process. We run through the
planning graph during the extraction of a plan with-
out making difference between implicit and explicit
preconditions. This technique allows us to use black
box functions because we are only concerned by the
parameters and the returned value of a function to fol-
low its trace through edges during the planning pro-
cess. After all actions are instantiated propositionally
and numerically at the current level, the application of
these actions can take place.

The application of actions at the current action
level will lead to the creation of the next fact level.
Positive propositional effects ine f fP of an applica-
ble actiona are pointed as added bya to the next fact
level and negative effects are pointed as deleted by
a from the current fact level using edges. For each
numerical variable which is assigned to an external
function or to an expression at the numerical effects
in e f fN, the old values of these variables are pointed
as deleted bya from the current fact level and the
new values returned by functions or expressions are
pointed as added bya to the next current level. This
organization of numerical effects will allow a uniform
representation for all types of values and thus, the run
through the graph will not be affected by the function
results. From now on, the next fact level becomes the
current fact level and the loop continue until the goal
conditions are found at this current fact level or until a
sufficient condition indicates that the problem has no
solution.

6 CONCLUSION

In this paper we proposed an extension to the plan-
ning graph construction algorithm in order to allow
it supporting the application of functions written in a

given programming language. This extension allows
the application of functions in a planning graph irre-
spective of their contents. As the planning graph is
build in a forward pass the parameters and the results
of the functions can be registered consequently during
the graph construction process. During the extraction
of a plan in a backward pass the algorithm is only con-
cerned by the graph nodes from which it finds a solu-
tion by following the direct edges of the graph. We
have proposed a method to instantiate numeric vari-
ables dynamically, in a way that the instantiation of
these variables is done step by step during the graph
expansion process. This technique resolves the prob-
lem of the flood that can be generated by the numeric
domains and allows handling continuous and discrete
numerical domains during a planning task.

REFERENCES

A., G. and D., L. (2005). Plan constraints and preferences
for PDDL3. Technical Report Technical report, R.T.
2005-08-07, Dept. of Electronics for Automation, U.
of Brescia, Brescia, Italy.

BAK M., P. N. and O., R. (2000). Path following mobile
robot in the presence of velocity constraints. Tech-
nical report, Kongens Lyngby, Denmark : Technical
University of Denmark.

Blum, A. L. and Furst, M. L. (1995). Fast planning through
planning graph analysis.Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI95), pages 1636–1642.

D., S. and D., W. (1999). Temporal planning with mutual
exclusion reasoning.16th International Joint Confer-
ence on Artificial Intelligence (IJCAI99).

Do, M. B. and Kambhampati, S. (2001). Sapa: A domain-
independent heuristic metric temporel planner.In
Proceedings of the European Conference on Planning
(ECP 2001).

Geffner, H. (1999). Functional strips: A more flexible lan-
guage for planning and problem solving.Logic-based
AI Workshop, Washington D.C.

Hoffman, J. (2001). FF: The fast-forward planning system.
AI Magazine, 22:57 – 62.

Hoffmann, J. (2002). Extending FF to numerical state vari-
ables. In Proceedings of the 15th European Confer-
ence on Artificial Intelligence, Lyon, France.

Schmid, U., M̈uller, M., and Wysotzki, F. (2000). Integrat-
ing function application in state-based planning.Sub-
mitted manuscript.

Smith, D. and Weld, D. (1999). Temporal planning with
mutual exclusion reasoning.In Proceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99).

MORE EXPRESSIVE PLANNING GRAPH EXTENSION

427


