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Abstract: This paper describes a mobile robotic platform and a software framework for applications and development 
of robotic experiments integrating teleoperation and autonomy. An application using supervised learning is 
developed in which the agent is trained by teleoperation. This allows the agent to learn the perception to 
action mapping from the teleoperator in real time, such that the task can be repeated in an autonomous way, 
with some generalization. A radial basis function network (RBF) trained by a sequential learning algorithm 
is used to learn the mapping. Experimental results are shown. 

1 INTRODUCTION 

In robotics navigation problems, including learning 
or not, navigation techniques must be tested in real 
robots to be useful (DORIGO, 1996). This is due to 
the uncertainties involved, non uniformity of sensors 
measurements and real time requirements. To deal 
with these severe characteristics, this paper proposes 
a mobile robotics platform developed in a modular 
and hierarchical way, to be used in real time 
autonomy studies. The objective is to create a 
flexible development environment for studies in 
which teleoperation can be easily integrated with 
autonomous operation. The idea is to join 
teleoperation with supervised learning in a way that 
innate or prior knowledge can be acquired, or that an 
agent can be taught to realize specific navigation 
tasks. Such possibility allows a robotic agent to learn 
with its own operation. Kaelbling (1996) points out 
that without prior knowledge an agent can not learn 
with effectiveness. Unsupervised learning 
techniques, as for example reinforcement learning, 
have a long convergence time and do not provide 
operational agents from the beginning. Therefore, it 
is important to mix such methods with supervised 
ones (Ye et al., 2003; Er and Deng, 2005). 

 Although miniature like robots, as for instance 
the Khepera (Mondada et al., 1993), have been used 
in studies and papers related to autonomous robotics, 
as in Er and Deng (2005), it is more realistic to 
perform the same experiments using larger robots 
due to the dynamic effects associated, which places 

them closer to real service robots. For this reason, 
we decide to build a mobile robotic platform with 
dynamic characteristics that could be applied in a 
flexible way to navigation and learning experiments. 
In this sense, the platform allows sensory-motor data 
to be stored and recovered during or after operation, 
and new sensors to be added and configured 
according to the application.  

Differently from Ye et al. (2003) and Er and 
Deng (2005), in our work the supervised learning 
takes place in a real environment, not in a simulated 
one, and in real time. The objective is to teach the 
agent to perform simple navigation tasks using 
ultrasound sensors.  

In order to have incremental learning with some 
generalization, a radial basis function neural network 
(RBF) is developed. We adapted the resource 
allocation algorithm proposed in Platt (1991) for the 
function interpolation field, to obtain supervised 
learning in real time, while the robot is teleoperated. 
In this aspect, our work is also different from 
Reignier et al. (1997), where the supervised learning 
is off line, implemented in a GAL (“Grow and 
Learn”) network, with results verified in simulation. 

This paper is organized as follows. Section 2 
describes the platform and the software framework 
developed. Section 3 introduces the supervised 
learning application. Section 4 presents some 
experimental results that we got until now.  Finally, 
conclusions are drawn in Section 5. 
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2 THE ROBOTIC PLATFORM 

The robotic platform in its present version is 
designed for indoor experiments. It measures 50 cm 
(diameter) by 80 cm (height) and weights 40 kg. In 
the sequence we describe some aspects of its 
hardware and software architectures.  

2.1 Hardware Architecture 

A block diagram of the robotic system is shown in 
Figure 1. The control of the robot locomotion is 
accomplished by two motor wheels, powered 
independently by two DC motors, using differential 
steering (Dudek and Jenkin, 2000) and a caster 
wheel. The platform has an image module, and 
seven ultrasound sensors distributed in its frontal 
side. The sensors are allocated in a way that objects 
on the floor can be detected. A digital compass and 
an angular sensor connected to the caster allow 
sensorial integration techniques to be exploited to 
assist in the navigation. Two incremental encoders 
are used for odometry and velocity control. Collision 
sensors protect the robot lower perimeter. Other 

sensors can be added to the platform using a 
synchronous serial interface available in the system, 
so that the user can configure it to different types of 
studies and experiments. 

Figure 1: Block diagram of the robotic system. 

The hardware architecture is arranged in 
hierarchical processing modules, each one 
responsible for some of the tasks involved in the 
mobile robot control. There are four main modules:  
the Management Module, the Motors Control 
Module (MCM), the Power Module and the Sensors 
Control Module (SCM). The Management Module is 
responsible for the coordination of the robotic unit. 
Currently a PC on board computer is used for this 
function. It runs the software framework, described 
in the section 2.2, for developing of user’s 
applications. The Power Module is responsible for 
the steering of the motor wheels under control of the 
MCM. The Motors Control Module implements two 
PID (proportional plus integral plus derivative) 
controllers in parallel, allowing independent velocity 
control of each wheel. The SCM module permits 
acquiring data from the diverse sensors on the robot. 
It has a synchronous serial interface (I2C) for 
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sensors expansion and it can also provide for 
emergency stopping in case of collision. 

The platform also has wireless TCP/IP 
communication resources, allowing remote 
monitoring, data exchange and teleoperation. The 
energy system gives the robot at least one hour of 
navigation’s autonomy. 

2.2 Software Architecture 

The software environment provides the robot with 
autonomous navigation as well as teleoperation. The 
software architecture is divided in two main 
applications: The On Board Management Software 
(OBMS), running in the Management Module of the 
mobile platform, and the Remote Control and 
Supervision Software (RCSS), executing in a remote 
microcomputer. The communication between them 
is made using the Client-Server paradigm (Andrews, 
2000) and through the wireless network available in 
the system.  

A block diagram of the OBMS is shown in 
Figure 2. The architecture is arranged in four main 
levels: the Communication Level, the Management 
and Supervision Level, the Execution Level and the 
Software Interface.  

The Communication Level implements a TCP/IP 
server that is responsible for receiving commands 
from the remote microcomputer and sending data 
back to it. Simultaneous connections are possible 
and data can be exchanged with more than one 
remote microcomputer if desired. The Management 
and Supervision Level deals with the commands 
received at the TCP/IP server, interpreting and 
executing them. This level also performs the 
management of the mobile unit concerning its 
operation mode, autonomous or teleoperated, which 
is controlled through commands sent by the RCSS.  
The effective control of the robot is made in the 
Execution Level, which implements the operation 
modes. This level is easily adapted to the application 
required using a library of functions available to the 
user. Each operation mode has a template which the 
user can modify or adapt to his own necessities.  In 
the application described in this work, the learning 
algorithm is added to the teleoperation mode and the 
learned neural network is recovered and executed in 
the autonomous mode. The Software Interface 
isolates the hardware aspects of the robot creating an 
application program interface (API). This permits 
that hardware modifications can be made without 
any change in the other levels of the architecture, 
supplying modularity. 

The software framework has a multithreaded 
architecture (Andrews, 2000), which is adequate to 

implement real time applications.  

Figure 2: Block diagram of the OBMS. 

Sensory-motor data are stored in a data base for 
analysis and utilization. Sensory-motor coordination 
aspects (Pfeifer and Scheier, 1997) can then be 
exploited in the training and learning of autonomous 
agents.  A global data structure allows data exchange 
among the several software modules in execution.  

The RCSS has the main objective of informing 
the OBMS concerning the operation mode requested 
by the user. In the teleoperation mode, the robot is 
controlled through a joystick connected to the 
remote microcomputer. A TCP/IP client in the 
RCSS communicates with the OBMS allowing 
messages and commands exchange. 

3 APPLICATION: LEARNING 
EXPERIMENTS 

Using the facilities of the platform, a supervised 
learning application, assisted by teleoperation, was 
developed. An RBF neural network was trained in a 
sequential way appropriate to real time applications. 
The network starts with no computational units and 
grows by allocating units (hidden units), or centers, 
based on the “novelty” of an observation. The 
novelty is characterized by two joint criterions: the 
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distance criterion and the prediction error criterion. 
The former is based on the distance between the 
input pattern observed and the network units. The 
latter uses the errors among the desired outputs and 
the network ones due to the input pattern. The 
network forms a compact representation and it has a 
quick learning. Learning patterns do not have to be 
repeated. The units only respond to a local region of 
the space of the input values, making easy the 
incremental learning. If a new pattern is presented to 
the network and the joint criterion is satisfied, a new 
unit is allocated. Else, the network parameters are 
update using the LMS (Least Mean Square) 
algorithm. Instead of using LMS, an algorithm based 
on the extended Kalman filter (EKF) has been 
proposed in the literature (Kadirkamanathan and 
Niranjan, 1993) to speed up the convergence of the 
network. Because of the computational complexity 
involved in the EKF, requiring longer processing 
time, we decided to use LMS in our real time 
application. The experimental results in section 4 
show that our choice was sufficient for the 
navigation tests that were realized, allowing the 
training of the robot to the tasks proposed. It is not 
our objective in this work to minimize the number of 
teleoperations for learning, so the speed of 
convergence of the network is not our main 
approach.  

In our proposal, teleoperations are used for 
training an RBF network that has the seven 
ultrasound sensors of the platform as input pattern 
and the angular velocities of the two motor wheels 
as outputs. The network parameters are updated in 
real time during the teleoperation and stored in the 
end of the training. A new teleoperation can be made 
with the network starting with the stored parameters. 
The autonomous mode implements the learned 
network in such a way that the robot can repeat the 
task with some generalization. This means that the 
robot produces coherent outputs for similar inputs, 
although not equal to those encountered during 
training. If the performance is not good, the platform 
allows that new teleoperations can be made, starting 
from the parameters that have already been learned.  

The learning algorithm, adapting from Platt 
(1991), Kadirkamanathan and Niranjan (1993), is 
described mathematically as follows, where:  x(n) is 
the input pattern at the instant n; yj(n) is the angular 
velocity desired for each wheel ( j=1,2); sj(n) are the 
network outputs; uk is the unit k of the network; wjk 
is the weight connecting the unit k to the output j; 
ε(n) is the value of the distance threshold in the 
iteration n that inserts a new unit; εmax and εmin  are 
respectively the maximum and minimum values of 

ε(n); emin is the threshold to the network prediction 
error;  kd is the overlap factor to the network units; γ 
(0 < γ < 1) is a decay constant and unr is the nearest 
center to the input x(n). εmax and εmin represent the 
scale of resolution in the input space, respectively 
the largest and the smallest scale of interest.  

The network outputs are written as: 
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for k ≠ 0. 

 
Algorithm: 
 
In the first iteration (n = 0): 
ε(n) = εmax, wj0(n) = yj(n) (k = 0)  
For each observation (x(n); y1(n), y2(n)) 
  { 
     ej(n) = yj(n) – sj(n) 

If |ej(n)| ( }2,1{∈∀ j ) > emin and ||xn-unr|| > ε(n) 
    Allocate a new unit: 
     um+1 = x(n) 
     wj(m+1) = ej(n)         
     If it is the first unit 
         σm+1 = kd ε(n) 
     Else  
         σm+1 = kd ||x(n)-unr|| 
 Else execute LMS 
ε(n) = max{ εmax γn, εmin}  

    } 
 

The updating of the network parameters in 
accordance with the LMS algorithm is given by 
equations (3) and (4). The time index n was omitted 
for clarity. Equation (3) is the correction term for the 
component i of each center k. The dimension of each 
unit is d, the same of the input pattern (i = 1, 2, …, 
d). The correction to the weights is given by 
equation (4). In both equations η is the learning rate.  
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4 EXPERIMENTAL RESULTS 

Experiments were performed to verify the robot 
ability to learn the perception to action mapping 
from the teleoperator in real time, checking if the 
mobile unit can repeat the navigation task 
autonomously. The parameters values used in the 
tests were: εmin = 0.03, εmax = 0.5, γ = 0.9, η = 0.3 and 
kd = 0.5. The input and output data used to train the 
network were normalized in the range [-1, 1].  
Figure 3 shows the results of teleoperating the robot 
in a corridor with a turn to the right. 
 

Figure 3: Navigating in a corridor with a turn to the right. 

The training consisted of three teleoperations, 
each one starting at a different initial position. In the 
figure, the solid lines represent the trajectories 
executed during the training and the dashed ones are 
the routes performed autonomously by the robot. 
The trajectory is the path traversed by the medium 
point between the two motor wheels. It should be 
remembered that the unit has a diameter of 50 cm. 
The training resulted in a network with 121 units.  

The idea of the experiments was to demonstrate 
the capacity of the method in acquiring reactive 
movements such as wall-following and obstacle 
avoidance. In Figure 4 the robot goes around an 
obstacle. Four teleoperations were realized for 
training, resulting in a network with 119 centers. 
After the learning phase the autonomous mode was 
activated and the agent executed the task with 
success.  

The agent was also trained to make a path in the 
shape of an 8 around two obstacles.  Figure 5 shows 
the test environment.  

 
Figure 4: Robot avoiding an obstacle. 

 
Figure 5: Robot in the test environment. 

A few teleoperations were realized to train the 
robot in this navigation task. In the autonomous 
mode, it was observed that the robot continued 
surrounding one of the obstacles instead of 
completing the 8 when arriving at the trajectory 
cross point. We then added the value of the digital 
compass available in the robotic platform to the 
network input pattern, in a way that the agent could 
infer the direction of the movement during the 
learning. Such alteration allowed the robot to 
complete the task autonomously. The initial training 
allocated 262 units in the network. Sometimes the 
robot did not complete the navigation task by itself 
with success. In those cases the autonomous mode 
was finished and the agent was teleoperated, 
completing the route. The incremental and local 
learning characteristics of the neural network 
allowed new units to be added to the network 
encompassing such situations. In the end a neural 
network with 935 units resulted.  

In Figure 6 we have some training trajectories 
(solid lines) and some paths realized by the robot 
when operating in the autonomous mode (dash and 
dash-dot lines). 
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Figure 6: Robot making a path in the shape of an 8. 

5 CONCLUSIONS 

The mobile robotic platform proposed showed to be 
efficient to the realization of teleoperated as well as 
autonomous experiments and studies. The 
navigation results obtained with the sequential and 
local learning algorithm used are promising. The 
results exhibited some generalization, although no 
specific experiment has yet been made to verify that 
more systematically. The technique can be applied, 
for instance, to get prior learning in reactive robotic 
applications, speeding up real time learning. 

As future work, real time pruning techniques 
should be developed and added to the algorithm to 
minimize the number of units in the neural network. 
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