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Abstract: The ANSER project (Airport Night Surveillance Expert Robot) is described, exploiting a mobile robot for 
autonomous surveillance in civilian airports and similar wide outdoor areas. The paper focuses on the 
localization subsystem of the patrolling robot, composed of a non-differential GPS unit and a laser 
rangefinder for map-based localization (inertial sensors are absent). Moreover, it shows that an augmented 
state vector approach and an Extended Kalman filter can be successfully employed to estimate the colored 
components in GPS noise, thus getting closer to the conditions for the EKF to be applicable. 

1 INTRODUCTION 

The work described in this paper is part of the 
ANSER1 project, an ongoing project for autonomous 
surveillance in civilian airports and similar wide 
outdoor areas2. Within this framework, a system 
composed of two parts is foreseen: a mobile 
autonomous robot (also referred to as UGV – 
Unmanned Ground Vehicle), whose sensors and 
actuators have been especially crafted to 
successfully perform night patrols, and a fixed 
supervision station, which is under direct control of 
a human supervisor. The main surveillance task is to 
detect differences between perceived and expected 
environmental conditions; in particular to verify the 
state of doors and barriers, to verify the presence of 
allowed/non allowed persons in the current area, and 
to identify unexpected objects. In ANSER, this is 
done through the combination of a laser rangefinder 
and an on-board panning video camera, and it 
obviously requires a sufficient accuracy in self-
localization to be able to recognize “what is normal” 
and “what is not” in a given area. A first system 
prototype is currently being tested at the Villanova 
d’Albenga Airport (Figure 6), where it is asked to 

                                                           
1 ANSER is an acronym for Airport Night Surveillance 
Expert Robot, and the Latin name for “goose” (referring to 
the Capitoline Geese which –according to tradition - 
neutralized a nighttime attack by the Gauls during the 
siege of Rome).  
2 Funded by the Parco Scientifico Tecnologico della 
Liguria (PSTL), www.pstliguria.it. 

patrol a wide outdoor area and the indoor Airport 
Terminal. 

In the last years several autonomous surveillance 
systems based on a mobile platform have been 
presented.   

A very interesting example in this sense is the 
MDARS project, a joint USA Army-Navy 
development effort (Heath-Pastore, et al., 1999). 
The MDARS goal is to provide multiple mobile 
platforms that perform random patrols within 
assigned areas of warehouses and storage sites, both 
indoor and in semi-structured outdoor environments, 
such as storage yards, dock facilities, and airfields. 
MDARS-E apparently meets the requirements of the 
ANSER domain. However, it is immediate to notice 
that high performance are obtained by over 
equipping the system with a huge set of different 
sensorial devices and – consequently – providing 
adequate onboard computing power to process the 
huge amount of available data. For example, the 
localization and navigation subsystem of MDARS-E 
requires the joint use of a differential GPS, a fiber-
optic gyro and the recognition of retroreflective 
landmarks via a laser-based proximity sensor. 

In (Saptharishi, et al., 2002) a network of mobile 
all-terrain vehicles and stationary sentries are 
exploited in an autonomous surveillance and 
reconnaissance system. The vehicles are equipped 
with video cameras, and are able to detect moving 
objects, classify them using a differential learning 
algorithm, and track their motion. Each robot relies 
for localization on a Differential GPS and an IMU 
(Inertial Measurement Unit); a PC/104 for the 
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locomotion task, and three networked PCs for 
planning, perception and communication are 
required.  

In (Vidal, et al., 2002) a team of UAVs 
(Unmanned Arial Vehicle) and UGVs pursue a 
second team of evaders adopting a probabilistic 
game theory approach (pursuit-evasion is a classical 
problem that had been deeply investigated (Volkan, 
et al., 2005)). Also in this case, the robots need 
enough computational power to manage a 
Differential GPS receiver, an IMU, video cameras 
and a color-tracking vision system.  

In (Rybski,et al., 2002) a multirobot surveillance 
system is presented. A group of miniature robots 
(Scouts) accomplishes simple surveillance task using 
an on-board video camera. Because of limitations on 
the space and power supply available on-board, 
Scouts rely on remote computers that manage all the 
resources, compute the decision processes, and 
finally provide them with action control commands. 

As one could expect, autonomous navigation and 
self-localization capabilities are a fundamental 
prerequisites in all these systems. This is the reason 
why, starting from a minimal configuration in which 
self-localization relies on an Inertial Measurement 
Unit (IMU) and a Carrier Phase, Differential GPS 
receiver (CP-DGPS) – see for example (Panzieri, et 
al., 2002; Schönberg, et al., 1995; Dissanayake, et 
al. 2001; Farrell, et al., 2000) -, a very common 
approach is to equip the mobile platform with a large 
set of sensors (video cameras, PIR sensor, RFID 
sensor, sonar, laser range finders etc.), thus 
consequently requiring a high computational power 
and complex data filtering techniques.  

In partial contrast with this “over equipping” 
philosophy, the ANSER self-localization sub-system 
relies only on a standard (non-differential) GPS unit, 
and on a laser rangefinder. Unfortunately, GPS data 
are known to be affected by low-frequency errors 
that cannot be modeled as zero mean, Additive 
White Gaussian Noise (AWGN), thus making 
simple state estimation approaches (e.g., Kalman 
Filter) unfeasible (Sasiadek, and Wang, 2003). As a 
main contribution, this work proposes to estimate 
the low-frequency components of GPS noise 
through an augmented state vector approach, similar 
to (Farrell, et al., 2000) (Martinelli, 2002). The 
paper shows that, by combining laser-based 
localization and GPS measurement, it is possible to 
estimate both the robot’s position and the non-AWG 
components of GPS noise.  

Section II briefly describes the localization 
techniques adopted; Section III theoretically 
investigates the properties of the approach, and 

carries out an observability analysis; Section IV 
presents experimental results obtained so far with a 
realistic simulator, and in a field set-up at the 
Villanova d’Albenga Airport. Conclusions follow.  

2 GPS- AND LASER-BASED 
SELF-LOCALIZATION  

2.1 Gps Based Localization 

A single non-differential GPS receiver provides the 
mobile robot with absolute position measurements, 
that can be employed to correct the estimate 
provided by odometry. Unfortunately, the 
measurement process is corrupted by different error 
sources, which are consequence of the receiver and 
the satellites clock bias, the atmospheric delay, the 
multi-path effect, etc. (Farrell, et al., 2000). The 
union of these errors is known as Common Mode 
Error, and it introduces into the GPS measure a 
greatly colored noise with a significant low-
frequency component.  Approximately, this can be 
modeled as a non-zero mean value in GPS errors 
that varies slowly in time (in the following, it will be 
referred to as a “bias” in GPS measurements).  

 
Figure 1: FFT of GPS latitude data. 

 
Figure 2: The estimated GPS bias. 
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The analysis of longitude and latitude data 
collected at a fixed location during 24 hours shows 
this effect: by considering the Fast Fourier 
Transform (FFT) of GPS longitude and latitude data  
(the latter is shown in Figure 1), low-frequency 
components can be noticed, corresponding to slow 
variation of the signal in time. By estimating this 
bias in GPS measurements, one can expect that – at 
least in theory – the precision of GPS data should 
improve, therefore making localization more 
accurate. The low-frequency component of latitude 
error is shown separately in Figure 2.  

To estimate the bias, an augmented state vector x 
is defined; x comprises both (x, y, θ) components of 
the robot’s position, and the (xGPS , yGPS) components 
of the low-frequency bias in GPS measurements. 
Notice that, by separating the colored components 
from Additive White Gaussian components of GPS 
noise, the system gets closer to the conditions for the 
Extended Kalman Filter to be applicable. When new 
measurements are available (i.e., both GPS data and 
the features detected by a laser rangefinders), the full 
state vector can be estimated through observations.  

2.2 Laser Based Localization 

When moving indoor, the robot is provided with an 
a-priori map of the environment; the laser-based 
localization subsystem simply updates the position 
by comparing this map with the features detected by 
the laser rangefinder.  

In particular, (Capezio, et al., 2006) describes in 
details how segment-like features are extracted from 
raw data and compared with the a-priori model: 1) 
line extraction produces a set of lines { jl }; 2) the 
Mahalanobis distance associated to each couple of 
line ( jl , im ) is computed (where { im } is a set of 
oriented segment lines that define the a-priori map); 
3) for each jl , the line im  for which such distance 
is minimum is selected and fed to the EKF.  

When moving outdoor, lines in the a-priori map 
correspond to the external walls of buildings. 
Obviously, a smaller number of features is available 
outdoor, since the robot mostly traverses areas 
where no buildings are present at all (especially in 
the Airport scenario). However, when features are 
available, they are sufficient to estimate the full state 
vector, and – under some assumptions – the estimate 
stays valid even when the laser cannot provide any  
further information. 

 

3 SYSTEM ARCHITECTURE 

As anticipated, the proposed approach relies on the 
idea of “guessing” the bias that affects GPS 
measurements at a given time, by including it in the 
state to be estimated. The resulting augmented state 
vector is shown in Equation 1. 

           [ ]T
GPS GPSx y x yθ=x                    (1) 

It includes the robot’s position and orientation 
with respect to a fixed frame wF , and the two 
components (with respect to the same frame) of the 
bias in GPS measurements.  

After integrating the dynamic equations of the 
system through a standard Euler approximation with 
step size Δt=1, the system can be described with the 
following finite difference Equations: 
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The first three equations represent the discrete 
approximation of the robot’s inverse kinematics, by 
assuming a unicycle differential drive model. As 
usual, dr and dl indicate the linear displacements of 
the right and left driving wheels, and D is the 
distance between them.  

In the last two Equations, the dynamic of the bias 
[ ]T

GPS GPS GPSx y=x  is modeled. Notice that a 

constant dynamic is assumed for T
GPSx , since no 

cues are available to make more accurate 
hypotheses. This means that, when predicting the 
new state in the time-update phase of the EKF, 

T
GPSx is left unchanged. However, the predicted 

value of T
GPSx is updated whenever new 

measurement are available (i.e., in the correction 
phase of the EKF), thus finally producing an 
estimate that varies in time, and hopefully 
approximates the actual bias in GPS measurements. 
The approach seems reasonable whenever a 
component of the state vector changes slowly in 
time with respect to the remaining components, 
which is exactly the case.   

When considering the remaining noise that 
affects x, the process can be described as governed 
by a non-linear stochastic difference Equation in the 
form 

( )1k1k1kk −−−= wuxx ,,f  with 5ℜ∈x , ),0( WN=w  (3) 
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where w represents the process noise, and u is the 
driving function; i.e., the 2-dimensional vector 
describing the current wheels displacements dr and 
dl ( [ ]dldrT =u ).  

For what concerns errors in the process, they are 
currently modeled through a vector 

[ ]wgwlwrT =w . The first two element sums up 
to dl and dr (e.g., when the left encoder returns dl, 
the actual path traveled by the left wheel is dl+wl), 
whereas wg represents the error made in assuming 
that the bias has not changed since the last iteration 
of the Filter. By assuming that w has a zero-mean 
Gaussian distribution with covariance matrix W, 
systematic errors in odometry due to the 
approximate knowledge of the robot’s geometric 
characteristics are not explicitly considered (in 
theory, geometric parameters should be included in 
the augmented state vector as well, as proposed in 
(Martinelli, 2002)). 

Observations are provided both by the GPS and, 
when available, by the laser rangefinder. The 
measurements provided by the GPS are a non-linear 
function of the state: 
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Where z=(zlong, zlat) is a 2-dimensional vector 
representing the longitude and latitude of the mobile 
robot, by supposing the X-axis of Fw lying on the 
parallel passing through Fw’s origin, and Fw’s Y-axis 
lying on the meridian. The measurement model is 
not linear, mainly because the relationship between 
georeferenced data (i.e., latitude and longitude) and 
the estimated x- and y- coordinates varies with the 
latitude itself, as a consequence of the non planarity 
of the earth surface (as determined by CLONG (zlat) 
and CLAT (zlat)).  

For each line jl observed by the laser 
rangefinder, the line im  that best matches jl  can be 
expressed as: 
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where ai, bi and ci are the parameters characterizing 
the implicit equation of im ; zρ and zα are, 
respectively, the distance  between the line and the 
robot, and the angle between the line and the robot’s 
heading.  

When putting together Equations 4 and 5, the 
measurement model results to be a non-linear 
function of the state: 
          ),0(),( RNwithh kkk == vvxz          (6) 

Since non-AWG components of the GPS noise 
are estimated in the state vector, the remaining noise 
can be reasonably modeled with the vector v, a zero-
mean AWG noise with covariance matrix R.  

Equation 2 can be used to compute the a-priori 
state estimate at time k. Next, whenever new GPS or 
laser rangefinder data are available, they are fused 
with the a-priori estimate through an Extended 
Kalman Filter to produce a new estimate, thus 
reducing errors that are inherently present in 
odometry and providing a new estimate for the GPS 
bias. 

Obviously, to evaluate the soundness of the 
previous assertion, it is necessary to perform an 
observability analysis of the system. The Kalman 
theorem requires to compute the observability 
matrix 4| | ... | ( )T T T T TQ H A H A H⎡ ⎤= ⎣ ⎦ , where A 

and H are the Jacobian matrices of the partial 
derivatives of f and h with respect to x (Q’s full 
expression is not shown for sake of brevity). The 
analysis shows that Q has full rank (and hence the 
state is fully observable) only when at least two 
observations jl  and ml are available, corresponding 
to non-parallel lines im  and nm , together with a 
single GPS measurement.  

Matrix A results to be: 
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whereas H results to be: 
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By inspecting matrix H, one could infer that the 
filter is updated only when a triplet of observations 
are available (i.e., two non-parallel lines and one 
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GPS measurement). However, this is assumed only 
to investigate the state’s observability; during 
experiments, the laser rangefinder and the GPS 
returns observations asynchronously, and each 
observation is used to update the state as soon as 
available. The observability analysis demonstrates 
that, even if each measurement is able to correct the 
state only partially, the state is fully observable 
when more measurements are considered in cascade. 

Unfortunately, in outdoor areas it often happens 
that the laser cannot detect any line mapped in the a-
priori map: since the localization algorithm relies 
only on GPS data, the H matrix fed to the KF 
comprises only the first two rows in Equation 8. 
When this happens – as already stated - only a 
subspace of the state space results to be observable; 
by computing again the observability matrix Q, this 
yields the result in Equation 9. 

When 01 ≠−kds , i.e. when the translational speed 
of the robot is not null (Capezio, et al., 2005), the 
rank of Q is 3. The rank is not full since Q’s first 
column (corresponding to the x-component of the 
state vector x) equals the fourth column 
(corresponding to the xGPS-component), and Q’s 
second column (i.e., the y-component) equals the 
fifth column (i.e., the yGPS-component). On the 
opposite, Q’s third column (corresponding to the θ-
component of x) is linearly independent from the 
others. 

Q’s analysis confirms the intuition that – when 
no laser data are available – the subspace defined by 
x+xGPS, y+yGPS, and θ  is fully observable: the robot’s 
orientation is still corrected by GPS data (when 

01 ≠−kds , see also (Capezio, et al., 2005)), and the 
position has a permanent error that depends on the 
current estimate of the GPS bias.    
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In this case, the innovation due to GPS 
measurements is distributed by the Kalman gain 
onto x-, y-, xGPS, and yGPS components of the state 
according to the current value of the state covariance 
matrix P. Since a constant dynamic is assumed for 

xGPS, and yGPS, corrections are adequately distributed 
onto the state components only if the actual bias in 
GPS changes slowly, and given that a new area 
where the laser rangefinder is able to guarantee full 
observablility will soon be available. This is 
reasonable when assuming a cyclic patrol path for 
autonomous surveillance, with periodic visits to 
outdoor areas that are mapped in the a-priori model 
and observable by the laser.  

4 EXPERIMENTAL RESULTS 

Many experiments in a realistic simulated 
environment and at the Albenga Airport (Figure 6) 
have been performed. Moreover, in order to test the 
system under different conditions, experiments are 
performed by varying the robot’ speed. The GPS 
sensor is realistically simulated (data are taken from 
real GPS in a 24-hours interval), as well as errors in 
laser measurements and odometry. 

In all the simulated tests, the robot is requested to 
move along a path that is identical to the patrol 
performed in Villanova d’Albenga Airport. 
Furthermore, the dimension and the position of the 
exterior walls of buildings considered for map-based 
localization in the simulated environment 
realistically emulate the Airport scenario (see Figure 
3; walls are visible only in a very limited area of the 
Airport). The simulated robot travels for the whole 
day, performing a cyclic patrol about 500 meters 
long; next, the experiment is repeated by varying the 
navigation speed.  

Tests have been performed in two modalities: A-
tests correspond to localization with GPS bias 
estimation, and B-tests are performed without bias 
estimation.  

Table 1: Errors statistics in B-tests. 

Nav. 
Speed 
(m/s). xe xσ ye  yσ  ϑe  ϑσ  

0.4 1.50 1.01  1.18  0.55  0.067 0.047 
0.9 1.36 0.97  1.75  1.22  0.048 0.039 
1.4 1.47 1.14  1.29  0.72  0.043 0.035  

Table 2: Errors statistics in A-test. 

Nav. 
Speed 
(m/s). xe xσ ye  yσ  ϑe  ϑσ  

0.4 1.07 1.04  1.63  1.13  0.057 0.053
0.9 0.94 0.84  0.78  0.70  0.040 0.033
1.4 0.97 0.80  1.23  1.14  0.041 0.031  
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Tables 1 and 2 summarize results. In Table 1, 
results of the B-tests are shown. In this case the state 
vector includes only the position and the orientation 
of the robot. Table 2 shows the results of A-tests. In 
both Tables, xe and ye represent the average error 
between x- and y- components of x and the real 
robot’s position (ground truth); ϑe is the average 
error in the robot’s heading; xσ , yσ , ϑσ  are the 
corresponding standard deviations.  

When computing the average position error as 
xerr= 2 2( )x yE e e+ , this yields: 

- B-tests: xerr=2.12m, xerr=1.92m, and xerr=2.08m 
when the robot is moving at the speed of 0.4m/s, 
0.9m/s, and 1.4m/s respectively 

- A-tests: xerr=1.52m,xerr =1.34m, and xerr =1.37m 
(for 0.4m/s, 0.9m/s, and 1.4m/s).  

By analyzing the data, some considerations can 
be made:  

- xerr is always below 2.5m, with and without the 
GPS bias Estimation. 

- In the best case (1.4m/sec navigation speed), 
the bias estimation reduces xerr of about 34%. 

- The improvement due to GPS bias estimation 
seems to increase when the navigation speed 
increase; this could be consequence of the fact that 
the robot returns quicker in areas where laser-based 
localization is possible. 

- Standard deviations are always comparable 
with averages; i.e., the error oscillates significantly 
around its mean value.  

- Errors in the θ-component are bounded, and 
always below 10 degrees. 

 
Figure 3: Test performed at 0.9 m/sec. 

 
Figure 4: GPS bias estimation. 

Figure 3 shows a plot of the robot’s trajectory 
during an A-test 3 hours long (moving at 0.9 m/sec); 
Figure 4 shows the estimated longitude bias during 
such test  

Real world experiments have been carried out as 
well with the ANSER robot in the Albenga Airport. 
During the test, the robot is manually driven at 
1.0m/s along a pre-established cyclic path that is 
about 500 meters long (walls are similar to Figure 
3). Different A- and B-tests are been performed 
(each lasting about 3 hours), by memorizing the 
robot’s estimated position in a finite number of 
selected places along the path.  

Figure 5 shows the estimated robot’s position in 8 
different places along the real path (the Figure can 
be superimposed onto Figure 3 to infer where 
features for laser-based localization are visible).  

 

Figure 5: Estimated position in a real scenario. 

In the real scenario, A-tests exhibit a smaller 
improvement in performance with respect to 
simulation. This is probably due to the fact that the 
state is fully observable (and hence the GPS bias can 
be correctly estimated) only when laser data are 
available. However, this happens in the vicinity of 
buildings (e.g., walls in Figure 3 correspond to a 
hangar); unfortunately, near a building the GPS 
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signal is less precise, since the GPS satellites are 
occluded by the building itself.  

 
Figure 6: The robot ANSER at Albenga Airport. 

5 CONCLUSIONS  

The paper describes the localization subsystem of a 
mobile robot that has been designed for night patrols 
and surveillance tasks within a civilian airport. The 
localization subsystem is a small – but fundamental 
component – of the whole project (ANSER – 
Airport Night Surveillance Expert Robot). Instead of 
equipping the robot with a huge amount of 
expensive sensors (and the computing power that is 
adequate to deal with them), a simple approach is 
chosen that relies exclusively on a non-differential 
GPS unit and a laser rangefinder (i.e., inertial 
sensors are absent). Laser measurements are 
exploited only in some areas of the outdoor patrol 
path of the robot, i.e. where it is possible detect line 
features and match them against an a-priori model of 
the environment. Along the rest of the path, the 
robot relies on GPS-based localization. An Extended 
Kalman Filter algorithm is employed to estimate an 
augmented state vector comprising the robot 
position and orientation, together with the low 
frequency components (bias) of the GPS error.  

A formal model of the whole localization 
subsystem is given, including an analysis of the 
system’s observability. The experiments performed 
in a realistic simulated environment and at Villanova 
d’Albenga Airport have confirmed the expectations, 
showing that the approach reasonably improves the 
localization accuracy of the system. Obviously, the 
accuracy achieved is not sufficient for fine motion in 
cluttered areas; however, for surveillance 
applications in which the robot has to reach an area 
of interest and to further investigate on the basis of 
local sensor feedback, it seems appropriate. 
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