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Abstract: In this work we present the initial implementation of a middleware software tool called the Hardware 
Abstraction Layer (HABLA). This tool isolates the control architecture of an autonomous computational 
system, like a robot, from its particular hardware implementation. It is provided with a set of general sensors 
and typical sensorial processing mechanisms of this kind of autonomous systems allowing for its application 
to different commercial platforms. This way, the HABLA permits the control designer to focus its work on 
higher-level tasks minimizing the time spent on the adaptation of the control architecture to different 
hardware configurations. Another important feature of the HABLA is that both hardware-HABLA and 
HABLA-control communications take place through standard TCP sockets, permitting the distribution of 
the computational cost over different computers. In addition, it has been developed in JAVA, so it is 
platform independent. After presenting the general HABLA diagram and operation structure, we consider a 
real application using the same deliberative control architecture on two different autonomous robots: an 
Aibo legged robot and a Pioneer 2Dx wheeled robot. 

1 INTRODUCTION 

The origin of this work can be found in the research 
on autonomous robotics carried out in our group. It 
usually implies the acquisition of one or more 
commercial robots or the construction of new ones. 
In any case, the robots must be programmed in their 
own programming language (C, C++, Lisp, etc) and 
their particular hardware architecture must be taken 
into account when developing its control software. 
Manufacturers usually provide an API (Application 
Program Interface) with a reduced set of high level 
commands to develop basic functionalities. 
Examples of these tools are AIBO SDE (AIBO, 
2007) (a software development environment for 
AIBO robots) or Aria (Aria, 2006) (that supports 
different robot models from Activmedia Robotics). 
The main problem with these tools is that they are 
specific for a given family of robots and they require 
the designer to develop the control architecture in a 
preestablished programming language. 

Nowadays, there is no standardization or even a 
general preference about the most appropriate 
programming language to be used in autonomous 
robotics, and the trend is to continue in the same 
way. As a consequence, even though two robots may 
have the same sensors and actuators, if we want to 
execute the same control architecture on both, we 

must modify the programming and adapt it to the 
particular language and implementation of each 
robot. 

In order to deal with this problem, more general 
frameworks have been developed in recent years 
trying to achieve complete independence from the 
robot manufacturer. These tools can be classified as 
middleware software that abstracts the control 
architecture from the particular hardware. Examples 
of this kind of tools are Miro (Utz, 2002), Webots 
(Michel, 2004) or YARP (Metta, 2006) that permit 
development in a broad range of different robotic 
systems. Miro is a distributed object oriented 
framework for mobile robot control, based on 
CORBA (Common Object Request Broker 
Architecture) technology. It is focused on wheeled 
robots such as Pioneer or Sparrow and it does not 
provide support, for example, for legged robots like 
Sony’s AIBO (very popular in autonomous robotics 
research) or humanoid prototypes. Webots “provides 
a rapid prototyping environment for modelling, 
programming and simulating mobile robots”. It 
includes several libraries that allow the designer to 
transfer the control programs to many commercially 
available real mobile robots. Finally, YARP “is 
written by and for researchers in humanoid robotics, 
who find themselves with a complicated pile of 
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hardware to control with an equally complicated pile 
of software”.   

The abstraction level provided by these tools 
could be necessary in other autonomous 
computational systems (different from robotics) with 
sensors and actuators of very different nature and 
with a complex control system like, for example, 
domotic applications. Taking into account these 
generalization, in this work we propose the creation 
of a middleware tool to be applied in different 
autonomous computational systems characterized by 
different sensors and actuators controlled through a 
complex architecture that could be executed 
remotely. The only reference we have found that 
follows this philosophy and supports different 
hardware devices and application fields is Player 
(Gerkey, 2003). This tool provides an interface and a 
protocol to manage sensorial devices and robots over 
a network and accepts different programming 
languages for the control architecture. It runs on 
several robotic platforms and supports a wide range 
of sensors. At this time the developments outside the 
robotics field are limited. The general middleware 
tool we propose is called the Hardware Abstraction 
Layer (HABLA). 

2 HARDWARE ABSTRACTION 
LAYER (HABLA) 

The desired features for the Hardware Abstraction 
Layer can be summarized into a group of six: 

Device independence: it must support the most 
common sensors and actuators present in 
autonomous computational systems such as cameras, 
microphones, infrared sensors, sonar sensors, motion 
sensors, etc. In addition, it should be provided with 
particular implementations for the most typical 
commercial platforms, for example, the robots used 
in research like Pioneer, Kephera, Aibo, etc. 

Virtual sensing and actuation: it must provide 
typical sensorial processing such as color 
segmentation or sound analysis so that higher level 
information like distance to nearby objects or sounds 
can be considered by the control architecture. 

Computational cost distribution: it must support 
communications through a computer network by 
TCP sockets in order to execute the control 
architecture, the low-level control program and the 
different elements of the HABLA itself over 
different computers. It seems obvious that, for 
example, sound or image processing should not be 
executed directly in the robot. 

Control architecture independence: it must be 
independent of the programming language used in 

the control architecture, this is, we do not impose 
any particular programming language.  

Scalability: the HABLA should present a 
modular design and an open architecture in order to 
increase the number of supported sensors and 
actuators corresponding to new commercial 
platforms. 

Operating System independence: it must be 
implemented in JAVA to achieve operating system 
independence. In addition, JAVA is the most 
standard object oriented language, so the HABLA 
could easily include contributions from the research 
community. 

Figure 1 shows a general diagram of the 
Hardware Abstraction Layer for a typical 
autonomous computational system. The left block 
represents the control architecture that requests 
sensorial information from the low level devices and 
provides the action or actions to be executed through 
the actuators. A basic idea behind the HABLA 
development is that we assume that the control 
architecture requires high level sensorial 
information, this is, the basic sensorial processing is 
not executed in the control architecture. In addition, 
the actions selected can be complex actions, and not 
only individual commands to the actuators.  

 
Figure 1: General diagram of the Hardware Abstraction 
Layer for a typical robotic system. 

The right block in Figure 1 represents the 
hardware (sensors and actuators) that provides 
sensorial information to the control architecture and 
receives the action or actions that must be applied. 
In this case, the sensors provide low level 
information (with no processing) and the actuators 
require low level data too. 

As shown in Figure 1, the middle block 
represents the Hardware Abstraction Layer, an 
element that isolates the high level information 
handled by the control architecture from the low 
level information handled by the sensors and 
actuators. The communications between control 
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architecture and HABLA and between HABLA and 
hardware use TCP sockets, as commented before, in 
order to permit the distributed execution of these 
three basic elements. 

Inside the HABLA we can see three sequential 
layers: the sensors and actuators layer, the 
processing layer and the virtual information layer in 
order of increasing processing of the information. 
The HABLA is implemented using JAVA and each 
layer contains methods that perform a particular 
function. The methods of a given layer can use and 
provide information from/to the neighboring layer as 
represented by the arrows in Figure 1. The 
information exchange between methods of the same 
layer is also possible, but not the exchange between 
non-neighboring layers (such as the case of the 
sensors and actuators layer and the virtual 
information layer). The sensors and actuators layer 
includes a general set of methods that store the 
sensorial information provided by the physical 
devices and that provide the commands to be applied 
to them. These methods may perform some kind of 
processing, as we will see later, and provide their 
outputs to the methods of the processing layer. In 
this layer, the sensorial information is processed in a 
general way, carrying out common signal processing 
tasks. In addition, the general processing of the 
commands is executed in this layer when required. 
The last layer is the virtual information layer where 
the information provided by the methods of the 
processing layer is treated and presented to the 
control architecture. As we can see, we are assuming 
a very general case where the low level sensorial 
information must be treated in two higher levels 
prior to the presentation to the control architecture. 
This scheme includes the simple case where the 
control architecture requires low level information, 
because “trivial” methods that simply transmit this 
information without processing could be present in 
the processing layer and virtual information layer. 

Although the HABLA has been designed to be 
run in a single computer, the methods are 
independent and can execute a routine or program in 
a different computer by means of TCP socket 
communications. This way, a highly time consuming 
process can be run outside the HABLA computer to 
improve efficiency. 

All of the methods present in the HABLA must 
be as general as possible in order to apply the 
HABLA to very different hardware devices or 
robotic platforms without changes. This is achieved 
by establishing a clear methodology in the creation 
of the methods for the sensors and actuators layer 
and the virtual information layer. In the case of the 
low level methods, we have created a protocol that 
must be followed by any software that controls the 

hardware at low level. As displayed in Figure 1, the 
right block that represents the hardware includes an 
internal part called interface. This element 
represents the methods or routines that must be 
programmed in the native language of the hardware 
device controller in order to provide sensorial 
information to the HABLA. For example, if the 
HABLA is working with a given robotic platform 
and we want to use a different one, we will have to 
program this interface layer in the new robot to 
communicate it with the HABLA according to our 
simple protocol. 

In the case of the high level methods (virtual 
information layer), the HABLA is endowed with a 
configuration file that provides the list of active TCP 
sockets and the information that is provided on each. 
The control architecture that uses the HABLA must 
be reprogrammed in order to read the sensorial 
information or to write the commands in the 
appropriate socket. But, as commented before, a 
very important feature of the HABLA is that no 
limitation is imposed on the type of programming 
language for the control architecture. 

 
Figure 2: Diagram of the Hardware Abstraction Layer 
with sample methods for the case of an autonomous robot. 

Figure 2 shows an example of a more detailed 
diagram of HABLA in the typical autonomous 
computational system we are dealing with, 
containing some of the methods that have been 
implemented in the HABLA at this time. In the 
sensors and actuators layer we have methods that 
store sensorial information from typical sensors such 
as microphones, cameras, infrared sensors, sonar 
sensors, bumpers, light sensors, GPS, motion 
sensors, etc. In addition, in this layer we have 
methods that send actuation commands, such as 
movements of the legs, wheels or head, or a sound to 
be played by the speakers, to the interface layer. 

In the processing layer we have methods that 
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carry out, for example, speech recognition or image 
segmentation and methods that can compose 
complex actuations or control and prevent 
impossible movements. These are typical processing 
routines, general to different robotic platforms and 
environmental intelligence systems. On one hand, 
these methods need sensorial information from the 
low level methods and provide information to be 
used by different methods in the virtual information 
layer. On the other, these methods receive data from 
the high level ones and execute low level methods to 
apply the commands. In general, the methods of this 
layer perform a processing function required by 
more that one high level method or that affect more 
than one actuator. For example, as represented in 
Figure 2, the information provided by the sonar 
sensors and by the infrared sensors could be 
combined in method that provides the distance to the 
nearest object. 

The virtual information layer has methods that 
perform high level processing and present the 
information to the control architecture. An example 
of this kind of applications could be an emotion 
recognition method that provides the control 
architecture a string of data corresponding to a 
sentence or word that the user has said to the system 
with information about the intonation or the volume 
to detect the emotion in the user. This method needs 
information from the speech recognition method that 
provides the spoken sentence or word and 
information from the audio processing method that 
provides details of the physical signal in order to 
determine an emotion. 

In Figure 2 we have represented two typical 
communications between methods of the same layer. 
For example, in the virtual information layer 
communications could take place between the 
method that calculates the distance and angle to all 
the objects in the vision field of the robot and the 
method that performs the translation of coordinates. 

After presenting the general HABLA structure, 
in the next section we will try to make it clearer 
through robotic application examples.  

3 PIONEER 2 WITH MDB 

In order to show the basic operation of the HABLA 
in a real experiment with a real robotic platform, we 
have decided to reproduce the example presented in 
(Bellas, 2005). In this experiment we used a wheeled 
robot from Activmedia, the Pioneer 2 DX model, 
and a deliberative control architecture developed in 
our group called the Multilevel Darwinist Brain 
(MDB) and first presented in (Duro, 2000).  

The MDB is a general cognitive architecture that 

has been designed to provide an autonomous robot 
with the capability of selecting the action (or 
sequence of actions) it must apply in its environment 
in order to achieve its goals. The details of the MDB 
are not relevant in this work and can be found in 
(Bellas, 2005). In the experiment presented in that 
paper we demonstrate the basic operation of the 
MDB in a real robot with a high level task. As 
commented before, the robot was a Pioneer 2 DX 
robot, a wheeled robot with a sonar array around its 
body and with a platform on the top in which we 
placed a laptop where the MDB was executed. 
Basically, the experiment consists on a teacher that 
provides commands to the robot in order to capture 
an object. The commands were translated into 
musical notes perceived by a microphone. Initially, 
the robot had no idea of what each command meant. 
After sensing the command, the robot acts and, 
depending on the degree of obedience, the teacher 
provides a reward or a punishment through a 
numerical value as a pain or pleasure signal 
introduced via keyboard. 

The main objective was to show that the MDB 
allows the agent to create, at least, two kinds of 
models that come about when modeling different 
sets of sensors: one related to the sound sensor for 
the operation when the teacher is present and an 
induced model or models relating to the remaining 
sensors. The robot will have to resort to these 
models when the teacher is not present in order to 
fulfill its motivations. In this experiment, an induced 
behavior appears from the fact that each time the 
robot applies the correct action according to the 
teacher’s commands, the distance to the object 
decreases. This way, once the teacher disappears, the 
robot can continue with the task because it 
developed a satisfaction model related to the 
remaining sensors that tells it to perform actions that 
reduce the distance to the object. 

The execution of this experiment as explained in 
(Bellas, 2005) involved the programming of all the 
sensorial processing in the MDB. The sonar values 
were processed in a function to calculate the 
distance and angle to the object, and the audio signal 
perceived through the microphone was analyzed and 
treated in another function. The action selected by 
the MDB was decoded into the Pioneer ranges in 
another function that was programmed in the MDB. 
As we can see, with this basic set up we were 
overloading the laptop’s CPU with the low level 
tasks and with the high level calculations (MDB). 

At this point, we decided to introduce the 
HABLA with the set of sensors and actuators of this 
robot. Figure 3 shows the basic HABLA diagram 
particularized for this example, with the methods 
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developed. In the sensors and actuators layer we 
have five methods according to the sensors and 
actuators used in the experiment. For example, the 
Microphone method reads from a socket the sound 
data received in the laptop’s microphone and 
performs a basic filtering process to eliminate signal 
noise and provides the data to the methods of the 
next layer. In the processing layer, we have included 
six methods that provide typical processed 
information. For example, the Nearest Distance 
method receives an array of sonar values, detects the 
nearest one and provides this information to the 
Distance and Angle method. In the last layer (virtual 
information layer) we have programmed six high 
level methods. To continue with the same example, 
the Distance and Angle method calculates the angle 
from the information provided by the Nearest 
Distance method and sends the MDB the exact 
distance and angle in a fixed socket. 

 
Figure 3: HABLA diagram with the particular methods of 
the Pioneer 2 robot. 

With this basic implementation of the HABLA, 
we have re-run the example presented in (Bellas, 
2005) obtaining the same high level result, this is, 
the Pioneer 2 robot autonomously obtained an 
induced behavior. What is important in this 
experiment is that, using the HABLA, the MDB 
doesn’t have to compute low level processes. This 
allows us to work with a more general version of the 
architecture which is highly platform independent. 
In addition, we can execute the MDB in a much 
more powerful computer and use the laptop just for 
the HABLA and the communications. 

4 AIBO WITH MDB 

Once the successful operation of the MDB with a 
real robot has been shown, our objective is simply to 
repeat the experiment but using a different robot, in 
this case the robot is a Sony Aibo. The example is 

the same as in the previous case from the control 
architecture’s point of view, but, as the robot is 
different, we have used a different group of sensors 
and actuators. In this case, the Aibo robot has to 
reach a pink ball it senses through a camera and the 
commands are spoken words provided by the 
teacher. In addition, the punishment or reward signal 
is provided by touching the back or the head of the 
robot, this is, using a contact sensor. The robot 
movements are different and it is able to speak some 
words through its speakers to show some emotion. 
In this case, the experiment was performed in a 
closed scenario with walls.  

Figure 4 represents the HABLA with the new 
methods included for this robot. The philosophy 
behind the programming of the new methods is that 
they should be as general as possible in order to be 
useful for other robotic platforms similar, in this 
case, to the Aibo robot. Furthermore, we can see in 
Figure 4 that the previous methods developed for the 
Pioneer 2 robot are still present and, as we will 
explain later, some of them are used again. 

The first thing we had to do in this experiment 
was to program the low level routines in the 
Interface layer of the Aibo robot using the Tekkotsu 
development framework (Touretzky, 2005). In this 
case, this tool follows the same idea as we use in the 
HAL, and all the sensorial information from the 
robot can be accessed by TCP sockets, so 
programming cost involved was very low. In the 
case of commands, Tekkotsu provides very simple 
functions to move the legs with a given gait that are 
accessed by sockets again.  

In the sensors and actuators layer, we have 
included very general methods to deal with sensors 
such as a camera, infrared sensors, buttons or with 
actuators like a head or a speaker. In the processing 
layer we have included, as in the case of the Pioneer 
robot, very general processing related with the new 
sensors of the previous layer, such as image 
segmentation or speech recognition. In fact, the 
speech recognition method was the most important 
development in this experiment because this feature 
is not present in Tekkotsu software or in Sony’s 
original framework. We think that owner-dog 
communication through spoken words is very 
important because it is a very intuitive way to teach 
this robot. In fact, the speech recognition was 
implemented using Sphinx-4 (Walker, 2004) which 
is a speech recognizer written entirely in the Java 
programming language. In our case, the Speech 
Recognition method basically executes Sphinx-4, 
which obtains the sound data from the microphone 
method, and outputs a string of data with the 
recognized word or phrase. In this case, we have 
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used a reduced grammar but Sphinx includes a 
configuration file where more words or phrases can 
be added, so the method is very general. Aibo is 
always sending the data of the two microphones to a 
fixed port with a Tekkotsu behavior called 
“Microphone Server”.  

 
Figure 4: HABLA diagram with the particular methods of 
the Aibo robot 

As shown in Figure 4, in the processing layer we 
find, for example, a method called Audio Processing 
that was created for the Pioneer robot, and is reused 
here. In the virtual information layer we have 
created more abstract methods than in the previous 
case, because the new sensors and actuators of this 
robot (like the buttons in the back or the head) 
permit us to create new methods such as Emotion 
Recognition, that provide information to the MDB 
related to the teacher’s attitude. 

Finally, we must point out that the execution 
result was successful, obtaining exactly the same 
behavior as in the Pioneer robot (Bellas, 2006). 
What is more relevant in this case is that there was 
no time spent in MDB reprogramming, because 
using the HABLA the low level processing was 
absolutely transparent to the control architecture. In 
addition, in this experiment we have executed the 
Tekkotsu software on the Aibo’s processors, the 
HABLA in another computer and the MDB in a 
different one, optimizing this way the computational 
cost. 

5 CONCLUSIONS 

In this paper we have presented the initial 
implementation of the Hardware Abstraction Layer 
(HABLA) middleware tool. Its main features are: 
hardware devices independence, virtual sensing and 
actuation capabilities, computational cost 

distribution, control architecture independence, 
scalability and operating system independence. We 
have presented practical implementations of the 
methods in the HABLA that support two very 
different robotic platforms (Pioneer 2 and Aibo) in a 
real application example using the MDB control 
architecture. Currently, we are expanding the 
HABLA concept to different application fields, 
developing a practical example in an “intelligent” 
room.  
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