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Abstract: This paper focuses on robust pose estimation for mobile robot localization. The main idea of the approach 
proposed here is to consider the localization process as a hybrid process which evolves according to a model 
among a set of models with jumps between these models according to a Markov chain. In order to improve 
the robustness of the localization process, an on line adaptive estimation approach of noise statistics (state 
and observation), is applied for each mode. To demonstrate the validity of the proposed approach and to 
show its effectiveness, we’ve compared it to the standard approaches. For this purpose, simulations were 
carried out to analyze the performances of each approach in various scenarios. 

1 INTRODUCTION 

Localization constitutes a key problem in mobile 
robotics (Borenstein, 1996). It consists of estimating 
the robot’s pose (position, orientation) with respect 
to its environment from sensor data. Therefore, a 
better sensory data exploitation is required to 
increase robot’s autonomy. The simplest way to 
estimate the pose parameters is the integration of 
odometric data which, however, is associated with 
unbounded errors, resulting from uneven floors, 
wheel slippage, limited resolution of encoders, etc. 
However, such a technique is not reliable due to 
cumulative errors occurring over the long run. 
Therefore, a mobile robot must also be able to 
localize or estimate its parameters with respect to the 
internal world model by using the information 
obtained with its external sensors.  

The use of sensory data from a range of disparate 
multiple sensors, is to automatically extract the 
maximum amount of possible information about the 
sensed environment under all operating conditions. 
The main idea of data fusion methods is to provide a 
reliable estimation of robot’s pose, taking into 
account the advantages of the different sensors 
(Harris, 1998). The Kalman filter is the best known 
and most widely applied parameter and state 
estimation algorithm in data fusion methods (Gao, 

2002). Such a technique can be implemented from 
the kinematic model of the robot and the observation 
(or measurement) model, associated to external 
sensors (gyroscope, camera, telemeter, etc.).  
Basically, the Kalman filter gives a linear, unbiased, 
and minimum error variance recursive algorithm to 
optimally estimate the unknown state of a linear 
dynamic system from Gaussian distributed noisy 
observations. The Kalman filtering process can be 
considered as a prediction-update formulation. The 
algorithm uses a predefined linear model of the 
system to predict the state at the next time step. The 
prediction and updates are combined using the 
Kalman gain which is computed to minimize the 
Mean Square Error (MSE) of the state estimate. The 
Extended Kalman Filter (EKF) is a version of the 
Kalman filter that can handle non-linear dynamics or 
non-linear measurement equations. Various 
approaches based on EKF have been developed. 
These approaches work well as long as the used 
information can be described by simple statistics 
well enough. The lack of relevant information is 
compensated by using models of various processes. 
However, such model-based approaches require 
assumptions about parameters which might be very 
difficult to determine (white Gaussian noise and 
initial uncertainty over Gaussian distribution). 
Assumptions that guarantee optimum convergence 
are often violated and, therefore, the process is not 
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optimal or it can not even converge. In fact, many 
approaches are based on fixed values of the 
measurement and state noise covariance matrices. 
However, such information is not a priori available, 
especially if the trajectory of the robot is not 
elementary and if changes occur in the environment. 
Moreover, it has been demonstrated in the literature 
that how poor knowledge of noise statistics (noise 
covariance on state and measurement vectors) may 
seriously degrade the Kalman filter performance 
(Jetto, 1999). In the same manner, the filter 
initialization, the signal-to-noise ratio, the state and 
observation processes constitute critical parameters, 
which may affect the filtering quality. The stochastic 
Kalman filtering techniques were widely used in 
localization (Gao, 2002) (Chui, 1987) (Arras, 
2001)(Borthwick, 1993) (Jensfelt, 2001) (Neira, 
1999) (Perez, 1999) (Borges, 2003). Such 
approaches rely on approximative filtering, which 
requires ad hoc tuning of stochastic modelling 
parameters, such as covariance matrices, in order to 
deal with the model approximation errors and bias 
on the predicted pose. In order to compensate such 
error sources, local iterations (Kleeman, 1992), 
adaptive models (Jetto 1999) and covariance 
intersection filtering (Julier, 1997)(Xu, 2001) have 
been proposed. An interesting approach solution was 
proposed in (Jetto, 1999), where observation of the 
pose corrections is used for updating of the 
covariance matrices.  However, this approach seems 
to be vulnerable to significant geometric 
inconsistencies of the world models, since 
inconsistent information can influence the estimated 
covariance matrices.  

In the literature, the localization problem is often 
formulated by using a single model, from both state 
and observation processes point of view. Such an 
approach, introduces inevitably modelling errors 
which degrade filtering performances, particularly, 
when signal-to-noise ratio is low and noise variances 
have been estimated poorly.  Moreover, to optimize 
the observation process, it is important to 
characterize each external sensor not only from 
statistic parameters estimation perspective but also 
from robustness of observation process perspective. 
It is then interesting to introduce an adequate model 
for each observation area in order to reject unreliable 
readings. In the same manner, a wrong observation 
leads to a wrong estimation of the state vector and 
consequently degrades the performance of 
localization algorithm. Multiple-Model estimation 
has received a great deal of attention in recent years 
due to its distinctive power and great recent success 
in handling problems with both structural and 

parametric uncertainties and/or changes, and in 
decomposing a complex problem into simpler sub-
problems, ranging from target tracking to process 
control (Blom, 1988)(Li, 2000) (Li, 1993)(Mazor, 
1996).  

This paper focuses on robust pose estimation for 
mobile robot localization. The main idea of the 
approach proposed here is to consider the 
localization process as a hybrid process which 
evolves according to a model among a set of models 
with jumps between these models according to a 
Markov chain (Djama, 1999)(Djama, 2001). A close 
approach for multiple model filtering is proposed in 
(Oussalah 2001). In our approach, models refer here 
to both state and observation processes. The data 
fusion algorithm which is proposed is inspired by 
the approach proposed in (Dufour 1994). We 
generalized the latter for multi mode processes by 
introducing multi mode observations. We also 
introduced iterative and adaptive EKFs for 
estimating noise statistics. Compared to a single 
model-based approach, such an approach allows the 
reduction of modelling errors and variables, an 
optimal management of sensors and a better control 
of observations in adequacy with the probabilistic 
hypotheses associated to these observations. For this 
purpose and in order to improve the robustness of 
the localization process, an on line adaptive 
estimation approach of noise statistics (state and 
observation) proposed in (Jetto, 1999), is applied to 
each mode. The data fusion is performed by using 
Adaptive Linear Kalman Filters for linear processes 
and Adaptive Extended Kalman Filters for nonlinear 
processes. 

The reminder of this article is organized as 
follows. Section 2 discusses the problem statement 
of multi-sensor data fusion for the localization of a 
mobile robot. We develop the proposed robust pose 
estimation algorithm in section 3 and its application 
is demonstrated in section 4. Experimental results 
and a comparative analysis with standard existing 
approaches are also presented in this section.  

2 PROBLEM STATEMENT  

This paper deals with the problem of multi sensor 
filtering and data fusion for the robust localization of 
a mobile robot. In our present study, we consider a 
robot equipped with two telemeters placed 
perpendicularly, for absolute position measurements 
of the robot with respect to its environment, a 
gyroscope for measuring robot’s orientation, two 
drive wheels and two separate encoder wheels 
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attached with optical shaft encoders for odometry 
measurements (Figure 1). The environment where 
the mobile robot moves is a rectangular room 
without obstacles (Figure 2). The aim is not to 
develop a new method for environment 
reconstruction or modelling from data sensors; 
rather, the goal is to propose a new approach to 
improve existing data fusion and filtering techniques 
for robust localization of a mobile robot. For an 
environment with a more complex shape, the 
observation model, which has to be employed at a 
given time, will depend on the robot’s situation 
(robot’s trajectory, robot’s pose with respect to its 
environment) and on the geometric or symbolic 
model of environment.  
 
 Drive-wheel 

Encoder -wheel 

Balancing-wheel 

Telemeter with respect 
to X-axis 

Telemeter with respect 
to Y-axis 

x’ 

y’ 

x 

y 

 

Figure 1: Mobile robot description. 

Odometric model: Let ( ) [ ]Te kkykxkX )()()( θ=  be 
the state vector at time k ,  describing the robot’s 
pose with respect to the fixed coordinate system. 
The kinematic model of the robot is described by the 
following equations: 
 

( )2cos1 kkkkk lxx θθ Δ+⋅+=+  (1) 
( )2sin1 kkkkk lyy θθ Δ++=+  (2) 

kkk θθθ Δ+=+1  (3) 
 
with: 2/)( l

k
r
kk lll += and dll l

k
r
kk /)( −=Δθ . r

kl  
and l

kl  are the elementary displacements of the right 
and the left wheels; d  the distance between the two 
encoder wheels.   
 
Observation model of telemeters: As the 
environment is a rectangular room, the telemeters 
measurements correspond to the distances from the 
robot location to walls (Fig. 2.). 
 

Then, the observation model of telemeters 
is described as follows: 

for ( ) lk θθ <≤0 :  

( ) ( )( ) ( )( )kkxdkd x θcos−=  with respect to 
X axis 

(4) 

for ( ) ml k θθθ ≤≤ :  

( )( ) ( )( )kkydkd y θsin)( −=  with respect to 
Y axis.  

(5) 

with:       
- xd  and yd , respectively the length and the width of 
the experimental site;  
- lθ  and mθ , respectively the angular bounds of 
observation domain with respect to X and Y axes; 
- ( )kd  is the distance between the robot and the 
observed wall with respect to X or Y axes at time k . 
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Figure 2: Telemeters measurements –Nominal trajectory 
composed of sub trajectories T1-T2 and T3. 

Observation model of gyroscope: By integrating the 
rotational velocity, the gyroscope model can be 
expressed by the following equation: 

( ) ( )kkl θθ =  (6) 

Each sensor described above is subject to 
random noise. For instance, the encoders introduce 
incremental errors (slippage), which particularly 
affect the estimation of the orientation. For a 
telemeter, let’s note various sources of errors: 
geometric shape and surface roughness of the target, 
beam width. For a gyroscope, the sources of errors 
are: the bias drift, the nonlinearity in the scale factor 
and the gyro’s susceptibility to changes in ambient 
temperature. So, both the odometric and observation 
models must integrate additional terms representing 
these noises. Models inaccuracies induce also noises 
which must be taken into account. It is well known 
that the odometric model is subject to inaccuracies 
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caused by factors such as: measured wheel 
diameters, unequal wheel-diameters, trajectory 
approximation of robot between two consecutive 
samples. These noises are usually assumed to be 
Zero-mean white Gaussian with known covariance. 
This hypothesis is discussed and reconsidered in the 
proposed approach. Besides, an estimation error of 
orientation introduces an ambiguity in the telemeters 
measurements (one telemeter is assumed to measure 
along X axis while it is measuring along Y axis and 
vice-versa). This situation is particularly true when 
the orientation is near angular bounds lθ  and mθ .  
This justifies the use of multiple model to reduce 
measuring errors and efficiently manage robot’s 
sensors. For this purpose, we have introduced the 
concept of observation domain (boundary angles) as 
defined in equations (4) and (5).  

3 ROBUST MULTIPLE MODEL 
FILTERING APPROACH  

In this section, we present the data fusion and 
filtering approach for the localization of a mobile 
robot. In order to increase the robustness of the 
localization and as discussed in section 2, the 
localization process is decomposed into multiple 
models. Each model is associated with a mode and 
an interval of validity corresponding to the 
observation domain; the aim is to consider only 
reliable information by filtering erroneous 
information. The localization is then considered as a 
hybrid process.  A Markov chain is employed for the 
prediction of each model according to the robot 
mode.  The multiple model approach is best 
understandable in terms of stochastic hybrid 
systems. The state of a hybrid system consists of two 
parts: a continuously varying base-state component 
and a modal state component, also known as system 
mode, that may only jump among points, rather than 
vary continuously, in a (usually discrete) set. The 
base state components are the usual state variables in 
a conventional system. The system mode is a 
mathematical description of a certain behavior 
pattern or structure of the system. In our study, the 
mode corresponds to the robot’s orientation. In fact, 
the latter parameter governs the observation model 
of telemeters along with observation domain.   Other 
parameters, like velocity or acceleration, could also 
be taken into account for mode’s definition. 
Updating of mode’s probability is carried out either 
from a given criterion or from given laws 
(probability or process). In this study, we assume 

that each Markovian jump (mode) is observable 
(Djama, 2001)(Dufour, 1994). The mode is 
observable and measurable from the gyroscope. 

3.1 Multiple Model Formulation 

Let us consider a stochastic hybrid system. For a 
linear process, the state and observation processes 
are given by: 
  

( ) ( ) ( )
( ) ( ) ( )kkk

kekke

kWkUkB
kkXAkkX

ααα
ααα

,,1,
,1/1,1/

+−⋅+
−−⋅=−

 (7) 

( ) ( ) ( ) ( )kkekke kVkkXCkY αααα ,,1/, +−⋅=  (8) 
 
 For a nonlinear process, the state and observation 
processes are described by: 

    
( ) ( ) ( )( )

( )k

keke

kW
kUkkXFkkX

α
αα

,
1,,1/1,1/

+
−−−=−

 (9) 

( ) ( )( ) ( )kkeeke kVkkXGkY ααα ,,1/, +−=  (10) 
 

where:    eX  is the base state vector; 
eY   is the noisy observation vector; 

U   is the input vector; 
kα   is the modal state or system mode at 

time k, which denotes the mode 
during the kth sampling period;  

W and V are the mode-dependent state and 
measurement noise sequences, 
respectively. 

 
The system mode sequence kα is assumed for 
simplicity to be a first-order homogeneous Markov 
chain with the transition probabilities: { } ij

i
k

j
kP παα =+ |1       Sji ∈∀ αα ,  

where j
kα denotes that mode jα is in effect at time 

k and S  is the set of all possible system modes, 
called mode space. 

The state and measurement noises are of 
Gaussian white type. In our approach, the state and 
measurement processes are assumed to be governed 
by the same Markov chain. However, it’s possible to 
define differently a Markov chain for each process. 
The Markov chain transition matrix is stationary and 
well defined.  

3.2 Variance Estimation Algorithm 

It is well known that how poor estimates of noise 
statistics may lead to the divergence of Kalman filter 
and degrade its performance. To prevent this 
divergence, we apply an adaptive algorithm for the 
adjustment of the state and measurement noise 
covariance matrices.  
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a. Estimation of measurement noise variance  
Let ( )( )kR i

2
,νσ= ( )0:1 ni = , be the measurement 

noise variance at time k  for each component of the 
observation vector. 0n  denotes the number of 
observers (sensors number).  

Let ( )kβ̂  the squared mean error for stable 
measurement noise variance: 

( ) ( )∑
=

−=
n

j
i k

n
k

0

2 11ˆ γβ  (11) 

where ( )kγ  represents the innovation.  
For 1+n  samples, the variance of ( )kβ̂  can be 

written as: 

( )( ) ( ) ( )
( )∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

⋅−−−⋅−

+
=

n

j i
T

i

i

jkC

jkjkPjkC

n
kE

0
2
,

1,

1
1ˆ

νσ
β  (12

) 

Then, we obtain the estimation of the 
measurement noise variance: 

( ) ( )

( ) ( ) ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−⋅−−−

⋅−⋅
+

−−
= ∑

=

n

j T
i

ii
i

jkCjkjkP

jkC
n

njk
n

0

2
2
, 0,

1,
11maxˆ

γ
σν  (13) 

The restriction with respect to zero is related to the 
notion of variance.  

A recursive formulation of the previous 
estimation can be written: 

( ) ( )
( )

( )( )

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ψ⋅
+

−

+−−⋅+−= 0,

1

111ˆmaxˆ 2

2

2
,

2
,

n
n

nk

k

n
kk i

i

ii γ

γ

σσ νν
 (14) 

where: 
( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )Ti

i
T

ii

nkCnknkP

nkCkCkkPkC

111,1

11,

+−⋅−+−+−

⋅+−−⋅−⋅=Ψ
 (15) 

b. Estimation of state noise variance  
To estimate the state noise variance, we use the 

same principle as in subsection a. One can write: 

( ) ( ) dine QkkQ ⋅= 2
,ˆˆ σ  (16) 

By assuming that noises on the two encoder 
wheels measurements obey to the same law and 
have the same variance, the estimation of state noise 
variance can be written: 

( )

( ) ( ) ( )
( ) ( )

( ) ( )
⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+⋅⋅+

+−+

⋅+⋅+−−

=

0

,
11

1ˆ1

,111

maxˆ
2
,

2

2
, T

idi

i
T

i

ii

in
kCQkC

kkC

kkPkCk

k νσ

γ

σ  (17) 

with:   
( ) ( ) ( )Td kBkBkQ ⋅=ˆ  (18) 

By replacing the measurement noise variance by 
its estimate, we obtain a mean value given by the 
following equation: 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⋅+

= ∑∑
= =

0,ˆ
1
1maxˆ

1 1

2
,

0

2
0m

j

n

i
inn jk

nm
k σσ  (19) 

Where m  represents the sample number. 

The algorithm described above carries out an on 
line estimation of state and measurement noise 
variances. Parameters n  and m  are chosen 
according to the number of samples used at time k . 
The noises variances are initialized from an “a 
priori” information and then updated on line. In this 
approach, variances are updated according the 
robot’s mode and the measurement models. 

For an efficient estimation of noise variances, an 
ad hoc technique consisting in a measure selection is 
employed. This technique consists of filtering 
unreliable readings by excluding readings with weak 
probability like the appearance of fast fluctuations. 
For instance, in the case of Gaussian distribution, we 
know that about 95% of the data are concentrated in 
the interval of confidence [ ]σσ 2,2 +− mm  where m   
represents the mean value and σ  the variance.    

The sequence in which the filtering of the state 
vector components is carried out is important. Once 
the step of filtering completed, the probabilities of 
each mode are updated from the observers (sensors). 
One can note that the approach used here is close, on 
one hand, to the Bayesian filter by the extrapolation 
of the state probabilities, and on the other to the 
filter with specific observation of the mode.  

4 IMPLEMENTATION AND 
SIMULATION RESULTS 

The approach described above for robust 
localization was applied for the mobile robot 
described in section 2. The nominal trajectory of the 
mobile robot includes three sub trajectories T1, T2 
and T3, defining respectively a displacement along 
X axis, a curve and a displacement along Y axis 
(Fig. 2.). Note that the proposed approach remains 
valid for any type of trajectory (any trajectory can be 
approximated by a set of linear and circular sub 
trajectories). In our study, we have considered three 
models. This number can be modified according to 
the environment’s structure, the type of trajectory 
(robot rotating around itself, forward or backward 
displacement, etc.) and to the number of observers 
(sensors).  Notice that the number of models 
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(observation and state) has no impact on the validity 
of the proposed approach. 

To demonstrate the validity of the proposed 
approach (noticed AMM for Adaptive Multiple-
Model) and to show its effectiveness, we’ve 
compared it to the following standard approaches: 
Single-Model based EKF without estimation 
variance (noticed SM), single-model based IEKF 
(noticed SMI). For this purpose, simulations were 
carried out to analyze the performances of each 
approach in various scenarios. 

For sub trajectories T1 and T3, filtering and data 
fusion are carried out by iterative linear Kalman 
filters due to linearity of the models, and for sub 
trajectory T2, by iterative and extended Kalman 
filters. The observation selection technique is 
applied for each observer before the filtering step in 
order to control, on one side, the estimation errors of 
variances, and on the other, after each iteration, to 
update the state noise variance. If an unreliable 
reading is rejected at a given filtering iteration, this 
has for origin either a bad estimation of the next 
component of the state vector and of the prediction 
of the corresponding observation, or a bad updating 
of the corresponding state noise variance. The 
iterative filtering is optimal when it is carried out for 
each observer and no reading is rejected. In the 
implementation of the proposed approach, the state 
noise variance is updated, for a given mode i , is 
carried out according to the following filtering 
sequence: x, y and thenθ . 

Notation: 
- xε , yε and εθ : the estimation errors corresponding 
to x, y and θ  respectively; 
- Ndx , Ndy  and θNd : the percentage of selected 
data for filtering, corresponding to components 
x , y  and θ  respectively; 
- Ndxe , Ndye  and eNdθ : the percentage of selected 
data for estimation of the variances of state and 
measurement noises, corresponding to components 
x , y  and θ  respectively. 
-+:SMI; °: SMI, --:AMM 
 
Scenario 1 
-Noise-to-signal Ratio of odometric sensors: right 
encoder: 8%, left encoder: 8% 
-Noise-to-signal Ratio of Gyroscope: 3% 
-Noise-to-signal Ratio of telemeter 1: 10% of the 
odometric elementary step 
-Noise-to-signal Ratio of telemeter 2: 10% the 
odometric elementary step 
-“A priori” knowledge on the variance in initial 
state: Good  

-“A priori” knowledge on noise statistics 
(measurement and state variances): Good 
 
In this scenario, the telemeters measurement noise is 
higher than state noise. We notice that performances 
of  AMM filter are better that those of SM and SMI 
filters concerning x and y-components (Table 1; Fig. 
3-5). In sub trajectory T3, the orientation’s 
estimation error relating to AMM filter (Table 1) has 
no influence on filtering quality of the remaining 
components of state vector. Besides, one can note 
that this error decreases in this sub trajectory (Figure 
6). In this case, only gyroscope is used for the 
prediction and updating the Markov chain 
probabilities. In sub trajectory T2, we notice that the 
estimation error along x-Axis for AMM filter is 
lightly higher than those relating to other filters. This 
error is concentrated on first half of T2 sub 
trajectory (Figure 7) and decreases then on second 
half of the trajectory. This can be explained by the 
fact that on one hand, the estimation variances 
algorithm rejected 0.7% of data, and on the other, 
the filtering step has rejected the same percentage of 
data. This justifies that neither the variances 
updating, nor the x-coordinate correction, were 
carried out.  

Note that unlike filters SM and SMI, filter AMM 
has a robust behavior concerning pose estimation 
even when the signal-to-noise ratio is weak. By 
introducing the concept of observation domain for 
observation models, we obtain a better modeling of 
observation and a better management of robot’s 
sensors. The last remark is related to the bad 
performances of filters SM and SMI when the 
signal-to-noise ratio is weak. This ratio degrades the 
estimation of the orientation angle, observation 
matrices, Kalman filter gain along with the 
prediction of the observations. 

 
Figure 3: Estimated trajectories (sub trajectory T1). 
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Figure 4: Estimated trajectories (sub trajectory T2). 
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Figure 5: Estimated trajectories (sub trajectory T3). 

Table 1: Average estimation errors (Scenario 1). 

  T1   T2   T3  

 SM SMI AMM SM SMI AMM SM SMI AMM

xε (

cm) 
6.2

5 

3.2

3 
2.5 

13.

2 
10.8 

15.

3 

31.

9 

31.

2 
1.2 

yε (

cm) 
13.

6 

16.

7 
2.3 

23.

9 
11.9 

8.2

5 

19.

2 

5.7

5 

3.2

3 

εθ  

(10-3  

rad) 

81.

1 

66.

9 
3.8 

32.

2 
39.9 

35.

6 
136 125 

267

.9 

Ndx =99.37%, Ndy = 84.37%,  θNd =99.37%, 
Ndxe =99.37%, Ndye =97.5%, eNdθ =99.37%.  

AAAAAAA

 
Figure 6: Orientation error. 
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Figure 7: Position error with respect to X axis. 

Scenario 2 
-Noise-to-signal Ratio of odometric sensors: right 
encoder: 10%, left encoder: 10% 
-Noise-to-signal Ratio of Gyroscope: 3% 
-Noise-to-signal Ratio of telemeters: 4% of the 
odometric elementary step (40% of the state noise) 
-“A priori” knowledge on the variance in initial 
state: Good  
-“A priori” knowledge on noise variances (i) 
telemeters and state: Good; (ii) gyroscope: Bad 

The results presented here (Table 2 and Fig. 8-
10) show the influence of signal-to-noise ratio and 
the estimation of noise variances on performances of 
SM and SMI filters. In this scenario, the initial 
variance of measurement noise of the gyroscope is 
incorrectly estimated. Contrary to AMM approach, 
filters SM and SMI do not carry out any adaptation 
of this variance, leading to unsatisfactory 
performance. 

Figure 11 illustrates the evolution of state noise 
variance estimate compared to the average variance. 
Note that the ratio between variances reaches 1.7 on 
sub trajectory T1, 3.0 on sub trajectory T2, and 3.3 
on sub trajectory T3. It is important to mention that 
the algorithm proposed for estimation of variances 
estimates the actual value of state noise variance and 
not its average value. These results are related to the 
fact that the signal-to-noise ratio is weak both for the 
odometer and the telemeters.  

 
Figure 8: Estimated trajectories (sub trajectory T1).  
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Figure 9: Estimated trajectories (sub trajectory T2). 
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Figure 10: Estimated trajectories (sub trajectory T3). 
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Figure 11: Ratio between the estimate of state noise 
variance and the average variance. 

Table 2: Average estimation errors (Scenario 2). 

  T1   T2   T3  

 SM SMI AMM SM SMI AMM SM SMI AMM 

xε (cm

) 
11.

7 
11 1.8 19 75 13.6 17.3 40 1.3 

yε (cm

) 
16.

7 
21 1 39 

17

9 
17.4 15.7 

11

7 
1.93 

εθ  

(10-3  rad)

99.

3 

12

9 
1.5 42.9 

17

5 
35.4 97.5 

16

7 
37.8 

Ndx =87.5%, Ndy =66%, θNd =99.37%, Ndxe =87.5%, 
Ndye =82.5%, eNdθ =99.37%. 

5 CONCLUSIONS 

We presented in this paper a multiple model 
approach for the robust localization of a mobile 
robot. In this approach, the localization is considered 
as a hybrid process, which is decomposed into 
multiple models. Each model is associated with a 
mode and an interval of validity corresponding to 
the observation domain.  A Markov chain is 
employed for the prediction of each model according 
to the robot mode. To prevent divergence of 
standard Kalman Filtering, we proposed the 
application of an adaptive algorithm for the 
adjustment of the state and measurement noise 
covariance matrices. For an efficient estimation of 
noise variances, we used an ad hoc technique 
consisting of a measure selection for filtering 
unreliable readings. The simulation results which we 
obtain in different scenarios show better 
performances of the proposed approach compared to 
standard existing filters. These investigations into 
utilizing multiple model technique for robust 
localization show promise and demand continuing 
research. 
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