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Abstract. In this paper a new cooperative collision-avoidance method for mul-
tiple nonholonomic robots based on Bernstein- Bézier curves is presented. The
reference path of each robot from the start pose to the goal pose, is obtained
by minimizing the penalty function, which takes into account the sum of all the
paths subjected to the distances between the robots, which should be bigger than
the minimal distance defined as the safety distance. When the reference paths
are defined the model predictive trajectory tracking is used to define the control.
A prediction model derived from linearized tracking-error dynamics is used to
predict future system behavior. A control law is derived from a quadratic cost
function consisting of the system tracking error and the control effort. The results
of the simulation and some future work ideas are discussed.

1 Introduction

Collision avoidance is one of the main issues in applications for a wide variety of tasks
in industry, human-supported activities, and elsewhere. Often, the required tasks cannot
be carried out by a single robot, and in such a case multiple robots are used coop-
eratively. The use of multiple robots may lead to a collision if they are not properly
navigated. Collision-avoidance techniques tend to be based on speed adaptation, route
deviation by one vehicle only, route deviation by both vehicles, or a combined speed
and route adjustment. When searching for the best solution that will prevent a collision
many different criteria are considered: time delay, total travel time, planned arrival time,
etc. Our optimality criterion will be the minimal travel time, which directly implies a
minimal total length of the robot paths, subject to a minimal safety distance between all
the robots.

In the literature many different techniques for collision avoidance have been pro-
posed. The first approaches proposed avoidance, when a collision between robots is
predicted, by stopping the robots for a fixed period or by changing their directions.
The combination of these techniques is proposed in [1]. The behavior-based motion
planning of multiple mobile robots in a narrow passage is presented in [2]. Intelligent
learning techniques were incorporated into neural and fuzzy control for mobile-robot
navigation to avoid a collision as proposed in [3].

In our paper the control of multiple mobile robots to avoid collisions in a two-
dimensional free-space environment is separated into the path planning for each indi-
vidual robot to reach its goal pose as fast as possible. The second part of the task is to
design the control that will ensure the perfect trajectory tracking of the mobile robots.
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Several controllers were proposed for mobile robots with nonholonomic constraints.
An extensive review of nonholonomic control problems can befound in [4]. In trajectory-
tracking control a reference trajectory is usually obtained by using a reference robot;
therefore, all kinematics constraints are implicitly considered by a reference trajectory.
From the reference trajectory a feed-forward system of inputs combined with a feed-
back control law are mostly used [5]. Lyapunov stable time-varying state-tracking con-
trol laws were pioneered by [9]. The stabilization to the reference trajectory requires
a nonzero motion condition. Many variations and improvements to this state-tracking
controller followed in subsequent research [10]. A tracking controller obtained with
input-output linearization is used in [5], a saturation feedback controller is proposed in
[11] and a dynamic feedback linearization technique is usedin [6].

The paper is organized as follows. In Section 2 the problem isstated. The concept
of path planning is shown in Section 3. The idea of optimal collision avoidance for
multiple mobile robots based on Bézier curves is discussed in Section 4. The trajectory-
tracking controller design where the control strategy consists of feed-forward and feed-
back actions is introduced in Section 5. In Section 5.1 the proposed model predictive
controller is derived. The simulation results of the obtained collision-avoidance control
are presented in Section 6 and the conclusion is given in Section 7.

2 Statement of the Problem

The collision-avoidance control problem of multiple nonholonomic mobile robots is
proposed in a two-dimensional free-space environment. Thesimulations are performed
for a small two-wheel differentially driven mobile robot ofdimension7.5 × 7.5 × 7.5
cm. The architecture of our robots has a nonintegrable constraint in the formẋ sin θ −
ẏ cos θ = 0 resulting from the assumption that the robot cannot slip in alateral direction
whereq(t) = [x(t) y(t) θ(t)]T are the generalized coordinates The kinematics model
of the mobile robot is

q̇(t) =




cos θ(t) 0
sin θ(t) 0

0 1




[
v(t)
ω(t)

]
(1)

wherev(t) andω(t) are the tangential and angular velocities of the platform. During
low-level control the robot’s velocities and accelerations are bounded within the maxi-
mal allowed velocities and accelerations, which prevents the robot from slipping.

The danger of a collision between multiple robots is avoidedby determining the
strategy of the robots’ navigation, where we define the reference path to fulfil certain
criteria. The reference path of each robot from the start pose to the goal pose is obtained
by minimizing the penalty function, which takes into account the sum of all the paths
subjected to the distances between the robots, which shouldbe larger than the defined
safety distance. When the reference paths are defined the model predictive trajectory
tracking is used to define the control.
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3 Path Planning based on Bernstein-B́ezier Curves

Given a set of control pointsP0, P1, . . . , Pb, the corresponding Bernstein-Bézier curve
(or Bézier curve) is given by

r(λ) =
b∑

i=0

Bi,b(λ)pi

whereBi,b(λ) is a Bernstein polynomial,λ is a normalized time variable (λ = t/Tmax,
0 ≤ λ ≤ 1) andpi, 0 = 1, . . . , b stands for the local vectors of the control pointPi

(pi = Pix
ex + Piy

ey, wherePi =
(
Pix

, Piy

)
is the control point with coordinatesPix

andPiy
, andex andey are the corresponding base unity vectors). The Bernstein-Bézier

polynomials, which are the base functions in the Bézier-curve expansion, are given as
follows:

Bi,b(λ) =
(

b

i

)
λi (1− λ)b−i

, i = 0, 1, . . . , b

which have the following properties:0 ≤ Bi,b(λ) ≤ 1, 0 ≤ (λ) ≤ 1 and
∑b

i=0 Bi,b =
1.

The B́ezier curve always passes through the first and last control point and lies
within the convex hull of the control points. The curve is tangent to the vector of the
differencep1 −p0 at the start point and to the vector of the differencepb −pb−1 at the
goal point. A desirable property of these curves is that the curve can be translated and
rotated by performing these operations on the control points. The undesirable properties
of Bézier curves are their numerical instability for large numbers of control points, and
the fact that moving a single control point changes the global shape of the curve. The
former is sometimes avoided by smoothly patching together low-order B́ezier curves.

The properties of B́ezier curves are used in path planning for nonholonomic mobile
robots. In particular, the fact of the tangentiality at the start and at the goal points and
the fact that moving a single control point changes the global shape of the curve. Let us
assume the starting pose of the mobile robot is defined in the generalized coordinates
asqs = [xs, ys, θs]

T and the goal pose is defined asqg = [xg, yg, θg]
T , which means

that the robot starts in positionPs(xs, ys) with orientationθs and has a goal defined
with positionPg(xg, yg) with orientationθg. The property of tangentiality requires the
definition of the neighboring pointsP1(x1, y1) andP2(x2, y2), which become

P1(xs + d cos θs, ys + d sin θs), P2(xg + d cos(θg + π), yg + d sin(θg + π)) (2)

whered stands for the distance betweenPs andP1 and betweenPg andP2. The distance
d is usually defined relatively to the distance between the start and the goal pointD
(D =| pg − ps |) defined asd = γD, 0 < γ < 0.5. These four control pointsPs,
P1, P2 andPg uniformly define the third order B́ezier curve. The need for flexibility
of the global shape and the fact that moving a single control point changes the global
shape of the curve imply the introduction of another point, which will be denoted as
Po(xo, yo). By changing the position of pointPo the global shape of the curve changes.
This means that having in mind the flexibility of the global shape of the curve and the
start and the goal pose of the mobile robot, the path can be planned by four fixed points
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and one variable point. The Bézier curve is now defined as a sequence of pointsPs, P1,
Po, P2 andPg in Fig 1. This means that we are dealing with Bernstein polynomials of
the fourth order (Bi,b, i = 0, . . . , b, b = 4). The curve is defined as follows:

r(λ) = B0,4ps + B1,4p1 + B2,4po + B3,4p2 + B4,4pg (3)

y

x

P x  y1 1 1( , )

P x ys s s( , )

P x  yo o o( , ) P x  y2 2 2( , )

P x  yg g g( , ) qg

qs

D

Fig. 1. The B́ezier curve.

4 Optimal Collision Avoidance based on Bernstein-B́ezier Curves

In this subsection a detailed presentation of cooperative multiple robots collision avoid-
ance based on B́ezier curves will be given. Let as assume the number of robotsequals
n. The i-th robot is denoted asRi and has the start position defined asPsi (xsi, ysi)
and the goal position defined asPgi (xgi, ygi). The reference path ofi-th robot will be
denoted with the B́ezier curveri(λ) = [xi(λ), yi(λ)]T . By choosing maximal time of
the experimentTmax (t = Tmaxλ, 0 ≤ λ ≤ 1) the robots tangential velocity profiles
are determined.Tmax is determined by the fastest robotRi asTmax = maxi(vi(λ))

vmax
,

i = 1, . . . , n, 0 ≤ λ ≤ 1, wherevmax is maximal allowed tangential robot velocity.
Maximal timeTmax is then common to all robotsRi. In Fig. 2 a collision avoidance for
n = 2 is presented for reasons of simplicity.

The safety margin to avoid a collision between two robots is,in this case, defined
as the minimal necessary distance between these two robots.The distance between the
robotRi andRj is rij(λ) =| ri(λ)− rj(λ) |, i = 1, . . . , n, j = 1, . . . , n, i 6= j.

Defining the minimal necessary safety distance asds, the following condition for
collision avoidance is obtainedrij ≥ ds, 0 ≤ λ ≤ 1, i, j. Fulfilling this criteria means
that the robots will never meet in the same region defined by a circle with radiusds,
which is called a non-overlapping criterion. At the same time we would like to minimize
the length of the path for each robot, which is defined assi. The lengthsi(λ) is defined
assi(λ) =

∫ λ

0
vi(λ)dλ, wherevi(λ) stands for the tangential velocity in the normalized
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Fig. 2.Collision avoidance based on Bernstein-Bézier.

variableλ and the length of the path of the robotRi from the start control point to the
goal point is now calculated as:

vi(λ) =| ṙ(λ) |=
(
ẋ2

i (λ) + ẏ2
i (λ)

) 1
2 , si =

∫ 1

0

(
(ẋ2

i (λ)) + ẏ2
i (λ))

) 1
2 dλ

whereẋi(λ) stands fordxi(λ)
dλ and ẏi(λ) for dyi(λ)

dλ . Assuming that the start and goal
control points are known, the global shape and length of eachpath can be optimized by
changing the flexible control pointPoi. The collision-avoidance problem is now defined
as an optimization problem as follows:

minimize

n∑

i=1

si subject to ds − rij(λ) ≤ 0, ∀i, j, i 6= j, 0 ≤ λ ≤ 1 (4)

The minimization problem is called aninequality optimization problem and can be
introduced as the minimization of the following penalty function

F (Po) =
X

i

si + c
X
ij

Γij , Γij =

�
1, min rij(λ) < ds

0, min rij(λ) > ds
, i, j, i 6= j, 0 ≤ λ ≤ 1 (5)

where c stands for a large scalar to penalize the unfulfillment of constraints. The
solution of the minimization problemminPo

F is a set ofn control pointsPo =
{Po1, . . . , Pon}. Each optimal control pointPoi, i = 1, . . . , n uniformly defines one
optimal path, which ensures collision avoidance in the sense of a safety distance and
will be used as a reference trajectory of theith robot and will be denoted asrri(λ).

To define the feasible reference path that will be collision safe, the real time should
be introduced. In the real system the tangential and the angular velocities are limited to
(vmax, ωmax). Using the relationv(t) = v(λ)

Tmax
the maximal timeTmax can be defined

to fulfil the velocity limitation (Tmax ≥ max v(λ)
vmax

).

5 Path Tracking

The previously obtained optimal collision-avoidance pathfor theith robot is defined as
rri(t) = [xri(t), yri(t)]

T
, i = 1, . . . , n. In this section the development of a predictive
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path-tracking controller will be presented. The path-tracking control is realized as a sum
of the feed-forward and feed-back controls. The feed-forward control for theith robot
is calculated from a feasible reference pathrri(t) = [xri(t), yri(t)]

T
, which enables us

to reach a desired pose. The feed-forward control inputsvri(t) andωri(t) are derived
using a kinematic model (1). The tangential velocityvri(t) and the tangent angle of
each point on the path are calculated as follows

vri(t) =
(
ẋ2

ri(t) + ẏ2
ri(t)

) 1
2 , ωri(t) =

ẋri(t)ÿri(t)− ẏri(t)ẍri(t)
ẋ2

ri(t) + ẏ2
ri(t)

= vri(t)κ(t)

(6)
whereκ(t) is the path curvature. The necessary condition in the path-design procedure
is a twice-differentiable path and a nonzero tangential velocity vri(t) 6=0.

If for some timet the tangential velocity isvri(t)=0, the robot rotates at a fixed
point with the angular velocityωri(t) calculated from an explicitly givenθri(t).

The feedback control law is derived from a linear time-varying system obtained by
an approximate linearization around the trajectory. The obtained linearization is shown
to be controllable as long as the trajectory does not come to astop, which implies that
the system can be asymptotically stabilized by smooth time-varying linear or nonlinear
feedback. The tracking errore(t) = [e1(t) e2(t) e3(t)]T of a mobile robot expressed in
the frame of the real robot reads

e =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 (qri − q) . (7)

Considering the robot kinematics (1) and derivating relations (7) the following kine-
matics model is obtained

ė =




cos e3 0
sin e3 0

0 1




[
vri

ωri

]
+



−1 e2

0 −e1

0 −1


u (8)

whereu = [v ω]T is the velocity input vector andvri andωri are already defined in (6).
The robot input vectoru is further defined as the sum of the feed-forward and feedback
control actions (u = uF + uB) where the feed-forward input vector,uF , is obtained
by a nonlinear transformation of the reference inputsuF = [vri cos e3 ωri]T and the
feedback input vector, isuB = [uB1 uB2 ]

T , which is the output of the controller defined
in section 5.1.

Using the relationu = uF + uB , rewriting (8) and furthermore, by linearizing the
error dynamics around the reference trajectory (e1 = e2 = e3 = 0, uB1 = uB2 = 0)
the following linear model is obtained

ė =




0 ωri 0
−ωri 0 vri

0 0 0


 e +



−1 0
0 0
0 −1


uB (9)

which in the state-space form isė = Ace + BcuB . According to Brockett’s condition
[12] a smooth stabilization of the system (1) or its linearization is only possible with
time-varying feedback. In the following the obtained linear model is used in the derived
predictive control law.
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5.1 Model Predictive Control based on a Robot Tracking-errorModel

To design the controller for trajectory tracking the system(9) will be written in discrete-
time form as

e(k + 1) = Ae(k) + BuB(k)

whereA ∈ Rn × Rn, n is the number of state variables andB ∈ Rn × Rm, m is the
number of input variables. The discrete matrixA andB can obtained as follows:A =
I + AcTs, B = BcTs which is a good approximation during a short sampling time
Ts.

The idea of the moving-horizon control concept is to find the control-variable values
that minimize the receding-horizon quadratic cost function (in a certain interval denoted
with h) based on the predicted robot-following error:

J(uB , k) =
h∑

i=1

ǫT (k, i)Qǫ(k, i) + uT
B(k, i)RuB(k, i) (10)

whereǫ(k, i) = eri(k + i) − e(k + i|k) anderi(k + i) ande(k + i|k) stands for the
reference robot following-trajectory and the robot-following error, respectively, andQ
andR stand for the weighting matrices whereQ ∈ Rn ×Rn andR ∈ Rm ×Rm, with
Q ≥ 0 andR ≥ 0.

Output prediction in the discrete-time framework In the moving time frame the
model output prediction at the time instanth can be written as:

e(k + h|k) = Πh−1
j=1 A(k + j|k)e(k) +

∑h
i=1

(
Πh−1

j=i A(k + j|k)
)
B(k + i− 1|k)·

·uB(k + i− 1) + +B(k + h− 1|k)uB(k + h− 1) .
(11)

Defining the robot-tracking prediction-error vector

E∗(k) =
[
e(k + 1|k)T e(k + 2|k)T . . . e(k + h|k)T

]T

whereE∗ ∈ Rn·h for the whole interval of observation (h) and the control vector

UB(k) =
[
uT

B(k) uT
B(k + 1) . . .uT

B(k + h− 1)
]T

and
ΛΛΛ(k, i) = Πh−1

j=i A(k + j|k)

the robot-tracking prediction-error vector is written in the form

E∗(k) = F(k)e(k) + G(k)UB(k) (12)

where
F(k) = [A(k|k) A(k + 1|k)A(k|k) . . . ΛΛΛ(k, 0)]T , (13)

andG(k) = [gij ] , i = 1, ..., n, j = 1, ..., b, b = max(h, n), g11 = B(k|k),g21 =
A(k+1|k)B(k|k), g22 = B(k+1|k), gn1 = ΛΛΛ(k, 1)B(k|k), gn2 = ΛΛΛ(k, 2)B(k+1|k),
gnh = B(k + h− 1|k). andF(k) ∈ Rn·h × Rn, G(k) ∈ Rn·h × Rm·h.
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The objective of the control law is to drive the predicted robot trajectory as close
as possible to the future reference trajectory, i.e., to track the reference trajectory. This
implies that the future reference signal needs to be known. Let us define the reference
error-tracking trajectory in state-space aseri(k + i) = Ai

rie(k). for i = 1, . . . , h. This
means that the future control error should decrease according to dynamics defined with
the reference model matrixAri. Defining the robot reference-tracking error vector

E∗
ri(k) =

[
eri(k + 1)T eri(k + 2)T . . . eri(k + h)T

]T
, E∗

ri ∈ Rn·h

for the whole interval of observation (h) the following is obtained

E∗
ri(k) = Frie(k), Fri =

[
Ari A2

ri . . . Ah
ri

]T
, Fri ∈ Rn·h × Rn. (14)

Control law The idea of MPC is to minimize the difference between the predicted
robot-trajectory error and the reference robot-trajectory error in a certain predicted in-
terval.

The cost function is, according to the above notation, now written as

J(UB) = (E∗
ri −E∗)T Q (E∗

ri −E∗) + UT
BRUB . (15)

The control law is obtained by the minimization (∂J
∂UB

= 0) of the cost function and
becomes

UB(k) =
(
GT QG + R

)−1
GT Q (Fri − F) e(k) (16)

whereQ = diag(Q) andR = diag(R). This means thatQ ∈ Rn·h × Rn·h and
R ∈ Rm·h × Rm·h.

Let us define the firstm rows of the matrix
(
GT QG + R

)−1
GT Q (Fri − F) ∈

Rm·h × Rn asKmpc. Now the feedback control law of the model predictive control is
given by

uB(k) = Kmpc · e(k), Kmpc ∈ Rm × Rn (17)

6 Simulation Results

In this section the simulation results of the optimal cooperative collision avoidance
between three mobile robots are shown. The study was made to elaborate the possible
use in the case of a real mobile-robot platform. In the real platform we are faced with
the limitation of control velocities and accelerations. The maximal allowed tangential
velocity and angular velocity werevmax = 0.5 m/s andωmax = 13 rad/s, while the
maximal allowed tangential wheel acceleration isamax = 3m/s2. Because of relatively
hight maximal angular velocity and tangential wheel acceleration only the tangential
velocity was taken into account to define the maximal time between the start position
of the robots and the goal position, which is defined asTmax ≥ max v(λ)

vmax
= 2.1m

0.5ms−1 =
4.02s where the maximal normalized tangential velocitymaxi vi(λ) = 2.1m is defined
from Fig. 3. The starting pose of the first mobile robotR1 in generalized coordinates is

defined asqs1 =
[
0, 1, π

2

]T
and the goal pose asqg1 =

[
1, 0,−π

4

]T
. The second robot
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Fig. 3. The velocities of avoiding robotsR1, R2 andR3 in normalized time variable.

R2 starts inqs2 =
[
1, 0,− 3π

4

]T
and has the goal poseqg2 =

[
0, 1, 3π

4

]T
. The third

robotR3 has the start poseqs3 =
[
0, 0,−π

4

]T
and the goal poseqg3 =

[
1, 1, π

4

]T
. The

x andy coordinates are defined in meters. The safety distance is defined asds = 0.35m.
The parameterd, which is used to define the control pointsP1i andP2i, equals0.4m
(minij Dij = 1m, γ = 0.4). In Fig. 4 the distances between the mobile robots are

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

λ

r 12
, r

13
, r

23

r
12

r
13

r
23

Fig. 4.The distances between avoiding robotsR1, R2 andR3.

shown. It is also shown that all the distancesr12, r13 andr23 satisfy the safety-distance
condition. They are always bigger than prescribed safety distanceds.

7 Conclusion

The optimal cooperative collision-avoidance approach based on B́ezier curves allows
us to include different criteria in the penalty functions. In our case the reference path of
each robot from the start pose to the goal pose is obtained by minimizing the penalty
function, which takes into account the sum of all the paths subjected to the distances
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between the robots, which should be bigger than the minimal distance defined as the
safety distance. Current approach as presented does not include explicit velocity and
acceleration constraints to be imposed to each robot, this remaining the future research
work.
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