Cooperative Collision Avoidance between Multiple
Robots based on Bernstein-Bzier Curves

Igor ékrjanc and Gregor Klarar

Faculty of Electrical Engineering, University of Ljubljana
TrzaSka 25, SI-1000 Ljubljana, Slovenia

Abstract. In this paper a new cooperative collision-avoidance method for mul-
tiple nonholonomic robots based on Bernsteigzr curves is presented. The
reference path of each robot from the start pose to the goal pose, is obtained
by minimizing the penalty function, which takes into account the sum of all the
paths subjected to the distances between the robots, which should be bigger than
the minimal distance defined as the safety distance. When the reference paths
are defined the model predictive trajectory tracking is used to define the control.
A prediction model derived from linearized tracking-error dynamics is used to
predict future system behavior. A control law is derived from a quadratic cost
function consisting of the system tracking error and the control effort. The results
of the simulation and some future work ideas are discussed.

1 Introduction

Collision avoidance is one of the main issues in applications for a wide variety of tasks
in industry, human-supported activities, and elsewhere. Often, the required tasks cannot
be carried out by a single robot, and in such a case multiple robots are used coop-
eratively. The use of multiple robots may lead to a collision if they are not properly
navigated. Collision-avoidance techniques tend to be based on speed adaptation, route
deviation by one vehicle only, route deviation by both vehicles, or a combined speed
and route adjustment. When searching for the best solution that will prevent a collision
many different criteria are considered: time delay, total travel time, planned arrival time,
etc. Our optimality criterion will be the minimal travel time, which directly implies a
minimal total length of the robot paths, subject to a minimal safety distance between all
the robots.

In the literature many different techniques for collision avoidance have been pro-
posed. The first approaches proposed avoidance, when a collision between robots is
predicted, by stopping the robots for a fixed period or by changing their directions.
The combination of these techniques is proposed in [1]. The behavior-based motion
planning of multiple mobile robots in a narrow passage is presented in [2]. Intelligent
learning techniques were incorporated into neural and fuzzy control for mobile-robot
navigation to avoid a collision as proposed in [3].

In our paper the control of multiple mobile robots to avoid collisions in a two-
dimensional free-space environment is separated into the path planning for each indi-
vidual robot to reach its goal pose as fast as possible. The second part of the task is to
design the control that will ensure the perfect trajectory tracking of the mobile robots.
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Several controllers were proposed for mobile robots withhmonomic constraints.
An extensive review of nonholonomic control problems cafolb@d in [4]. In trajectory-
tracking control a reference trajectory is usually obteibg using a reference robot;
therefore, all kinematics constraints are implicitly ciolesed by a reference trajectory.
From the reference trajectory a feed-forward system oftsypombined with a feed-
back control law are mostly used [5]. Lyapunov stable tiragying state-tracking con-
trol laws were pioneered by [9]. The stabilization to theerehce trajectory requires
a nonzero motion condition. Many variations and improvetsi¢n this state-tracking
controller followed in subsequent research [10]. A tragkaontroller obtained with
input-output linearization is used in [5], a saturationdieack controller is proposed in
[11] and a dynamic feedback linearization technique is us¢@l.

The paper is organized as follows. In Section 2 the problestaited. The concept
of path planning is shown in Section 3. The idea of optimalisioh avoidance for
multiple mobile robots based oréBier curves is discussed in Section 4. The trajectory-
tracking controller design where the control strategy &ia®f feed-forward and feed-
back actions is introduced in Section 5. In Section 5.1 tlwpased model predictive
controller is derived. The simulation results of the obegcollision-avoidance control
are presented in Section 6 and the conclusion is given inddett

2 Statement of the Problem

The collision-avoidance control problem of multiple nofdrmmic mobile robots is
proposed in a two-dimensional free-space environmentsirhelations are performed
for a small two-wheel differentially driven mobile robot dimension7.5 x 7.5 x 7.5
cm. The architecture of our robots has a nonintegrable nsin the formi sin 0 —
g cos @ = 0 resulting from the assumption that the robot cannot sliplatexal direction
whereq(t) = [z(t) y(t) 0(t)]T are the generalized coordinates The kinematics model
of the mobile robot is 6(6) 0
cosO(t
i(t) = | sin6(t) 0 Méﬂ N
r 4l

wherev(t) andw(t) are the tangential and angular velocities of the platformrimiy
low-level control the robot’s velocities and accelerati@ame bounded within the maxi-
mal allowed velocities and accelerations, which prevdrmggobot from slipping.

The danger of a collision between multiple robots is avoilgdietermining the
strategy of the robots’ navigation, where we define the esfes path to fulfil certain
criteria. The reference path of each robot from the start pothe goal pose is obtained
by minimizing the penalty function, which takes into accbthe sum of all the paths
subjected to the distances between the robots, which sheularger than the defined

safety distance. When the reference paths are defined thd prediéctive trajectory
tracking is used to define the control.



3 Path Planning based on Bernstein-Bzier Curves

Given a set of control point&,, P, ..., Py, the corresponding BernsteiréBier curve
(or Bézier curve) is given by

whereB,; () is a Bernstein polynomial, is a normalized time variable\(= ¢/ 7,44,

0 < X< 1)andp;, 0 =1,...,bstands for the local vectors of the control poit
(pi = P;, e, + P; e,, whereP; = (PiI,Piy) is the control point with coordinates;,
andP; , ande, ande, are the corresponding base unity vectors). The BernsteiieB
polynomials, which are the base functions in thezr-curve expansion, are given as
follows:

by i i
Bip(N\) = (Z.)/\Z(l—)\)b ", i=0,1,...,b

which have the following propertie8:< B; ,(A\) <1, 0 < (A) <1 andZi’:O B
1.

The Bezier curve always passes through the first and last contiat pnd lies
within the convex hull of the control points. The curve isgant to the vector of the
differencep; — py at the start point and to the vector of the differepge- p,_; at the
goal point. A desirable property of these curves is that theeccan be translated and
rotated by performing these operations on the control poirtie undesirable properties
of Bézier curves are their numerical instability for large nemsof control points, and
the fact that moving a single control point changes the dlsbape of the curve. The
former is sometimes avoided by smoothly patching togetherdrder Bezier curves.

The properties of Bzier curves are used in path planning for nonholonomic aobi
robots. In particular, the fact of the tangentiality at ttertsand at the goal points and
the fact that moving a single control point changes the dlshape of the curve. Let us
assume the starting pose of the mobile robot is defined in¢herglized coordinates
asq, = [zs,ys,0s]" and the goal pose is defined@s = [, y,,0,]" , which means
that the robot starts in positioR, (zs, ys) with orientationd; and has a goal defined
with position P, (x4, y,) With orientationd,. The property of tangentiality requires the
definition of the neighboring pointB; (z1, y1) and Py(z2, y2), which become

P (x5 +dcosbs,ys +dsinby), Po(xy + dcos(0g + m),yg + dsin(fy + ) (2)

whered stands for the distance betweBnandP; and betwee®; andP. The distance

d is usually defined relatively to the distance between the atad the goal poinD

(D =| py — ps |) defined asl = vD, 0 < v < 0.5. These four control point®,

Py, P, and P, uniformly define the third order &:ier curve. The need for flexibility
of the global shape and the fact that moving a single conwwitgchanges the global
shape of the curve imply the introduction of another poirttjclr will be denoted as
P,(x,,y,). By changing the position of poitit, the global shape of the curve changes.
This means that having in mind the flexibility of the globahphk of the curve and the
start and the goal pose of the mobile robot, the path can Inagthby four fixed points



and one variable point. The&ier curve is now defined as a sequence of pdiptd™,
P,, P, and P, in Fig 1. This means that we are dealing with Bernstein patyiaés of
the fourth order B, , i = 0,...,b, b = 4). The curve is defined as follows:

r(A\) = Boaps + B1,4p1 + B24Po + B3 ap2 + B 4Py (3

Fig. 1. The Bezier curve.

4 Optimal Collision Avoidance based on Bernstein-Bzier Curves

In this subsection a detailed presentation of cooperativiéple robots collision avoid-
ance based on&ier curves will be given. Let as assume the number of radupisls
n. Thei-th robot is denoted a®; and has the start position defined Bs (x;, ysi)
and the goal position defined &; (x4, y4:). The reference path éfth robot will be
denoted with the Bzier curver;(\) = [z;(\), 4:(\)]". By choosing maximal time of
the experiment’,,... (t = TrazX, 0 < A < 1) the robots tangential velocity profiles
are determinedr;, ., is determined by the fastest robBt asT,,.. = M
i=1,...,n, 0 < X\ < 1, wherev,,,, is maximal allowed tangential robo'tm\L/r'elocity.
Maximal timeT,,,.. is then common to all robotB;. In Fig. 2 a collision avoidance for
n = 2 is presented for reasons of simplicity.

The safety margin to avoid a collision between two robotéishis case, defined
as the minimal necessary distance between these two rdthaslistance between the
robot R; ande iSTZ'j(A) :| I‘Z(>\) — I'j()\) |, i=1,....n,7=1,....n, 1 75 7

Defining the minimal necessary safety distance/aghe following condition for
collision avoidance is obtaineq; > d,, 0 < X <1, ¢, j. Fulfilling this criteria means
that the robots will never meet in the same region defined biycieonith radiusd;,
which is called a non-overlapping criterion. At the sameetire would like to minimize
the length of the path for each robot, which is defined;a¥he lengths;(\) is defined

ass;(\) = fOA v;(A)dA, wherev; () stands for the tangential velocity in the normalized
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Fig. 2. Collision avoidance based on Bernsteiazier.

variable\ and the length of the path of the robBf from the start control point to the
goal point is now calculated as:

i) =] £ |= (5200) + 52 (N)? , s = / ((@2(\) + 52(V)) ? dA

wherez; () stands fordx(;'—g’\) andy; () for dyé—g’\). Assuming that the start and goal
control points are known, the global shape and length of patiihcan be optimized by
changing the flexible control poiR?,;. The collision-avoidance problem is now defined

as an optimization problem as follows:

minimizez s; subject to dg — 1i;(X) <0, Vi, j, i #j, 0<A<1 (4)
=1
The minimization problem is called amequality optimization problem and can be
introduced as the minimization of the following penalty ¢tion
- _ . e minr;;(A) < ds . .
F(P,) 7Zsl+cZFz], n; = {0’ minre () > d, 0 i#j, 0<A<1 (5)
7 17

where ¢ stands for a large scalar to penalize the unfulfilment ofst@ints. The
solution of the minimization problemming, F' is a set ofn control pointsP, =
{Po,1,..., Pon}. Each optimal control poinP,;, ¢ = 1,...,n uniformly defines one
optimal path, which ensures collision avoidance in the sais safety distance and
will be used as a reference trajectory of tkierobot and will be denoted as;(\).

To define the feasible reference path that will be collisiafe sthe real time should
be introduced. In the real system the tangential and thelangelocities are limited to

(Vmaz, Wmaz)- Using the relation(t) = ;’(—*) the maximal timeT},,,... can be defined

to fulfil the velocity limitation ([,e, > 220y,

Umax

5 Path Tracking

The previously obtained optimal collision-avoidance datttheith robot is defined as
ri(t) = [2,4(t), yrs ()], i = 1,...,n. Inthis section the development of a predictive



path-tracking controller will be presented. The pathKiag control is realized as a sum
of the feed-forward and feed-back controls. The feed-fodvemntrol for theith robot
is calculated from a feasible reference pgtht) = [,+(t), y.+(t)]” , which enables us
to reach a desired pose. The feed-forward control inpuig) andw,.;(t) are derived
using a kinematic model (1). The tangential velocity(¢) and the tangent angle of
each point on the path are calculated as follows

a7 (t) + 97 (2)

=

= vyi(t)A(t)
(6)

wherex(t) is the path curvature. The necessary condition in the pasigd procedure
is a twice-differentiable path and a nonzero tangentiaaigf v,.; (t) #0.

If for some timet the tangential velocity i,.;(¢)=0, the robot rotates at a fixed
point with the angular velocity,.;(¢) calculated from an explicitly giveé,.;(t).

The feedback control law is derived from a linear time-vagysystem obtained by
an approximate linearization around the trajectory. Thaiokd linearization is shown
to be controllable as long as the trajectory does not comestom which implies that
the system can be asymptotically stabilized by smooth tiarging linear or nonlinear
feedback. The tracking errext) = [e; (t) e2(t) e3(t)]T of a mobile robot expressed in
the frame of the real robot reads

vri(t) = (875(t) + 57:(1) %, wra(t) =

cosf sin6 0
e= |—sinfcosfO0| (g —q). ©)
0 0 1

Considering the robot kinematics (1) and derivating retai(7) the following kine-
matics model is obtained

coses 0 £ —1 ey
&= |sines 0 [ ”} + | 0 —e;|u (8)
0 1 ™ 0 —1

whereu = [vw]7 is the velocity input vector and.; andw,; are already defined in (6).
The robot input vectoun is further defined as the sum of the feed-forward and feedback
control actions{ = ur + up) where the feed-forward input vectat, is obtained
by a nonlinear transformation of the reference inputs= [v,; cos ez w,;]* and the
feedback input vector, isp = [up, up,]”, which is the output of the controller defined
in section 5.1.

Using the relatiomw = ur + ug, rewriting (8) and furthermore, by linearizing the
error dynamics around the reference trajectery€ es = e3 = 0, ug, = up, = 0)
the following linear model is obtained

0 wry O -10
e = —Wrj 0 Uri | €+ 0 0 up (9)
0 0 O 0 -1

which in the state-space formés= A_.e + B.ug. According to Brockett’s condition

[12] a smooth stabilization of the system (1) or its lineati@n is only possible with

time-varying feedback. In the following the obtained lineedel is used in the derived
predictive control law.




5.1 Model Predictive Control based on a Robot Tracking-errorModel

To design the controller for trajectory tracking the sys{@jywill be written in discrete-
time form as
e(k+1) = Ae(k) + Bug(k)

whereA € R™ x R"™, n is the number of state variables aBde R™ x R™, m is the
number of input variables. The discrete matAixand B can obtained as followaA: =
I+ A.T,, B = B_.T, which is a good approximation during a short sampling time
Ts.

The idea of the moving-horizon control concept is to find thetml-variable values
that minimize the receding-horizon quadratic cost furrc{ia a certain interval denoted
with k) based on the predicted robot-following error:

h
J(up, k) = € (k,i)Qe(k,i) + up(k,i)Rup(k, i) (10)

i=1

wheree(k, i) = e,i(k + i) — e(k + ilk) ande,;(k + i) ande(k + i|k) stands for the
reference robot following-trajectory and the robot-fallng error, respectively, an@
andR stand for the weighting matrices wha@ee R” x R™ andR € R™ x R™, with
Q >0andR > 0.

Output prediction in the discrete-time framework In the moving time frame the
model output prediction at the time instantan be written as:

e(k + hlk) = II'='A(k + jlk)e(k) + S0, (T2 Ak + j|k)) B(k + i — 1]k)-
ug(k+i—1)++B(k+h—1lk)ug(k+h—1).
(11)
Defining the robot-tracking prediction-error vector

E* (k) = [e(k + 1K) e(k+2\k)7 ... e(k + h|k)T]"
whereE* € R™" for the whole interval of observatioi) and the control vector
Up(k) = [uh(k) ub(k+1)... w5k +h-1)]"

and
A(k,i) = 1T Ak + j|k)

the robot-tracking prediction-error vector is written iretform

E* (k) = F(K)e(k) + G(K)Up (k) (12)
where

F(k) = [A(k|k) A(k+ 1|k)A(k|k) ... A(k,0)]", (13)
andG(k) = [g;5], i =1,...,n, j =1,...,b, b = maz(h,n), g11 = B(klk),921 =

A(k+1|k)B(k|k), g22 = B(k+1[k), gn1 = A(k, 1)B(k|k), gn2 = A(k, 2)B(k+1[k),
gun = B(k + h — 1|k). andF(k) € R™" x R*, G(k) € R™" x R™h,



The objective of the control law is to drive the predictedabtrajectory as close
as possible to the future reference trajectory, i.e., tcktthe reference trajectory. This
implies that the future reference signal needs to be knowhuk define the reference
error-tracking trajectory in state-spaceeas(k + i) = A% e(k). fori = 1,...,h. This
means that the future control error should decrease acgptdidynamics defined with
the reference model matrix..;. Defining the robot reference-tracking error vector

B (k) = [eni(k+1)T eni(k+2)" ... ep(k+1)7]", B, € R

for the whole interval of observatior) the following is obtained

E7 (k) = Fre(k), Fpy = [Ay A% . AR]T ) Fo e R x R™, (14)

Control law The idea of MPC is to minimize the difference between the ipted
robot-trajectory error and the reference robot-trajgctoror in a certain predicted in-
terval.

The cost function is, according to the above notation, noittew as

J(Ug) = (B, —E")" Q(E}, - E*) + U,RUp. (15)

The control law is obtained by the minimizatiog‘%g’E = 0) of the cost function and
becomes )
Up(k) = (GTQG+R) G'Q(F,; — F)e(k) (16)

whereQ = diag(Q) andR = diag(R). This means thaQ € R™" x R*" and
R c R™" x R™h,

Let us define the first: rows of the matrix( G QG + ﬁ)fl GTQ(F,;—F) ¢
R™" x R™ asK,,,.. Now the feedback control law of the model predictive coiiso
given by

up(k) = Kipe - €(k), Kipe € R™ x R" a7

6 Simulation Results

In this section the simulation results of the optimal coagige collision avoidance
between three mobile robots are shown. The study was madatiorate the possible
use in the case of a real mobile-robot platform. In the reatffptm we are faced with
the limitation of control velocities and accelerationseThaximal allowed tangential
velocity and angular velocity werg,,,, = 0.5 m/s andw,,.. = 13 rad/s, while the
maximal allowed tangential wheel acceleration,js,., = 3m/s?. Because of relatively
hight maximal angular velocity and tangential wheel aaegien only the tangential
velocity was taken into account to define the maximal timeveen the start position
of the robots and the goal position, which is defined’as,, > mj’;:g” =gl =
4.02s where the maximal normalized tangential velogityx; v;(\) = 2.1m is defined
from Fig. 3. The starting pose of the first mobile rolititin generalized coordinates is

defined asy,; = [0, 1, g]T and the goal pose ag;; = [1,0, —%]T. The second robot
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Fig. 3. The velocities of avoiding robotB:, R, and R3 in normalized time variable.

R, starts inqs2 = [1,0, —%]Tand has the goal posg;, = [0, 1, %{}T. The third

robot R3 has the start posg,; = [0,0, —g]T and the goal pose,; = [1, ,ﬂT. The
x andy coordinates are defined in meters. The safety distance rededsl, = 0.35m.
The parameted], which is used to define the control poin®s; and Ps;, equalsd.4m

(min;; D;; = 1Im,vy = 0.4). In Fig. 4 the distances between the mobile robots are

"2
N
1.4F 13 |4

0.2 0.4 0.6 0.8 1

Fig. 4. The distances between avoiding rob&ts R, and Rs.

shown. It is also shown that all the distanees 13 andrsos satisfy the safety-distance
condition. They are always bigger than prescribed safestiadced,.

7 Conclusion

The optimal cooperative collision-avoidance approactetbam Bezier curves allows
us to include different criteria in the penalty functionsolur case the reference path of
each robot from the start pose to the goal pose is obtainedifiyniring the penalty
function, which takes into account the sum of all the pathgestted to the distances



between the robots, which should be bigger than the mininistduce defined as the
safety distance. Current approach as presented does hadénexplicit velocity and
acceleration constraints to be imposed to each robot,eémsining the future research
work.
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