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Abstract: Heaps models are powerful models for concurrent timed discrete event systems. They admit linear description
using dioid algebras. Inspired by supervisory control of logical discrete event systems we introduce parallel
composition of heap models, called synchronous product, to formally describe the action of supervisor (rep-
resented by another heap model) on the system. This additional explicit concurrency for naturally concurrent
heap models is useful for studying supervisory control in the algebraic framework of dioid algebras. Timing
aspects of supervisory control,i.e. optimal timing of the controller, is studied based on residuation theory.

1 INTRODUCTION

There are two major streams in control theory of
Discrete Event (dynamical) Systems (DES). The first
stream, known as supervisory control theory, has
been introduced by Wonham and Ramadge for logi-
cal automata (e.g. (Ramadge and Wonham, 1989)).
The second stream more particularly deals with the
class of timed Petri nets, called timed event graphs,
based on linear representation in the (max,+) alge-
bra. Being inspired by papers on (max,+) automata
(e.g. (Gaubert and Mairesse, 1999), (Gaubert, 1995)),
which generalize both logical automata and (max,+)-
linear systems, it is interesting to develop a control
method for (max,+) automata by considering super-
visory control approach. However the time seman-
tics of the parallel composition operation (called su-
pervised product) we have proposed for control of
(max,+) automata in (Komenda et al., 2007) are dif-
ferent from the standard time semantics for timed au-
tomata or timed Petri nets. One has to increase the
number of clocks in order to define a synchronous
product of (max,+) automata viewed as 1-clock timed
automata. This goes in general beyond the class of
(max,+) automata and makes powerful algebraic re-
sults for (max,+) automata difficult to use.

The results of (Gaubert and Mairesse, 1999)
suggest however an alternative for the subclass of

(max,+) automata corresponding to safe timed Petri
nets, where synchronous product is standard com-
position of subnets through shared (synchronization)
transitions. The intermediate formalism of heap mod-
els enables a letter driven (max,+)-linear representa-
tion of 1-safe timed Petri nets. Therefore it is in-
teresting to work with heaps of pieces instead of
(max,+)-automata and introduce a synchronous com-
position of heap models that yields essentially re-
duced nondeterministic (max,+)- automata represen-
tation of synchronous composition of corresponding
(max,+)-automata. This way we obtain representa-
tions allowing for use of powerful dioid algebras tech-
niques and the reduced dimension of concurrent sys-
tems at the same time: the dimension of synchronous
product of two heap models is the sum of each models
dimensions, while the dimension of supervised prod-
uct of (max,+)-automata is the product of the individ-
ual dimensions, which causes an exponential blow up
of the number of states in the number of components.

The extension of supervisory control to timed
DES represented by timed automata is mostly based
on abstraction methods (e.g.region construction turn-
ing a timed automaton into a logical one). On the
other hand abstraction methods are not suitable for
(max,+) or heap automata, because their timed se-
mantics (when weights of transitions are interpreted
as their minimal durations) are based on the earliest
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possible behavior similarly as for timed Petri nets.
The method we propose avoids any abstraction and
works with timed DES (TDES) represented by heap
models. Similarly as for logical DES our approach
to supervisory control is based on the parallel compo-
sition (synchronous product) of the system with the
supervisor (another heap model).

Our research is motivated by applying supervi-
sory control on heap models, which are appropriate
to model 1-safe timed Petri nets. This is realized by
using the synchronous product: the controlled system
is the synchronous product of the system with its con-
troller (another heap model). The algebraization of
the synchronous product that is translated into idem-
potent sum of suitable block matrices together with a
linear representation of composed heap models using
its decomposed morphism matrix is then applied to
the control problem for heap models.

The paper is organized as follows. Algebraic pre-
liminaries needed in the paper are recalled in the next
section. In Section 3 are introduced heap models to-
gether with their synchronous product and their mod-
elling by fixed-point equations in the dioid of for-
mal power series. Section 4 is devoted to the study
of properties of synchronous product of heap models
that will be applied in Section 5 to supervisory con-
trol of heap models. Residuation theory can be used
in supervisory control of heap models.

2 DIOID ALGEBRAS

Basic algebraic structures and their properties that
will be used in the paper are briefly presented in this
section.

An idempotent semiring is a setM endowed with
two inner operations. A commutative and associative
addition denoted⊕ that has a unit elementε and satis-
fies the idempotency condition (∀a∈ M : a⊕a = a).
A second operation, called multiplication, and de-
noted⊗ is associative and has a unit elemente, dis-
tributes over⊕ both on the left and on the right, and
∀a∈ M : a⊗ ε = ε⊗a = ε. An idempotent semiring
is said to be commutative if the multiplication⊗ is
commutative.

There is a naturally defined partial order� on any
idempotent semigroup, namely,a � b if and only if
a⊕ b = b. An idempotent semiringM is called to
be complete if any nonempty subsetA of M admitss
a least upper bound denoted by

L
x∈Ax and the dis-

tributivity axiom extends to infinite sums. Idempotent
semirings are usually called dioids.

Let N denote the set of natural numbers with zero.
In complete dioids the star operation can be intro-

duced by the formula

a∗ =
M
n∈N

an

with a0 = e. Matrix dioids are introduced in the same
manner as in the conventional linear algebra.

The simplest examples of commutative dioids are
number dioids such asRmax = (R∪ {−∞},max,+)
with maximum playing the role of idempotent addi-
tion, denoted by⊕: a⊕ b = max(a,b), and conven-
tional addition playing the role of multiplication, de-
noted bya⊗b or abwhen no mistake is possible. Ex-
amples of non commutative dioids are matrix number
dioids, formal languages and formal power series.

Let us recall from (Baccelli et al., 1992) and
(Gaubert, 1992) the following results.

Theorem 2.1 Let D be a complete dioid, x,a,b in D
and

x = x⊗a⊕b. (1)

The least solution to equation (1) exists and is given
by b⊗a∗.

Lemma 2.2 Let D be a complete dioid, a,b in D.
Then(a⊕ b)∗ = (a∗b)∗a∗ = a∗(ba∗)∗ = b∗(ab∗)∗ =
(b∗a)∗b∗.

In the sequel we will work with the dioid of formal
power series in the noncommutative variables fromA
and coefficients fromRmax (corresponding to time).
The standard notationA∗ is used for the free monoid
of finite sequences (words) fromA. The empty word
is denoted by 1. Formal power series form a dioid de-
notedRmax(A), where addition and (Cauchy or con-
volution) multiplication are defined as follows. For
two formal power series inRmax(A):
s= ⊕w∈A∗s(w)w) ands′ = ⊕w∈A∗s′(w)w, we have

s⊕s′ = ⊕w∈A∗(s(w)⊕s′(w))w and

s⊗s′ = ⊕w∈A∗(⊕uv=ws(u)s′(v))w.

This dioid is isomorphic to the dioid of generalized
dater functions fromA∗ to Rmax via a natural isomor-
phism similarly as the dioidZmax(γ) of formal power
series, used to study Timed Event Graphs (TEG), is
isomorphic to the dioid of daters fromZ to Zmax.
This isomorphism associates to anyy : A∗ → Rmax
the formal power series⊕w∈A∗y(w)w in Rmax(A). The
zero and identity series are denoted byε and e, re-
spectively, because it will be clear from the context
whether a number dioid or dioid of formal power se-
ries is meant. Let us recall that∀w∈ A∗ : ε(w) = −∞
and

e(w) =

{

0 if w = 1
−∞ if w 6= 1.

We consider in the sequel the complete version of
Rmax(A) with coefficients inRmax∪∞. The notion of
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projection will be needed. Similarly as for formal lan-
guages, (natural) projection will be introduced such
that it will be morphism with respect to both⊕ and
⊗.

Finally, residuation of matrix multiplication will
be needed in Section 5. Residuation theory gener-
alizes the concept of inversion for mappings that do
not necessarily admit an inversion, in particular those
among ordered sets. Iff : C → D is a mapping be-
tween two dioids, in most cases there does not exist
a solution to the equationf (x) = b. Instead of so-
lutions to this equation, the greatest solution to the
inequality f (x) � b or the least solution to the in-
equality b � f (x) are considered. In the case these
exist for all b ∈ D, the mappingf is called residu-
ated, and dually residuated, respectively. The corre-
sponding mappings that to anyb ∈ D associate the
greatest, resp. least, solutions of the corresponding
inequalities are called residuated, resp. dually resid-
uated mappings. In this paper only residuated map-
pings of matrix multiplication are used. The residu-
ated mapping of the left matrix multiplication,i.e. the
greatest solution to the inequalityA⊗X � B, is de-
notedA◦\B. Similarly, the residuated mapping of the
right matrix multiplication,i.e. the greatest solution
to the inequalityX ⊗A � B, is denotedB◦/A. Recall
from (Gaubert, 1992) that for matricesA∈ Dm×n,B∈
Dm×p,C∈ Dn×p over a complete dioidD

A◦\B∈ Dn×p : (A◦\B)i j =
m̂

l=1

Ali ◦\Bl j

B◦/C∈ Dm×n : (B◦/C)i j =
p̂

k=1

Bik◦/Cjk.

We recall the notation
V

s∈Ss for the infimal element
of a setS⊆ D (recall that

L
s∈Ss is the correspond-

ing supremal element ofSwhen lattice structure of a
complete dioid is considered).

3 SYNCHRONOUS
COMPOSITION OF HEAP
MODELS

Let us first recall the definition of time extension
of heap models (Gaubert and Mairesse, 1999), also
called task-resource systems, which model an impor-
tant class of TDES. Formally, a heap model is the
structureH = (A,R, r, l ,u), where

• A is a finite set of pieces (also called tasks).

• R is a finite set of slots (also called resources).

• r : A→ Pwr(R) gives the subset of slots required
by a piece. It is assumed that∀a∈ A : R(a) 6= /0.

• l : A×R→ R∪{−∞} is function such thatl(a, r)
gives the height of the lower contour of piecea at
the slotr.

• u : A×R→R∪{−∞} is function such thatu(a, r)
gives the height of the upper contour of piecea at
the slotr. By convention,u≥ l , l(a, r) = u(a, r) =
−∞ if r 6∈ R(a), and minr∈R(a) l(a, r) = 0.
The dynamics of heap models is described by row

vectorsx(w)r , w ∈ A∗, r ∈ R corresponding to the
height of the heapw = a1 . . .an on slotr ∈ R. It has
been shown in (Gaubert and Mairesse, 1999) that the
upper contour of a heapw, denoted byx(w), and the
overall height of the heapw, denotedy(w), are given
by the following letter driven dynamic equations:

x(1) = (0. . .0) (2)

x(wa) = x(w)µ(a) (3)

y(w) = x(w)(0. . .0)T , (4)
where

µ(a)sr =







0, if s= r ands 6∈ R(a)
u(a, r)− l(a,s), if r ∈ R(a) ands∈ R(a)
−∞, otherwise

(5)
is the morphism matrix associated to the heap model
H . It is shown in (Gaubert and Mairesse, 1999) that
heap models are special (max,+)-automata with in-
put and output functions as row, resp. column vec-
tors of identity elements, and the morphism matrix
above. The (max,+)-automaton given by the triple in-
put function, output function, and the morphism ma-
trix described above is then called heap automaton.
Therefore we can associate heap models with special
(max,+)-automata called heap automata.

We assume in the definition of synchronous prod-
uct below that there are no shared resources between
two heap models. Otherwise stated: resources are
shared only by tasks within individual heap mod-
els. This requirement is best understood if one con-
siders safe timed Petri nets (which can be viewed
(Gaubert and Mairesse, 1999) as particular heap mod-
els), where synchronous compositions of subnets is
realized by synchronizing shared transitions (in heap
models tasks), while the set of places (in heap models
resources) of the individual subnets are disjoint.

Definition 3.1 (Synchronous product) LetH i =
(Ai ,Ri , r i , l i ,ui), i = 1,2 be two heap models with
R1∩R2 = /0. Their synchronous productis the heap
model

H 1‖H 2 = (A1∪A2,R1∪R2, r,u, l) (6)

(7)
with

r(a) =







r1(a)∪ r2(a), if a ∈ A1∩A2
r1(a), if a ∈ A1\A2
r2(a), if a ∈ A2\A1

,
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u(a, r) =

{

u1(a, r), if r ∈ R1
u2(a, r), if r ∈ R2

,

and

l(a, r) =

{

l1(a, r), if r ∈ R1
l2(a, r), if r ∈ R2

.

Since the slots (resources) of component heaps are
disjoint, l andu are well defined: even thoughA1 ∩
A2 6= /0, for any r ∈ R there is only onei ∈ {1,2},
namely such thatr ∈ Ri , with l i(a, r) being defined.

Similarly as in the supervisory control of (logi-
cal) automata the purpose of synchronous product is
twofold. Firstly, explicitly concurrent heap models
(cf. concurrent or modular automata) are heap models
built by the synchronous product of "local" heap mod-
els, whence the interest in studying the properties of
synchronous composition of heap models. Secondly,
synchronous product is used to describe the action of
the supervisor,i.e. interaction of the supervisor with
the system (cf. (Kumar and Heymann, 2000)).

Note that if the above definition is used for con-
trol purposes, it is symmetric with respect to both the
plant (sayH 1) and the controller (sayH 2). We then
implicitly assume in the above definition that the su-
pervisor is complete,i.e. that it never attemps to dis-
able an uncontrollable task. This is always true if all
tasks are controllable.

Now (max,+)-linear representation (2), (3), (4) of
heap models will be used in study of the morphism
matrix of the synchronous product of two heap mod-
els. An approach for just in time control of flex-
ible manufacturing systems based on Petri net and
heap models, that builds upon the approach of (Men-
guy, 1997), has been developped in (Al Saba et al.,
2006). Our aim is to develop the control theory di-
rectly for heap models using synchronous composi-
tion of a heap model with its controller (another heap
model).

Let us consider the following flexible manufactur-
ing system modelled by Petri net in Figure 1.

Figure 1: The Petri net model of a flexible manufacturing
system.

Note that this 1-safe Petri net is T-timed (timing
is associated to transitions) and it can be decomposed
into three parts, which are synchronized using shared
(synchronization) transitionsa and c. Equivalently,
each component of this Petri net can be viewed as a
separate heap model. The "global" heap model cor-
responding to the whole timed Petri net is the syn-
chronous product of "local" heap models.

An order relation onRmax(A) will be needed for
introduction and study of control problems in Section
5. Let us recall the natural order relation on formal
power series fromRmax(A). For s,s′ ∈ Rmax(A) we
puts� s′ iff ∀w∈ A∗ : s(w)≤ s(w′), where in the lat-
ter inequality usual order inRmax that coincides with
the natural order is used.

Similarly as a TEG admits a linear representation
in the dioid of formal power seriesZmax(γ) (Baccelli
et al., 1992), a heap model admits linear representa-
tion in the dioid of formal power series with noncom-
mutative variables from A:Rmax(A). As example let
us consider the following heap automatonH .

The set of tasks isA = {a,b,c,d}. The set of re-
sources isR= {r1, r2, r3}. Let r(a) = r(b) = {r1, r2}
andr(c) = r(d) = {r1, r3}. The lower and upper con-
tours are given by

l(a, .) = [0 0 −∞], l(b, .) = [0 0 −∞]

l(c, .) = [0 −∞ 0], l(d, .) = [0 −∞ 0]

u(a, .) = [0 1 −∞], u(b, .) = [2 0 −∞]

u(c, .) = [0 −∞ 3], u(d, .) = [4 −∞ 0]

It has been shown in (Gaubert and Mairesse, 1999)
that any heap model is a special (max,+)-automaton
with the morphism matrix defined in equation (5).
The graphical interpretation of the morphism matrix
is given in terms of transition weights:µ(a)i j = k
means that there is a transition labelled bya∈ A from
state i to state j with weight k provided k 6= −∞,
in casek = −∞ there is no transition fromi to j.
Note that the morphism matrixµ of a heap model
can be also considered as element ofRmax(A)|R|×|R|,
i.e. µ= ⊕w∈A∗µ(w)w by extending the definition ofµ
from a∈ A to w∈ A∗ using the morphism property

µ(a1 . . .an) = µ(a1) . . .µ(an).

Howeverµ has an important property of being finitely
generated, because it is completely determined by its
values onA. For this reason we have in factµ∗ =
(⊕a∈Aµ(a)a)∗. Since we are interested in behaviors
of heap models that are given in terms ofµ∗ we abuse
the notation and write simplyµ= ⊕a∈Aµ(a)a.

The corresponding heap automaton is in Figure
2 below. The state vector is associated to resources
of H variables (formal power series)x2,x1,x3 ∈
Rmax(A) from left to right. We obtain the following
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Figure 2: Example of a heap automaton.

equations in dioidRmax(A) endowed with pointwise
addition and convolution multiplication:

x1 = x1⊗ (0a⊕2b⊕0c⊕4d)⊕x2⊗ (0a⊕2b)

⊕ x3⊗ (0c⊕4d)⊕e

x2 = x1⊗ (1a⊕0b)⊕x2⊗ (1a⊕0b⊕0c⊕0d)⊕e

x3 = x1⊗ (3c⊕0d)⊕x3⊗ (0a⊕0b⊕3c⊕0d)⊕e

y = x1⊕x2⊕x3.

The corresponding matrix form is

x = xµ⊕α
y = xβ,

with x = (x1 x2 x3), α = (e e e), β = (e e e)T , µ=




0a⊕2b⊕0c⊕4d 1a⊕0b 3c⊕0d
0a⊕2b 1a⊕0b⊕0c⊕0d ε
0c⊕4d ε 0a⊕0b⊕3c⊕0d



 .

In general we have the following linear description
of (max,+) automata in the dioidRmax(A) of formal
power series:

x = xµ⊕α (8)

y = xβ, (9)

whereµ =
L

a∈Aµ(a)a ∈ Rmax(A) is also called the
morphism matrix.

Recall that the least solution to this equation isy=
αµ∗β.

4 MORPHISM MATRIX OF
SYNCHRONOUS PRODUCT OF
HEAP MODELS

Since we introduce supervisory control of heap mod-
els using the synchronous product of the plant heap
model with the controller heap model, it is impor-
tant to study properties of the synchronous product.
In this section the behavior of a synchronous prod-
uct of two heap models will be represented in terms
of morphism matrix of the synchronous product. Ac-
cording to Definition 3.1, the dimension (here number

of resources) of the synchronous product of subsys-
tems is the sum of dimensions of each subsystem. It
should be intuitively clear that morphism matrices of
synchronous products are block matrices, where the
blocks are formed according to dimensions (number
of resources) of the component heap models.

In order to simplify the approach we require that
l(a, r) = 0 wheneverr ∈ R(a), which simply means
that pieces are on the ground in all slots. Thus, the
upper contour gives information about the duration of
tasks for different resources used. We recall at this
point thatl(a, r) = −∞ for r 6∈ R(a).

Let H 1 and H 2 be two heap models with mor-
phism matrices denoted byµ1 and µ2, respectively.
Let εi j , i, j = 1,2 be the rectangular matrices of ze-
ros (−∞) of dimensionsmi ×mj andEi , i = 1,2 the
square (max,+)-identity matrices of dimensionsmi ×
mi . We have the following block form ofµH (a), a∈
A.

Theorem 4.1 The morphism matrix ofH = H 1‖H 2
admits the following decomposition:

• If a ∈ A1∩A2 then:

µH (a) =

[

µ1(a) µ2(a)
µ1(a) µ2(a)

]

, where

µ1(a)i j =

{

µ1(a)i′ j : i′ ∈ r1(a) arb., if i ∈ r2(a)
−∞, if i 6∈ r2(a)

and

µ2(a)i j =

{

µ2(a)i′ j : i′ ∈ r2(a) arb., if i ∈ r1(a)
−∞, if i 6∈ r1(a)

• If a ∈ A1\A2 then :

µH (a) =

[

µ1(a) ε12
ε21 E2

]

• If a ∈ A2\A1 then:

µH (a) =

[

E1 ε12
ε21 µ2(a)

]

Proof For a ∈ A = A1∪A2 three cases must be dis-
tinguished. Firstly,a∈ A1∩A2 is a shared task. Then
for resourcesr,s from R1 ∪R2 there are four possi-
bilities depending on whether these are inR1 or R2,
whence the block form ofµH (a). We recall here
that R1 ∩R2 = /0. It is easy to see that in the diago-
nal blocks the individual morphism matrices appear.
Also,

µ1(a)i j =











u(a, j)− l(a, i) = u1(a, j)
if i ∈ R2(a) and j ∈ R1(a)

−∞
if i 6∈ R2(a) or j 6∈ R1(a)
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and similarly forµ2(a). Sinceµ1(a)i j equals either
u1(a, j)(for i ∈ r2(a) and j ∈ r1(a)) or−∞ otherwise,
we can see that the rows corresponding toi ∈ r2(a)
of µ1(a), i.e. µ1(a)(i, .), are the same as the rows
µ1(a)(i′, .) for i′ ∈ r1(a), which are all the same,i.e.
an arbitrary one can be taken. Thus, the correspond-
ing entry does not depend onj anymore. Hence, the
morphism matrix of the composed heapµH (a) has
the claimed form. In the much easier situation when
a ∈ A1 \A2 it is sufficient to notice that no resource
from R2 is used bya. It is easily seen thatµH (a) has
again the claimed form. Finally, the casea∈ A2 \A1
is symmetric.

Theorem 4.1 can be generalized ton ∈ N, where
morphism matrix of synchronous product are matri-
ces withn×n blocks. This is useful for decentralized
control, but in this paper we only need synchronous
product of the system with its controller.

We recall at this point that

µH =
M
a∈A

µH(a)⊗a∈ Rmax(A).

The algebraization of synchronous product pre-
sented in this section will be useful for control pur-
poses in the next section.

5 SUPERVISORY CONTROL OF
HEAP MODELS

In this section supervisory control of heap models is
studied. The aim is to satisfy a behavioral specifica-
tion given by a formal power series. The closed-loop
system is represented by parallel composition (syn-
chronous product) of the plant with a supervisor to be
found, which is itself represented by a heap model.

In general a supervisor acts on both timing and
logical properties of the plant’s behavior under su-
pervision. Since heap models are special (max,+)-
automata there are two aspects of supervision: dis-
abling and delaying of tasks (events). Here we are
only interested in delaying the different tasks which
is similar to control of TEG in the maxplus algebra,
where input transitions are added in order to delay the
timed behavior of a TEG.

Now we show how Theorem 4.1 can be used
for control of heap models. The synchronous prod-
uct of heap modelsG = (Ag,Rg, rg, lg,ug) andC =
(Ac,Rc, rc, lc,uc) of dimensionsm andn corresponds
to the controlled (closed-loop) system. The event al-
phabet of the controlled system is denoted byA. Ac-
cording to Definition 3.1, we haveA= Ag∪Ac. Let us
denote the morphism matrices ofG andC by µg and

µc, respectively. Now let us return to the description
of behaviors of heap models in the dioid of formal
power seriesRmax(A). The vector of formal power
series fromRmax(A) associated to generalized dater
functionsxG ‖C : A∗ → R

m×n
max satisfies the following

equations:

xG ‖C = xG ‖C µG ‖C ⊕α, (10)

yG ‖C = xG ‖C β, (11)

whereµG ‖C is the morphism matrix ofG ‖C , α and
β are row, resp. column, vectors of 0’s of dimen-
sion m+ n. The structure of the morphism matrix
described in Theorem 4.1 is now used for control pur-
poses. According to Theorem 2.1 the greatest solu-
tions to equations (10) and (11) are

xG ‖C = αµ∗G ‖C , (12)

yG ‖C = αµ∗G ‖C β, (13)

whence an interest in studying properties ofµ∗G ‖C .
Given a specification behavior (e.g. language or

formal power series), the goal in supervisory control
of DES is to find a supervisor that achieves this speci-
fication as the behavior of the controlled system. In
a first approach we assume, similarly as in control
of TEG, that the structure of the controller is given,
which means here that the controller heap model only
delays task executions of the plant. This is done by
the choice of upper contour functions (i.e. duration of
controller’s tasks) fromµc(u). The delaying effect of
the controller is naturally realizedvia its tasks (tran-
sitions of the corresponding heap automaton) shared
with the plant heap.

The morphism matrix of the composed system is
given by

µC ‖G =
M

u∈Ac\Ag

µC ‖G (u)u⊕
M

a∈Ac∩Ag

µC ‖G (a)a

⊕
M

a∈Ag\Ac

µC ‖G (a)a.

In order to simplify the approach our attention is
from now on limited to the caseAc = Ag, which is a
standard assumption in the supervisory control with
complete observations. Since state vector in equa-
tion (8) is associated to resources, it can be written as
xC ‖G = (x u), where the first component corresponds
to the (uncontrolled) plant heap and the second to the
controller heap. Owing to Theorem 4.1 we have:

(x u) = (x u)
M
a∈A

[

H(a)a F̄(a)a
H̄(a)a F(a)a

]

⊕ (α1,α2),

whereα1 andα2 are vectors of zeros of correspond-
ing dimensions,µg(a) is for convenience denoted by
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H(a), µg(a) by H̄(a), µc(a) by F(a), andµc(a) by
F̄(a). This can be written as

(x u) = (x u)

[

A F̄
Ā F

]

⊕α,

whereH =
L

a∈AH(a)a and similarly forF, F̄ , and
H̄. Hence,

x = xH⊕uH̄ ⊕α1

u = xF̄ ⊕uF⊕α2.

Theorem 2.1 yieldsu = (xF̄ ⊕α2)F∗ as the least
solution of the second equation, which substituted
into the first equation leads to

x = xH⊕
[

(xF̄ ⊕α2)F
∗
]

H̄ ⊕α1.

The least solution is given by

x = (α2F∗H̄ ⊕α1)(H ⊕ F̄F∗H̄)∗. (14)

The last equation can be viewed as the expression
of the closed-loop system using the feedback given
by F . Notice that unlike classical control theory the
control variables have their inner dynamics, which is
caused by adopting a supervisory control approach,
where a controller is itself a dynamical system of the
same kind as the uncontrolled system. Therefore, our
F̄ , which plays the role of feedback mapping, is de-
termined by inner dynamics of the controller given by
its morphism matrixF .

There is a strong analogy with the feedback ap-
proach for control of TEG, see (Cottenceau et al.,
2001), which should not be surprising, because super-
visory control (realized here by synchronous product)
is based on a feedback control architecture. In super-
visory control the control specification (as counterpart
of reference output from control of TEG using dioid
algebras) are given in terms of behaviors of (max,+)
automata (i.e. formal power series). In fact, for a ref-
erence outputyre f we are interested in the greatestF
such that

y≤ yre f ,

thus,
(α2F∗H̄ ⊕α1)(H ⊕ F̄F∗H̄)∗β ≤ yre f . (15)

We obtain from Lemma 2.2 that

(H ⊕ F̄F∗H̄)∗ = H∗(F̄F∗H̄H∗)∗, i.e.

inequality (15) becomes

(α2F∗H̄ ⊕α1)H
∗(F̄F∗H̄H∗)∗β ≤ yre f (16)

Note that while⊗ and⊕ are lower semicontinu-
ous and residuated, the Kleene star is not in general,
but only when the image is suitably constrained (in
which case it is trivially residuated with identity as
the corresponding residuated mapping). Moreover,

as follows from Theorem 4.1,̄F can be simply ex-
pressed usingF . Hence, there is a hope that at least
in some special cases residuation theory (see Section
2) can be applied to obtain the greatest seriesF cor-
responding to the "controller part" of the morphism
matrix µG ‖C such thatyG ‖C satisfies a given specifi-
cation (e.g. is less than or equal to a given reference
output seriesyre f ). In fact we obtain from the above
inequality the greatest̄FF∗ such that inequality (16)
is satisfied. Thus it is not an easy problem. The sit-
uation is much simpler in casēF = F and H̄ = H.
This is satisfied if we assume that the controller heap
model has the same number of resources as the un-
controlled heap model and the logical structure of the
controller (given byrc : A → Pwr(Rc)) mimicks the
structure of the plant, formally there exists an isomor-
phism betweenRc andRg such thatrc andrg are equal
up to this isomorphism. In terms of Petri nets this
can be interpreted as having a controller net with the
same net topology (i.e. logical structure as the uncon-
trolled net), i.e. in the closed-loop system there are
always parallel places of the controller corresponding
to places of the uncontrolled net. The role of the con-
troller is only to act on the system through holding
times of the controller’s places that correct the hold-
ing times of the places in the original net. Because of
the fixed parallel structure of the controller it is clear
that the controller can in this case only delay the firing
of the transitions, which are all shared by the system
and the controller.

It is easy to check that Theorem 4.1 in such a case
givesF̄ = F as well asH̄ = H andα1 = α2 = α, row
vector of zeros of dimensionn. Hence, inequality (15)
becomesα(F∗H ⊕E)(H ⊕ F̄F∗H)∗β ≤ yre f , where
E is the identity matrix. An easy calculation yields
(H ⊕ F̄F∗H) = (E⊕F+)H = F∗H, hence

(F∗H ⊕E)(F∗H)∗ = (F∗H)+ ⊕ (F∗H)∗ = (F∗H)∗.

Thus,y= α(F∗H)∗β≤ yre f , i.e. the problem is to find
the greatestF such that

(F∗H)∗ ≤ α◦\yre f ◦/β.

Since the Kleene star is not a residuated mapping
in general, such a problem has only a solution if
α◦\yre f ◦/β, playing the role of reference modelGre f
from (Cottenceau et al., 2001) is of a special form to
be studied. Let us notice thatH ≥ E, which follows
from the form of morphism matrix and the usual as-
sumption that any resource of the system is used by
at least one task:∀r ∈ Rg ∃a∈ A such thatr ∈ rg(A).
The following Lemma is useful.

Lemma 5.1 If H ≥ E then for any B∈ Rmax(A)n×n

every solution of(X∗H)∗ ≤ B is a solution of
H(X∗H)∗ ≤ B and vice versa.
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Proof If X a solution of(X∗H)∗ ≤ B, then(X∗H)∗ =
E⊕(X∗H)+ ≤B, hence also(X∗H)+ ≤B. Therefore,

H(X∗H)∗ ≤ X∗H(X∗H)∗ = (X∗H)+ ≤ B,

where the first inequality follows from isotony of mul-
tiplication andE ≤ X∗. Conversely, ifX is a solu-
tion of H(X∗H)∗ ≤ B, then(X∗H)∗ = E⊗ (X∗H)∗ ≤
H(X∗H)∗ ≤ B as follows from isotony of multiplica-
tion and the assumption thatE ≤ H.

Using Lemma 5.1 our problem is to find the greatest
solution inF of

H(F∗H)∗ ≤ α◦\yre f ◦/β.

It follows from Lemma 2.2 that

H(F∗H)∗ = (H ⊕F)∗ = H∗(FH∗)∗,

thus we get formally the same problem as the one
solved in (Cottenceau et al., 2001) withH∗ playing
the role of transfer functionH in the TEG setting.
The following result adapted from (Cottenceau et al.,
2001), Proposition 3, is useful: If there existsD ∈
Rmax(A) such thatα◦\yre f ◦/β = H∗D∗ or there exists
D′ ∈ Rmax(A) such thatα◦\yre f ◦/β = D′∗H∗ then there
exists the greatestF such thatH∗(FH∗)∗ ≤ α◦\yre f ◦/β,
namely

Fopt = H∗ ◦\[α◦\yre f ◦/β]◦/H∗ = αH∗ ◦\yre f ◦/H∗β.

In the special case we have restricted attention to, our
methods yields the gretest feedback such that timing
specification given byyre f is satisfied, providedyre f
is of one of the special forms. In the special case of a
controller with fixed logical structure only timed be-
havior is under control.

If we are interested in manufacturing systems,
where specificatons are given in terms of Petri nets,
the reference output is not typically required to be met
for all sequences of tasks, but only those having a real
interpretation. These are given by the correponding
(logical) Petri net language, sayL. Thus, the problem
is to find the greatestF , such that

αH∗(FH∗)∗β char(L) ≤ yre f char(L),

wherechar(L) =
L

w∈L e.w is the series with Boolean
coefficients,i.e. the formal series of languageL. Let
us recall (Gaubert and Mairesse, 1999) that such a
restricton is formally realized by the tensor product
(residuable operation) of the heap automaton with the
logical (marking) automaton recognizing the Petri net
languageL, which is compatible with Theorem 4.1 of
(Komenda et al., 2007).

Note that specifications based on (multivariable)
formal power series are not easy to obtain in many
practical problems, in particular those coming from
production systems, often represented by Petri nets.

In fact, given a reference output series amounts to
solve a scheduling problem. A formal power series
specification is not given, but it is to be found: e.g.
using Jackson rule (Jackson, 1955).

6 CONCLUSION

It has been shown how methods of dioid algebras can
be used in supervisory control of heap models. We
have proposed a synchronous product of heap models.
The structure of the morphism matrix of synchronous
product of two heap models is derived and applied to
control of heap models.

The present reseach is a very first step in control
of heap automata. Sharing of resources is only al-
lowed inside component heap models. Of potential
interest is supervisory control with partial controlla-
bility, partial observations, and decentralized control
of heap automata.
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