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Abstract. We are motivated by the tasking problem for UAVs in an adversarial
environment. In particular, we consider the problem where, in addition to purely
random noise in the observation process, the opponent may be applying decep-
tion as a means to cause us to make poor tasking choices. The standard approach
would be to apply the feedback-optimal controls for the fully-observed game, to
a maximum-likelihood state estimate. We find that such an approach is highly
suboptimal. A second approach is through a concept taken from risk-sensitive
control. For the third approach, we formulate and solve the problem directly as
a partially-observed stochastic game. A chief problem with such a formulation
is that the information state for the player with imperfect information is a func-
tion over the space of probability distributions (a function over a simplex), and
so infinite-dimensional. However, under certain conditions, we find that the infor-
mation state is finite-dimensional. Computational tractability is greatly enhanced.
A simple example is considered, and the three approaches are compared. We find
that the third approach is yields the best results (for such a case), although com-
putational complexity may lead to use of the second approach on larger problems.

1 Introduction

For a discrete deterministic game, one can apply dynamic programming techniques to
compute the value function (and “optimal” controls), defined over the state space. For
discretestochasticgames, the value function is defined over the space of all possible
probability distributions over the state space. Consequently, the problem is much more
computationally intensive. Finally, for discrete stochastic games with imperfect obser-
vations, the problem is yet more complex, and even simple games and their information
state formats become quite difficult to analyze.

We will be concerned here with a specific class of discrete stochastic games under
imperfect observations. The choice of this class will be affected by both the intended
application and computational feasibility considerations. The motivational application
here is the military command and control (C2 ) problem for air operations, with un-
manned/uninhabited air vehicles (UAVs). See [2], [5], [16], [21], [28], [31], [24], [25]
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for related information. This application has specific characteristics such that we will
be able to construct a reasonable problem formulation whichis particularly nice from
the point of view of analysis and computation.

We first outline the mathematical machinery. The details of the development are
discussed elsewhere due to paper length issues. After discussion of the algorithms, we
apply the techniques on a seemingly simple problem in order to determine their effec-
tiveness. We refer to the players in the game as Blue and Red, where the Blue player
has imperfect observations. We compare three Blue approaches on this simple game
problem. The most naive is for Blue to simply take the maximumlikelihood estimate
of the Red state, and to apply a feedback control at this system state. As one can eas-
ily imagine, this approach is open to exploitation by Red deception. The second Blue
approach will apply a heuristic derived from the theory of Risk-Sensitive Control. This
technique is more cautious in its use of observational data.The third Blue approach (a
deception-robust approach) is through the direct solutionof the imperfect information
stochastic game. As one would expect, there is an improvement in outcome with the
risk-sensitive and deception-robust approaches described herein when compared with
the standard maximum likelihood/certainty equivalence approach (although there is a
critical parameter in the risk-sensitive approach). On theother hand, there are signifi-
cant computational requirements when using these new approaches.

2 Modeling the Game

We model the state dynamics as a discrete-time Markov chain.The state will take values
in a finite set,X . Time will be denoted byt ∈ {0, 1, 2, . . . , T}. We will consider only
the problem where there are exactly two players. Blue controls will take values in a
finite set,U , and Red controls will take values in a finite set,W . Given Blue and Red
controls, and a system state, there are probabilities of transitioning to other possible
states. We letPi,j(u,w) denote the probability of transitioning from statei to statej in
one time step given that the Blue and Red controls areu ∈ U andw ∈ W , respectively.
Also,P (u,w) will denote the matrix of such transition probabilities. Wemust allow for
feedback controls. That is, the control may be state-dependent. For technical reasons,
we will find that we specifically need to consider Red feedbackcontrols. Suppose the
size ofX is n, i.e. that there aren possible states of the system. Then we may represent
a Red feedback control asw ∈ Wn, ann-dimensional vector with components having
values inW . Specifically,wi = w̄ ∈ W implies that Red plays̄w if the state isi.
Define matrixP̃ (u,w) by

P̃i.j(u,w) = Pi,j(u,wi) ∀ i, j ∈ X . (1)

Let ξt denote the (stochastic) system state at timet. Let qt be the vector of lengthn
whoseith component is the probability that the state isi at timet, that is the probability
thatξt = i. Then if Blue playsu and Red playsw, the probability propagates as

qt+1 = P̃ ′(u,w)qt. (2)

We suppose there is a terminal cost for the game which is incurred at terminal time,
T . Let the cost for being in terminal stateξT = i ∈ X be E(i), which we will also
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sometimes find convenient to represent as theith component of a vector,E (where we
note the abuse of notation due to use ofE for two different objects). Suppose that at time
T − 1, the state isξT−1 = i0, and that Blue playsuT−1 ∈ U and Red playsw ∈ Wn.
Then, the expected cost would beE[E(ξT )] = q′T E whereqT = P̃ ′(u,w)qT−1 with
qT−1 being1 at i0 and zero in all other components.

We also need to define the observation process. We suppose that Red has perfect
state knowledge, but that Blue obtains its state information through observations. Let
the observations take valuesy ∈ Y . We will suppose that this observation process can
be influenced not only by random noise, but also by the actionsof both players. For
instance, again in a military example, Blue may choose whereto send sensing entities,
and Red may choose to have some entities act stealthily whilehaving some other en-
tities exaggerate their visibility, for the purposes of deception. We letRi(y, u, w) be
the probability that Blue observesy given that the state isi and Blue and Red employ
controlsu andw. We will also find it convenient to think of this as a vector indexed by
i ∈ X .

We suppose that at each time,t ∈ {0, 1, . . . T − 1}, first an observation occurs, and
then the dynamics occur. We letqt be the a priori distribution at timet, andq̂t be the a
posteriori distribution. With this, the dynamics update of(2) is rewritten as

qt+1 = P̃ ′(ut,wt)q̂t (3)

with controlsut,wt at timet. The observation, sayyt = y, at timet updatesqt to q̂t

via Bayes rule,

[q̂t]i =
P (yt = y |ξt = i, u, w)[qt]i∑

k∈X P (yt = y |ξt = k, u, w)[qt]k
. (4)

Then (3), (4) define the dynamics of the conditional probabilities.

2.1 Risk-Averse Controller Theory

In linear control systems with quadratic cost criteria, thecontrol obtained through the
separation principleis optimal. That is, the optimal control is obtained from thestate-
feedback control applied at the state given by

x = argmax
i

[qt(i)] .

A different principle, thecertainty equivalence principle,is appropriate in robust con-
trol. We have applied a generalization of the controller that would emanate from this
latter principle. This generalization allows us to tune therelative importance between
the likelihood of possible states and the risk of misestimation of the state. Let us moti-
vate the proposed approach in a little more detail.

In deterministic games under partial information, the certainty equivalence principle
indicates that one should use the state-feedback optimal control corresponding to state

x = argmax [It(x) + Vt(x)] (5)

whereI is the information state andV is the value function [13] (assuming uniqueness
of theargmax of course). In this problem class, the information state is essentially the
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worst case cost-so-far, and the value is the minimax cost-to-come. So, heuristically, this
is roughly equivalent to taking the worst-case possibilityfor total cost from initial time
to terminal time. (See, for instance, [20], [17], [22], [29], [30].)

The deterministic information state is very similar to thelog of the observation-
conditioned probability density in stochastic formulations for terminal/exit cost prob-
lems. In fact, this is exactly true for a class of linear/quadratic problems. In such prob-
lems, theIt term in (5) is replaced by the log of the probability density,and a risk-
sensitivity coefficient appears as well. Although we are outside of that problem class
here, we nonetheless apply the same approach, but where now the correct value of this
risk-sensitivity parameter is not as obvious. In particular, the risk-sensitive algorithm is
as follows: Apply state-feedback control at

x∗ = argmax
i

{log[q̂t(i)] + κVt(i)} (6)

where q̂ is the probability distribution based on the conditional distribution for Blue
given by (3), (4) and a stochastic model of Red control actions, andV is state-feedback
stochastic game value function (c.f. [13]). Here,κ ∈ [0,∞) is a measure of risk aver-
sion. Note thatκ = 0 implies that one is employing a maximum likelihood estimatein
the state- feedback control (for the game), i.e.argmaxi{log([q̂t]i)} = argmaxi{[q̂t]i}.
Note also (at least in linear-quadratic case wherelog[q̂t]i = It(i) modulo a constant),
κ = 1 corresponds to the deterministic game certainty equivalence principle [17], [20],
i.e. argmax{It(i) + Vt(i)}. As κ → ∞, this converges to an approach which always
assumes the worst possible state for the system when choosing a control – regardless of
observations. (See [28] for further discussion.)

2.2 Deception-Robust Controller Theory

The above approach was cautious (risk averse) when choosingthe state estimate at
which to apply state-feedback control. We now consider a controller which explicitly
reasons about deception. This approach typically handles deception better that the risk-
averse approach, but this improvement comes at a substantial computational cost. For
a given, fixed computational limit, depending on the specificproblem, it is not obvious
which approach will be more successful.

Here we find that the truly proper information state for Red isIt : Q(X ) → R,
whereQ(X ) is the space of probability distributions over state spaceX ; Q(X ) is the
simplex inℜn such that all components are non-negative and such that the sum of
the components is one. We let the initial information state be I0(·) = φ(·). Here,φ
represents the initial cost to obtain and/or obfuscate initial state information. The case
where this information cannot be affected by the players maybe represented by a max-
plus delta function. The information state at timet evaluated at probability distribution
q, It(q), essentially represents the cost to the opponent to generate distributionq as
the naive/Bayesian distribution in a Blue estimator. That is, through obfuscation of the
initial intelligence and use of controlswr up to timet, the propagation (3), (4) would
lead to someq at timet if such wr were known.It(q) would be the maximal (worst
from Blue perspective) cost to generateq by any Red controls that would yield that
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particularq at timet. Although Blue does not know the Red controls, it can nonetheless
computeIt(·). For details on this propagation and theory, see [26].

In the case here, where the state-space is finite of sizen = #X ,Q is some a simplex
in IRn. Thus,It belongs to a space of functions over ann−1 dimensional simplex, and
consequently an element of an infinite-dimensional space. However, in the cases where
φ is either a max-plus delta function, or a piecewise-continuous function,It is finite
dimensional. This is crucial to the computability of this controller. Note that in either
of these cases, the complexity ofIt is proportional (in the worse case) to(#W )t at the
t time-step. Pruning strategies for reduction of this complexity are critical (c.f., [23]).

We now turn to the second component of the theory, computation of the state-
feedback value function. In this context, our value function is ageneralizedvalue func-
tion in that it is a function not only of the physical state of the system, but also of what
probability distribution Blue believes reflects its lack ofknowledge of this true physical
state. The full, generalized state of the system is now described by the true state taking
valuesx ∈ X and the Blue conditional probability process taking valuesq ∈ Q(X ).
We denote the terminal cost for the game asE : X → R (where of course this does not
depend on the internal conditional probability process of Blue). Thus the state-feedback
value function at the terminal time is

VT (x, q) = E(x). (7)

The value function at any time,t < T , takes the formVt(x, q). It is he above minimax
expected payoff where Blue assumes thatq is the “correct” distribution forx at time
t, that at each time Blue will know the correctq, and that Red will know both the
true physical state and this distribution,q. In particular,q will propagate according to
(2), and the state will propagate stochastically, governedby (1). Loosely speaking, this
generalized value function is the minimax expected payoff if Blue believes the state to
be distributed byqr at each timer ∈ (t, T ], while Red knows the true state (as well as
qr). A rigorous mathematical definition can be found in [26]. The backward dynamic
program that computeVt from Vt+1 is as follows.

1. First, let the vector-valued functionM t be given component-wise by

[M t]x(q, u) = max
w∈W n

[∑

j∈X
P̃xj(u,w)Vt+1(j, q′(q, u,w))

]
(8)

whereq′(q, u,w) = P̃T (u,w) and the optimalw is

w0
t = w0

t (x, q, u) = argmax
w∈W n

{∑

j∈X
P̃xj(u,w)Vt+1(j, q′(q, u,w))

}
.

2. Then defineLt as

Lt(q, u) = q′M t(q, u), (9)

and note that the optimalu is u0
t (q) = argminu∈U Lt(q, u).

(10)
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3. With this, one obtains the next iterate from

Vt(x, q) =
∑

j∈X
P̃xj(u0

t ,w
0
t )Vt+1(j, q′(q, u0

t ,w
0
t )) = [M t]x(q, u0

t )

and the best achievable expected result from the Blue perspective is
V 1

t (q) = q′M t(q, u0
t ). (11)

Consequently, for eacht ∈ {0, 1, . . . , T} and eachx ∈ X , Vt(x, ·) is a piecewise
constant function over simplexQ(X ). Due to this piecewise constant nature, propa-
gation is relatively straight-forward (more specifically,it is finite-dimensional in con-
tradistinction to the general case).

The remaining component of the computation of the control isnow discussed. This
is typically performed via the use of the certainty equivalence principle (cf. [1], [17]),
and we employ the principle here as well. To simplify notation, note that by (9) and (8),
for anyu,

Lt(q, u) = Eq

[
max

w∈W n

∑

j∈X
P̃Xj(u,w)Vt+1(j, q′(q, u,w))

]
.

Let us hypothesize that the optimal control for Blue is

um
t

.= argmin
u∈U

[
max

q∈Q(X )
{It(q) + Lt(q, u)}

]
. (12)

In order to obtain the robustness/certainty Equivalence result below, it is sufficient
to make the following Saddle Point Assumption. We assume that for all t,

sup
qt̄∈Qt

min
u∈U

[
It̄(qt̄) + Lt̄(qt̄, u)

]
= min

u∈U
sup

qt̄∈Qt

[
It̄(qt̄) + Lt̄(qt̄, u)

]
. (A-SP)

This type of assumption is typical in game theory. Although it is difficult to verify for a
given problem, the alternative is a theory that cannot be translated into a useful result.
Finally, after some work [26], one obtains the robustness result:

Theorem 1. Let t̄ ∈ {0, T − 1}. Let I0, u[0,t̄−1] and y[0,t̄−1] be given. Let the Blue
control choice,um

t̄ , given by (12) be a strict minimizer. Suppose Saddle Point Assump-
tion (A-SP) holds. Then, given any Blue strategy,λ[t̄,T−1] such thatλt̄[y·] 6= um

t̄ , there
existsε > 0, qε

t̄ andwε
[t̄,T−1] such that

sup
q∈Qt̄

{It̄(q) + Lt̄(q, um
t̄ )} = Zt̄ ≤ It̄(qε

t̄ ) + EX∼qε
t̄

{
E[E(Xε

T ) |Xε
t̄ = X]

}
− ε

whereXε denotes the process propagated with control strategiesλ[t̄,T−1] andwε
[t̄,T−1].

3 A Seemingly Simple Game

We now apply the above technology to an example problem in Command and Control
for UCAVs. This game will seem to be quite simple at first. However, once one intro-
duces the partial information and deception components, determination of the best (or
even nearly best) strategy becomes quite far from obvious.
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Fig. 1. Snapshot of Gameboard.

In this game the Red player has four ground entities (say, tanks) and the Blue player
has two UCAVs. The objective of Red player is to capture the high-value Blue assets
by moving at least one non-decoy Red entity to a Blue asset location by the terminal
time,T . Red can use stealth and decoys to obscure the direction fromwhich the attack
will occur, while the Blue player uses the UCAVs to destroy the moving Red entities.
Red entities do not have any attrition capability against the Blue UCAVs. Blue UCAVs
require at least two time steps to travel from one route to theother.

The simulation snapshot in Figure 1, is taken after time step2, from the graphic for a
MATLAB simulation that runs the example game. Red is moving its currently surviving
three entities (depicted as triangles) downward, while Blue is attempting to prevent any
Red entities from reaching the Blue asset through use of its UCAVs (depicted as blue
T’s). Red is currently employing a decoy on the right, while using stealth on the left.

Winning and losing are measured in terms of the total cost at the terminal time. The
cost at terminal time is computed as follows: each Red surviving entitiy costs Blue1
point and if Blue loses the high-value asset, it costs Blue20 points.
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4 Comparison of the Approaches

Let us briefly foray into a comparative study between the naive approach (i.e., feed-
back on maximum-likelihood state), the risk-averse algorithm and the deception-robust
approach for Blue. The critical component of the risk-averse approach is the choice of
the risk level,κ. For the example studied in this chapter we varyκ between0 and10
to demonstrate the nature of the risk-averse approach in general. Firstly, for the case
κ = 0, we have the risk-averse approach equivalent to the naive approach; apply the
state-feedback control at the MLS estimate. Asκ increases we expect the approach to
achieve a lower cost for Blue, since it is taking into accountthe expected future cost
V (Xt) (as a risk-sensitive measure). Note however that in the adversarial environment
the effect of the Red player’s control on the Blue player’s observations has more com-
plex consequences than that of random noise. As shown in the Figure 2, the risk-averse
approach gets the best cost for Blue atκ between0.5 and0.6 (note again that this choice
will be problem specific). Asκ increases beyond this point, the expected cost begins in-
creasing, and has a horizontal asymptote which correspondsto a Blue controller which
ignores all the observations and assumes the worst-case possible Red configuration.

0 1 2 3 4 5 6 7 8 9 10
5

10

15

20

kappa

V
a

lu
e

Risk−Averse

Maximum Likelihood State

Deception−robust

Comparing Different Blue Approach

Fig. 2. Comparison of Approaches.

The bumpiness in the results is due to the sampling error (8000 Monte Carlo runs
were used for each data point in the plot.) Also note that for largeκ, the risk-averse
approach does worse than the naive approach. For this specific example, the risk-averse
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approach does not achieve the same low cost as achieved by using the deception-robust
approach.
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