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Abstract. We are motivated by the tasking problem for UAVs in an adversarial
environment. In particular, we consider the problem where, in addition to purely
random noise in the observation process, the opponent may be applying decep-
tion as a means to cause us to make poor tasking choices. The standard approach
would be to apply the feedback-optimal controls for the fully-observed game, to

a maximum-likelihood state estimate. We find that such an approach is highly
suboptimal. A second approach is through a concept taken from risk-sensitive
control. For the third approach, we formulate and solve the problem directly as
a partially-observed stochastic game. A chief problem with such a formulation
is that the information state for the player with imperfect information is a func-
tion over the space of probability distributions (a function over a simplex), and
so infinite-dimensional. However, under certain conditions, we find that the infor-
mation state is finite-dimensional. Computational tractability is greatly enhanced.
A simple example is considered, and the three approaches are compared. We find
that the third approach is yields the best results (for such a case), although com-
putational complexity may lead to use of the second approach on larger problems.

1 Introduction

For a discrete deterministic game, one can apply dynamic programming techniques to
compute the value function (and “optimal” controls), defined over the state space. For
discretestochasticgames, the value function is defined over the space of all possible
probability distributions over the state space. Consequently, the problem is much more
computationally intensive. Finally, for discrete stochastic games with imperfect obser-
vations, the problem is yet more complex, and even simple games and their information
state formats become quite difficult to analyze.

We will be concerned here with a specific class of discrete stochastic games under
imperfect observations. The choice of this class will be affected by both the intended
application and computational feasibility considerations. The motivational application
here is the military command and control*(Cproblem for air operations, with un-
manned/uninhabited air vehicles (UAVs). See [2], [5], [16], [21], [28], [31], [24], [25]
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for related information. This application has specific eueristics such that we will
be able to construct a reasonable problem formulation wisigarticularly nice from
the point of view of analysis and computation.

We first outline the mathematical machinery. The detailshef development are
discussed elsewhere due to paper length issues. Aftersdiscuof the algorithms, we
apply the techniques on a seemingly simple problem in owdetermine their effec-
tiveness. We refer to the players in the game as Blue and Restewhe Blue player
has imperfect observations. We compare three Blue appesaut this simple game
problem. The most naive is for Blue to simply take the maxinikelihood estimate
of the Red state, and to apply a feedback control at this isystate. As one can eas-
ily imagine, this approach is open to exploitation by Redagion. The second Blue
approach will apply a heuristic derived from the theory o§lREensitive Control. This
technique is more cautious in its use of observational ddte.third Blue approach (a
deception-robust approach) is through the direct solutifaine imperfect information
stochastic game. As one would expect, there is an improvemeutcome with the
risk-sensitive and deception-robust approaches deschibeein when compared with
the standard maximum likelihood/certainty equivalencpragch (although there is a
critical parameter in the risk-sensitive approach). Ondtieer hand, there are signifi-
cant computational requirements when using these new agipes.

2 Modeing the Game

We model the state dynamics as a discrete-time Markov chhastate will take values
in a finite set,X’. Time will be denoted by € {0,1,2,...,7}. We will consider only
the problem where there are exactly two players. Blue ctntrdl take values in a
finite set,U, and Red controls will take values in a finite séf, Given Blue and Red
controls, and a system state, there are probabilities o6itianing to other possible
states. We leP; ;(u, w) denote the probability of transitioning from state statej in
one time step given that the Blue and Red controlsiazel/ andw € W, respectively.
Also, P(u,w) will denote the matrix of such transition probabilities. West allow for
feedback controls. That is, the control may be state-degrgnéror technical reasons,
we will find that we specifically need to consider Red feedbamhtrols. Suppose the
size of X is n, i.e. that there are possible states of the system. Then we may represent
a Red feedback control as € W™, ann-dimensional vector with components having
values inWW. Specifically,w; = w € W implies that Red playw if the state isi.
Define matrixP(u, w) by

P j(u,w) = P j(u,w;) Vi, jeX. 1)

Let & denote the (stochastic) system state at timieet ¢, be the vector of length
whosei” component is the probability that the state & timet, that is the probability
thaté, = 7. Then if Blue plays: and Red playsv, the probability propagates as

qt+1 = P/(Ua’w)(h- (2

We suppose there is a terminal cost for the game which isriedwat terminal time,
T. Let the cost for being in terminal stafe = i € X be £(i), which we will also



sometimes find convenient to represent asith&omponent of a vectog (where we
note the abuse of notation due to us€ dbr two different objects). Suppose that at time
T — 1, the state ig7_1 = ip, and that Blue playar_; € U and Red playsy € W™,
Then, the expected cost would BE(¢7)] = ¢f.€ whereqr = P’ (u, w)qr_1 with
qr—1 beingl atiy and zero in all other components.

We also need to define the observation process. We suppdsRdtidhas perfect
state knowledge, but that Blue obtains its state infornmatimough observations. Let
the observations take valugs= Y. We will suppose that this observation process can
be influenced not only by random noise, but also by the actdrimth players. For
instance, again in a military example, Blue may choose witwesend sensing entities,
and Red may choose to have some entities act stealthily Wwhilang some other en-
tities exaggerate their visibility, for the purposes of efgtion. We letR;(y, u, w) be
the probability that Blue observegsgiven that the state isand Blue and Red employ
controlsu andw. We will also find it convenient to think of this as a vector éxed by
ieX.

We suppose that at each tintes {0, 1,...7 — 1}, first an observation occurs, and
then the dynamics occur. We lgtbe the a priori distribution at timg andg; be the a
posteriori distribution. With this, the dynamics updat&2jfis rewritten as

qr+1 = P'(u, we) g (3

with controlsu,, w; at timet. The observation, say, = y, at timet updatesy; to ¢,
via Bayes rule,

~ Py =y & =1, u,w)|q):

[Qt]‘ — ( ‘ )[ ]l (4)

" Y ke Plyr = yl& = Ky u, w) gy
Then (3), (4) define the dynamics of the conditional prolitdsl.

2.1 Risk-Averse Controller Theory

In linear control systems with quadratic cost criteria, toatrol obtained through the
separation principlés optimal. That is, the optimal control is obtained from ttate-
feedback control applied at the state given by

T = lq:(4)] -

A different principle, thecertainty equivalence principlés appropriate in robust con-
trol. We have applied a generalization of the controllet thauld emanate from this
latter principle. This generalization allows us to tune tékative importance between
the likelihood of possible states and the risk of misestiomadf the state. Let us moti-
vate the proposed approach in a little more detail.

In deterministic games under partial information, theaiaty equivalence principle
indicates that one should use the state-feedback optiméiat@orresponding to state

7 = argmax [Z (¢) + Vi(a)] ®)

whereZ is the information state and is the value function [13] (assuming uniqueness
of theargmax of course). In this problem class, the information statesgeatially the



worst case cost-so-far, and the value is the minimax cesttoe. So, heuristically, this
is roughly equivalent to taking the worst-case possibflitytotal cost from initial time
to terminal time. (See, for instance, [20], [17], [22], [2880].)

The deterministic information state is very similar to tla@ of the observation-
conditioned probability density in stochastic formulatofor terminal/exit cost prob-
lems. In fact, this is exactly true for a class of linear/gqaid problems. In such prob-
lems, theZ, term in (5) is replaced by the log of the probability denségd a risk-
sensitivity coefficient appears as well. Although we aresiolgt of that problem class
here, we nonetheless apply the same approach, but wherdna@artrect value of this
risk-sensitivity parameter is not as obvious. In particttlee risk-sensitive algorithm is
as follows: Apply state-feedback control at

7" = argmax {log[d(i)] + Vi(i)} (6)

whereq is the probability distribution based on the conditionadtdbution for Blue
given by (3), (4) and a stochastic model of Red control astiandV” is state-feedback
stochastic game value function (c.f. [13]). Hereg [0, 00) is a measure of risk aver-
sion. Note thak = 0 implies that one is employing a maximum likelihood estimate
the state- feedback control (for the game), al@max; {log([q;];) } = argmax,{[q:]; }-
Note also (at least in linear-quadratic case wheg#y;]; = Z,(7) modulo a constant),

k = 1 corresponds to the deterministic game certainty equical@ninciple [17], [20],
i.e.argmax{Z;(i) + V;(i)}. As k — o0, this converges to an approach which always
assumes the worst possible state for the system when clgasontrol — regardless of
observations. (See [28] for further discussion.)

2.2 Deception-Robust Controller Theory

The above approach was cautious (risk averse) when chotigngtate estimate at
which to apply state-feedback control. We now consider droier which explicitly
reasons about deception. This approach typically han@lesalion better that the risk-
averse approach, but this improvement comes at a substamtigutational cost. For
a given, fixed computational limit, depending on the spegifablem, it is not obvious
which approach will be more successful.

Here we find that the truly proper information state for Red;is Q(X) — R,
where@(X) is the space of probability distributions over state sp&ce)(X) is the
simplex in k™ such that all components are non-negative and such thatutheo$
the components is one. We let the initial information steeZ§(-) = ¢(-). Here,¢
represents the initial cost to obtain and/or obfuscatélrstate information. The case
where this information cannot be affected by the players beagepresented by a max-
plus delta function. The information state at timevaluated at probability distribution
q, Z:(q), essentially represents the cost to the opponent to gendisttibutiong as
the naive/Bayesian distribution in a Blue estimator. Thathrough obfuscation of the
initial intelligence and use of controts,. up to timet, the propagation (3), (4) would
lead to somey at timet if such w,. were knownZ;(q) would be the maximal (worst
from Blue perspective) cost to generatdy any Red controls that would yield that



particularg at timet. Although Blue does not know the Red controls, it can norletise
computeZ, (-). For details on this propagation and theory, see [26].

Inthe case here, where the state-space is finite ofisize#£ X', Q is some a simplex
in IR™. Thus,Z; belongs to a space of functions overran 1 dimensional simplex, and
consequently an element of an infinite-dimensional spaoeigder, in the cases where
¢ is either a max-plus delta function, or a piecewise-comtirsufunction,Z; is finite
dimensional. This is crucial to the computability of thismtwller. Note that in either
of these cases, the complexity&hfis proportional (in the worse case) tgWW)* at the
t time-step. Pruning strategies for reduction of this coxipfeare critical (c.f., [23]).

We now turn to the second component of the theory, computaifothe state-
feedback value function. In this context, our value funti®ageneralized/alue func-
tion in that it is a function not only of the physical state bétsystem, but also of what
probability distribution Blue believes reflects its lackkofowledge of this true physical
state. The full, generalized state of the system is now destby the true state taking
valuesz € X andthe Blue conditional probability process taking valyes Q(X).
We denote the terminal cost for the gamefast — R (where of course this does not
depend on the internal conditional probability processlaeR Thus the state-feedback
value function at the terminal time is

Vr(z,q) = E(x). Q)

The value function at any time,< T, takes the forni/;(z, ¢). It is he above minimax
expected payoff where Blue assumes tha the “correct” distribution for: at time

t, that at each time Blue will know the corregt and that Red will know both the
true physical state and this distributian,In particular,q will propagate according to
(2), and the state will propagate stochastically, goveine(l). Loosely speaking, this
generalized value function is the minimax expected paydifue believes the state to
be distributed byy, at each time- € (¢, T, while Red knows the true state (as well as
qr). A rigorous mathematical definition can be found in [26]eTtackward dynamic
program that comput®, from V., is as follows.

1. First, let the vector-valued functiahf ; be given component-wise by

(Mi]a(g.u) = max | P (u,0)Virs (5,4 (g,u, w))| (®)
JEX

whereq/ (¢, u, w) = PT (u,w) and the optimaty is
w] = w)(z,¢,u) = argmax{ 3" P (u,w)Ves1(j, ¢ (0,1, w)) }.
weWwn jex

2. Then defind ; as

Li(q,u) = ¢ My(q,u), ©)
and note that the optimalis u?(q) = argmin, c;; L+(g, u).
(10)



3. With this, one obtains the next iterate from

Vi(z,q) = Y Poj(uf, w))Viy1 (G, ¢ (g, uf, w)) = [M]a (g, uf)

JjeX
and the best achievable expected result from the Blue paigpés
V() = ¢ M(q,u?). (11)

Consequently, for eache {0,1,...,7} and eachx € X, Vi(x,-) is a piecewise
constant function over simple®(X'). Due to this piecewise constant nature, propa-
gation is relatively straight-forward (more specificallyis finite-dimensional in con-
tradistinction to the general case).

The remaining component of the computation of the controbis discussed. This
is typically performed via the use of the certainty equinake principle (cf. [1], [17]),
and we employ the principle here as well. To simplify notatioote that by (9) and (8),
for anyu,

Lt(Qa u) = Eq |:wnel%(" Z ﬁX](ua w)‘/;f+1(j7 q/(Q7ua 'LU)):| .
JjeEX

Let us hypothesize that the optimal control for Blue is

u})’ = argmin { max {Z:(q) + Lt(q,u)}] . (12)
uelU qEQ(X)
In order to obtain the robustness/certainty Equivalensaltdelow, it is sufficient
to make the following Saddle Point Assumption. We assumigftinall ¢,

sup min [Iz(qz) + Li(qz, U)} = min sup [If(qt_) + L (g, U)} : (A-SP)
qr€Q UEU u€l greQ,

This type of assumption is typical in game theory. Althouigh difficult to verify for a

given problem, the alternative is a theory that cannot hesteded into a useful result.

Finally, after some work [26], one obtains the robustnesslte

Theorem 1. Lett € {0,T — 1}. LetZ, ujo7—1) andyp ;_q be given. Let the Blue
control choiceu?", given by (12) be a strict minimizer. Suppose Saddle PoistiAg-
tion (A-SP) holds. Then, given any Blue strategy_;; such that\¢[y.] # u}", there
existss > 0, ¢; andwi; ,-_;; such that

Sup {Z1(a) + Lala ")} = 70 < Tilaf) + Bcege {BIECKT) | X = X1} — ¢
qeWs

whereX© denotes the process propagated with control strategigs_1 a”dwf{,T_u-

3 A Seemingly Simple Game

We now apply the above technology to an example problem inr@amad and Control
for UCAVs. This game will seem to be quite simple at first. Hoete once one intro-
duces the partial information and deception componentsyménation of the best (or
even nearly best) strategy becomes quite far from obvious.
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Nonlinear Example - Only one Red required to take asset
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Fig. 1. Snapshot of Gameboard.

In this game the Red player has four ground entities (salgs)aand the Blue player
has two UCAVs. The objective of Red player is to capture tlghhhialue Blue assets
by moving at least one non-decoy Red entity to a Blue assatitwtby the terminal
time, T'. Red can use stealth and decoys to obscure the directionfoch the attack
will occur, while the Blue player uses the UCAVs to destrog thoving Red entities.
Red entities do not have any attrition capability againstBlue UCAVs. Blue UCAVs
require at least two time steps to travel from one route tather.

The simulation snapshot in Figure 1, is taken after time 8t&mwm the graphic for a
MATLAB simulation that runs the example game. Red is movisgurrently surviving
three entities (depicted as triangles) downward, whileeBsuattempting to prevent any
Red entities from reaching the Blue asset through use of@8\s$ (depicted as blue
T's). Red is currently employing a decoy on the right, whigéng stealth on the left.

Winning and losing are measured in terms of the total costeaterminal time. The
cost at terminal time is computed as follows: each Red simyientitiy costs Bluel
point and if Blue loses the high-value asset, it costs Blupoints.



4 Comparison of the Approaches

Let us briefly foray into a comparative study between the enaipproach (i.e., feed-
back on maximume-likelihood state), the risk-averse athamiand the deception-robust
approach for Blue. The critical component of the risk-ageapproach is the choice of
the risk level,x. For the example studied in this chapter we vargetween) and 10

to demonstrate the nature of the risk-averse approach iergleriirstly, for the case

k = 0, we have the risk-averse approach equivalent to the napmagph; apply the
state-feedback control at the MLS estimate.sAisicreases we expect the approach to
achieve a lower cost for Blue, since it is taking into accaimet expected future cost
V(X:) (as a risk-sensitive measure). Note however that in theradrial environment
the effect of the Red player’s control on the Blue player'safations has more com-
plex consequences than that of random noise. As shown inghieeR2, the risk-averse
approach gets the best cost for Blue dtetweer).5 and0.6 (note again that this choice
will be problem specific). Ag increases beyond this point, the expected cost begins in-
creasing, and has a horizontal asymptote which corresgoradBlue controller which
ignores all the observations and assumes the worst-casiblgoRed configuration.

Comparing Different Blue Approach
T T T T T

b

Value
1
Y

oy . N - - Risk-Averse
= = = Maximum Likelihood State

e Deception-robust

kaﬁpa

Fig. 2. Comparison of Approaches.

The bumpiness in the results is due to the sampling error)(80@nte Carlo runs
were used for each data point in the plot.) Also note thatdogéx, the risk-averse
approach does worse than the naive approach. For this sp@diinple, the risk-averse



approach does not achieve the same low cost as achievedigytisideception-robust
approach.
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