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Abstract: “Growing Functional Modules” constitutes a prospective paradigm founded on the epigenetic approach 
whose proposal consists in designing a distributed architecture, based on interconnected modules, that 
allows the automatic generation of an autonomous and adaptive controller (artificial brain). The present 
paper introduces a new module designed to trigger causal inference; its functionality is discussed and its 
behavior is illustrated applying the module to solve the problem of a dynamic maze.  

1 INTRODUCTION 

1.1 The Epigenetic Approach 

According to Epigenesis, introduced in 
Developmental Psychology by Piaget (Piaget, 1970), 
the emergence of intelligence in a system requires 
such system to have a physical presence 
(embodiment) that allows an interaction with the 
environment (situatedness), furthermore this system 
should hold an “epigenetic developmental process” 
in charge of developing some specific skills to fulfill 
particular goals. If extrapolating this theory to 
Computer Science, Robotics constitutes the proper 
application field as it provides both embodiment and 
situatedness; then, an intelligent system performing 
as the robot‘s controller could emulate the 
“epigenetic developmental process”. 

Formally introduced in (Leboeuf, 2005), 
Growing Functional Modules (GFM) constitutes a 
prospective paradigm founded on this epigenetic 
approach. As a result, a GFM controller gradually 
acquires the specialized abilities while trying to 
satisfy some induced internal goals, which can be 
interpreted as motivations.  

1.2 The Concept of GF Module 

In input, a module receives requests; each request 
corresponds to the directive of reaching a specific 
state. The corresponding finite set of states is 

initially empty, but it gradually increases integrating 
as a new state, any distinct values provided by 
feedback. Furthermore, each module is assigned a 
set of commands that allows it acting on its 
environment, either directly by positioning some 
actuators or indirectly by sending requests to other 
modules. States transitions are achieved triggering 
these commands. Hence, each module enclosed a 
dynamic structure, typically a network of cells that 
gradually grows to memorize the correlations 
between these state transitions and a corresponding 
sequence of commands. 

The engine of the module is in charge of 
retrieving an optimal sequence of transitions 
connecting the current state to the requested one and 
then, replicating it while triggering the 
corresponding sequence of commands (propagation). 
Obviously, the environment, commonly the real 
world, does not present a deterministic behavior due 
mainly, to an incomplete perception (the finite set of 
sensors reflects only a fraction of the reality); but 
also to errors associated to sensing (like round off, 
precision of the sensors, mechanical imperfections 
and external disturbances). So, when feedback 
exhibits some minor differences between the 
predicted behaviour and the obtained one, an 
adaptation mechanism is in charge of adjusting the 
current transitions; while, in case of major 
differences, a new sequence of transitions may be 
computed and then replicated. 

GF modules have no previous learning phase; 
learning and adaptation may occur at any time when 
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propagation does not fit the previously acquired 
behaviour. Nevertheless, to avoid a limitless 
growing of the internal structure, this structure must 
converge when interacting with a stable 
environment, i.e. an environment in which for this 
specific module the same causes produce the same 
effects during a certain period of time. 

As a result, a module constitutes an autonomous 
entity able by its own to perform a specific class of 
control. For instance, two recent papers describe the 
RTR-Module and its improved version (Leboeuf, 
2006) designed to perform basic automatic control; 
its behavior is illustrated by the application to an 
inverted pendulum.  

1.3 The Concept of GFM Architecture 

In addition to the ports dedicated to input requests, 
to feedback and to output commands previously 
mentioned, all modules incorporate an input-output 
inhibition port that allows a module to prevent 
propagation in another one. As a result, the 
interconnection of modules through these 
communication ports allows the elaboration of a 
multi-purposes architecture.  

An illustration of a GFM architecture including 
six modules of three different types is described in 
(Leboeuf, 2005). The corresponding controller 
shows its ability to discover and handle the potential 
functionalities of a virtual, mushroom shaped robot 
including the control of the single leg’s steps, the 
direction of the body and the orientation of the hat. 
To induce learning of such functionalities, at least 
one global goal is required at the top of the 
architecture. In the case of the mushroom shaped 
robot, such induced motivation corresponds to light 
seeking. 

In accordance with this approach, the GFM 
“programming process” consists of graphically 
designing the GFM architecture, i.e. interconnecting 
a set of functional modules. Afterward, two C++ 
source files are automatically generated; they 
contain the constructor of the controller and a 
description of the serial communication protocol 
between the controller and its associated application. 
Compiling these two files and linking them with the 
GFM library produce the GFM controller that 
initiates its activity when connected to the 
corresponding application (virtual or real). As a 
result, this paradigm, though still in a development 
phase, brings forward the possibility of setting up an 
autonomous and adaptive controller replacing the 
traditional programming task by the design and 
training of a distributed architecture. 

As a prospective computer science paradigm, 
GFM offers several relevant aspects:  

 First, memory is the exclusive product of a 
learning process;  

 Second, the acquired knowledge and its 
processing engine are indivisible;  

 Third, adaptation to changing environments is 
intrinsic;  

 Fourth, all the learning process is guided by the 
satisfaction of global goals (that may be 
interpreted as motivations).  

Therefore, as a system’s architecture, GFM has a 
propensity to introduce a more natural concept of 
memory and knowledge processing. 

2 THE CI-MODULE 

2.1 Concept 

Earlier, the conception and development of a new 
GF module arises to satisfy the necessity of 
controlling some specific hardware. Presently, the 
proposal of its creation comes out from the 
importance of causal inference in cognitive 
psychology. This assertion and the subsequent 
statements are inspired by the theories of cognitive 
psychology concerning learning and memory 
exposed in (Anderson, 1999). 

There, causal inference appears to play a 
fundamental role concerning adaptation since an 
organism able to discover the cause of some 
phenomenon also acquires the ability of predicting 
and/or producing some behavior in its environment 
and consequently, it is able to control some 
particular aspects in order to satisfy its needs. 
Moreover, causal inference allows facing more 
complex situations than, for example, associative 
learning and therefore seems to be involved in many 
cognitive levels from simple action-reward activity 
to language acquisition.  

Such important role of causal inference justifies 
its introduction as a new module of the Acting Area 
in charge of triggering the corresponding sequence 
of actions that satisfies a specific request from a 
higher module (a process referred in the previous 
paragraph as “producing some behavior”). Its 
counterpart belonging to the Sensing Area and in 
charge of interpreting multiple feedbacks from 
sensors (referred as “predicting some behavior”) is 
still under study and will not be described in the 
present paper. Hence, active and passive 
functionalities of causal inference mentioned above 
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are partitioned to be integrated to the GFM 
architecture.  

In robotics, GFM’s field of application, causal 
inference should play a key role in planning because 
it requires the robot to elaborate an optimum path 
from an initial state corresponding to its current 
situation toward a final one that matches the 
requested conditions. 

2.2 Achieving Propagation 

The internal structure of a CI-Module is represented 
as a state graph, as illustrated on figure 1. The 
transition from one state to another is obtained by 
triggering the associated command. For example, 
from the current state, identified with black color 
and labeled with number ‘7’, it is possible to reach 
the state labeled ‘6’ by triggering the command c4, at 
least when the universe is fully deterministic. Then, 
different sequences of commands allow, starting 
from the current state, reaching the goal state labeled 
with number ‘9’ and identified with a double circle. 
For example, the sequences (c1 c1 c2), (c1 c1 c1 c4), 
(c2 c4 c1 c2), (c3 c2 c4) among many others, comply 
with this purpose. Internally, all states are defined 
and validated as a result of the feedback values and 
the goal state is given by the input request. Besides, 
all commands belong to the set assigned to the 
module during the designing phase. 

As a consequence, propagation consists of 
finding and applying the optimal sequence of 
commands to reach the goal. The qualifier “optimal” 
refers to the sequence offering the lowest cost while 
considering that each command has an associated 
cost. This problem is analogous to the search of the 
shortest path in a graph considering that the weights 
given here, represent the cost associated with the 
commands. With the condition, presently verified, 
that all weights are positive, Dijkstra’s algorithm 

(Dijkstra, 1959) always encounters the optimal 
solution to this problem. The principle of this 
algorithm consists in repeatedly adding the most 
economical edge from the currently visited nodes to 
any unvisited ones, and iterating this process until 
reaching the goal node. Several authors have 
proposed alternative solutions with better 
performances but with distinct hypothesis (Cooper et 
al., 2000); so, at present, propagation is still guided 
by an implementation of the Dijkstra’s algorithm. In 
case, all commands have the same cost, then the best 
path would have the lowest number of transitions; in 
case several paths have the same number of 
transitions (see blue and green paths represented on 
figure 2) then the first one provided by the shortest-
paths algorithm will be chosen. 

The costs mentioned previously in the 
propagation process are obtained as follows: each 
time it triggers a command, any GF acting module 
provided an extra feedback value that either refers 
the effort produced by the actuator to realize the 
corresponding action or, in case of a lower module, 
integrates all the subsequent efforts leading to 
comply the corresponding request. This is an 
important aspect as any module must prefer the 
lowest solution. This feedback value produced by a 
lower level set up the cost associated to the 
transition. This cost may vary in time due to external 
effects (see section 2.4), thus it must be updates 
permanently as follows: each time a transition is 
applied successfully, a new cost is assigned as the 
half of the sum of the current cost and the returned 
value.  

2.3 Learning Transitions 

To comply with the GFM paradigm, a module must 
build up its internal structure from nothing, only 
using the guidance of the feedback. At the 

Figure 1: Graph of the internal structure of a CI-Module. 
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beginning, the initial state, given by the feedback, 
corresponds to the local perception of the initial 
value of a particular sensor. Then, from this state, a 
randomly selected command is triggered and 
eventually a new state discovered; this process is re-
iterated each time there is no path leading to the 
requested goal, including the particular case when 
this requested goal is still unknown and sometimes 
non-existent; furthermore, each different value given 
by the feedback is interpreted as a new state. 

The graph resulting from this process is stored in 
memory and permanently updated. According to the 
illustration of figure 2, the only transition from state 
‘1’ is correlated to the command c1, it comes out that 
the commands c2 and c3 have not been tested yet and 
that the command c4 do not produce any transition. 
Commands like c4 should be ignored as they do not 
generate a state transition nevertheless they must be 
occasionally triggered to corroborate this fact. If 
required, the graph is updated because, as exposed 
next section, the environment is rarely deterministic. 

2.4 Dealing with Non Determinism 

The previous description of the CI-Module considers 
the interaction with a deterministic environment, 
nevertheless in the real world, an action often 
produces uncertain effects due to  

 The imprecision of the sensory system that 
engenders an incomplete representation of the 
environment;  

 The presence of external and hidden effects;  
 The eventual presence of other entities that 

possibly alter the current representation.  

2.4.1 First Mechanism 

Therefore, each time a command is triggered, the 
new current state is determined by the supplied 

feedback. If this state corresponds to the predicted 
one, then propagation may continue in accordance 
with the computed path; on the opposite, a new path, 
starting from the new current state, determined by 
the feedback value. This mechanism is fundamental 
to deal with non determinism; an illustration is 
presented figure 3 where the predicted path starting 
from state ‘7’, passing by ‘8’ and ‘4’ to reach the 
goal state ‘9’ must be recomputed because state ‘5’ 
is specified by feedback instead of the predicted 
state ‘4’; next, a new path is computed that consists 
of states ‘5’, ‘0’ and finally ‘9’. 

2.4.2 Second Mechanism 

Moreover, in accordance with the previously 
mentioned uncertainty of the environment, our 
representation should not be deterministic but must 
offer a distribution of probabilities corresponding to 
the main outcomes of a command triggered from a 
specific state. Such distribution of probabilities 
should reflect the previous experience. 
Several paradigms, in particular those based on 
probability calculus like Markov Chains (Wai-Ki 
and Michael, 2006) or Bayesian Networks (Jansen, 
2001), build faithful representation of the 
environment. Nevertheless, with regard to our 
problem, they present the major inconvenient to 
constitute passive processes, in the sense that they 
do not act directly on the environment to establish a 
resultant representation. In fact, these paradigms are 
fine candidates to the sensing counterpart of the CI-
Module mentioned in section 2.1. Presently, an 
alternative process has been implemented and this is 
for two reasons: first to increase efficiency since one 
criterion for growing functional modules is to be a 
low cpu and memory consumer; next, because only 
short term memory is required since it is assumed 
that the response of the environment may frequently 
change and so, its resulting feedback. In other  
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words, the second implementation will favor fast 
adaptation over long time memory. 

The implementation of this process consists in 
memorizing a small finite number t of different 
transitions generated by a specific command c from 
a given state s during a few last p intents and in 
assigning the number ai of achievements to each 
transition. For example, the transition depicted on 
figure 4, reflects that during the last p attempts of 
triggering the command c2 from the state ‘1’, six 
transitions reached the state ‘8’, three reached the 
state ‘7’ and one the state ‘6’. Consequently, state 
‘8’ that actually presents the highest reliability is 
considered as the expected transition and is used to 
compute the predicted path to reach the goal state. It 
must be noticed that the sum of the achievements is 
not equal to the number of attempts p because while 
the successful alternative is incremented, all others 
are decremented at the same time. Further, when an 
alternative reaches the value p then, this means that 
no other alternatives had appeared during the last p 
attempts. Therefore, p reflects the sensibility to cope 
with the changes that presents the environment: a 
lower value of p produces a more dynamic behavior.  

The transitions’ reliability is updated in the 
following way: each time a command is triggered, 
the resulting transition is compared to the t 
memorized transitions. If found, its corresponding 
reliability is incremented while the reliabilities of all 
the other alternatives are decremented. If not found, 
this new transition replaces the lowest memorized 
one, and its reliability is set to 1. This mechanism 
obviously favors the most recent outcomes of a 
transition contrarily to a model based on historical 
probability. In some way, experiments practiced on 
rats dealing with mazes support this choice: the last 
successful outcome obtains a relative predominance 
over historical experience. 

2.4.3 Additional Mechanisms 

Three additional mechanisms are described in this 
section; they all have been introduced to improve the 
propagation in the internal structure of the CI-
Module. 

The third mechanism consists of triggering, from 
time to time, a command that, until now, has not 
produced any transition from a particular state; like 
for example in figure 2, the command c4 triggered 
from state ‘1’. This mechanism allows the detection 
of potential paths that, on the contrary, would 
remain ignored after being the object of an initial 
failure. The implementation consists in periodically 
triggering unproductive actions if any exist. In 

practice, when a state has been activated a 
predefined number of times, an unproductive action 
is randomly selected and triggered.  

The fourth mechanism consists of allowing 
computation of the path using the best and the 
second best transitions when their reliabilities are 
relatively close. This mechanism reflects the fact 
that two close reliabilities denote two good potential 
transitions. But, this mechanism presents the 
inconvenience to consequently increase the 
processing time necessary to compute the optimum 
path; therefore, its application is only optional. 

The fifth mechanism has been introduced to take 
into account the reliability of a transition. When 
applying the Dijkstra algorithm, the choice of the 
optimum path is achieved taking into account the 
cost of the transition as previously described, but 
also considering its reliability. This mechanism 
clearly indicates that a longer but more reliable path 
should be preferred to a shorter but more erratic one. 
The implementation of this mechanism consists of 
linearly increasing the cost according to the 
reliability of the transition: the cost is doubled when 
the reliability is minimal (i.e. equal to 1) and 
unchanged when the reliability is maximum (i.e. 
equal to p). Moreover, introducing reliability in the 
evaluation of the potential paths contributes to make 
the previous one obsolete. 

A simplified pseudo-algorithm of the final 
process is given figure 5; the presence of the 
different mechanisms is also indicated. 

3 COMPLIANCE 

Any Growing Functional Module must satisfy three 
main requirements to comply with the GFM 
paradigm and thus, to be interconnected with other 
modules and integrated into a GFM architecture. 
These requirements, discussed in the present section, 
contemplate the growing of the internal structure, 
the interconnection with other modules and the 
contribution of the module. 

First, the internal structure of any module must be 
initially nonexistent and designed to gradually grow 
as the result of some learning mechanisms. 
Moreover, these mechanisms must allow the 
permanent adaptation of the internal structure 
although this structure must stabilize when 
performing in a stable environment. The 
implementation of the CI-Module describes in 
section 2 satisfies this requirement: when the initial 
request is received as input, the first state is 
originated; then new structures are created only in 
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response to new or inconsistent feedback which 
means that, if the environment is stable, the internal 
structure compound of states and transitions will not 
grow. This leads to a conclusion about the 
convergence of the structure since the local 
adaptation of the transitions has no growing effect in 
term of memory. 

 Second, the parameters that give a description of 
the application to the module are reduced to the 
standard ones including: the set of output 
commands, the feedback value associated to the 
current state and an input request with no specified 
range. Due to the object oriented implementation, 
any module derives from a common class that 
includes all input-output ports; in consequence, the 
CI-Module automatically fits the interconnection 
requirement.  

Thirdly, to illustrate its functionality and 
contribution to the GFM architecture, the module 
must achieve some generic control task, operating as 
an autonomous entity that is able to communicate 
with the application through the standard protocol. 
The satisfaction of this requirement is exhibited next 
section where the CI-Module is employed to achieve 
the learning of a dynamic maze. 

In addition to the previous requirements, it is 

imperative to consider memory and processing costs 
associated with the implementation of a module 
since a GFM architecture is supposed to integrate 
many modules. Concerning the CI-Module, the main 
processing cost involves the algorithm that computes 
the shortest path. The current implementation, based 
on the standard definition of the Dijkstra’s 
algorithm, offers a regular performance. 
Nonetheless, (Fredman & Tarjan, 1987) 
demonstrates that using a new structure called F-
Heaps the problem may be solved in near-linear 
time: O( n.log(n) + m) where m and n respectively 
represents the number of edges and vertexes. 
Furthermore, (Matias et al., 1994) introduces the 
notion of “approximate data structure” and proposes 
a faster solution of the shortest path problem with 
the condition of tolerating a small amount of error. 
This offers a convenient alternative in case of 
elevated cpu requirements as, in the case of GFM 
modules, precision and exactitude requirements are 
not essential because errors are considered part of 
the learning process. Besides, the memory cost is 
proportional to the number of states including for 
each state a maximum number of p transitions, p 
being the number of authorized commands; so, to 
store a state and its p transitions, only 2p+28 bytes 
are required with p commonly less than 10. Thus, 
both, memory and cpu costs, appear to be 
proportional to the number of achievable states. 
Such number is in turn, related to a sufficient 
learning time to produce a reliable behavior that 
could be defined as a fixed minimum percentage of 
correct responses of the system, typically ninety per 

Figure 6: A typical maze used as an application where 
letters ‘C’ and ‘R’ stands respectively for the current 
and the requested positions. 

C

R

WHILE ContinueControl 
 TotalCost←0; 
 WaitFor(Request); 
 Get(Feedback); 
 FindOrCreate(CurrState,Feedback);  
 Found←Search(ShortPath); M2,4,5 
 IF Found 
  Compute(Trans,PredState,Command); M3 
 ELSE 
  Choose(Command); 
 WHILE CurrState#Request AND Command 
  Trigger(Command); 
  Get(Feedback,Cost); 
  TotalCost←TotalCost+Cost; 
  FindOrCreate(CurrState,FeedBack); 
   IF CurrState#PredState M1 
    IF CurrState      
   Update(Trans,CurrState,Cost); M2,5 
     Search(ShortPath); M2,4,5 
    ELSE 
     Create(Trans,CurrState,Cost); 
     Choose(Command); 
   ELSE 
    Reinforce(Trans,Cost); 
 Compute(Trans,PredState,Command); M3 
Return(TotalCost); 

Figure 5: Simplified pseudo-algorithm of the internal 
structure process corresponding to the CI-Module where 
the mentioned mechanisms X are referred as MX. 
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cent. Hence, the recommendation should be given to 
the programmer, i.e. designer of the architecture, to 
estimate the number of discrete states that will 
generate a particular feedback from the environment. 

Note that it could be assumed that a higher 
number of commands will produce a larger internal 
structure though there is no strict mathematical 
relation between these concepts. This last assertion 
may be inferred from the following example: all the 
possible commands on actuators may be integrated 
within a tiny structure of only two states 
representing “mobility” and “immobility”. 
Nevertheless, it could be assumed that, when 
integrating the CI-Module with an architecture, it is 
convenient to associate a reduced set of commands. 

In conclusion, due to its compliance, the 
corresponding C++ implementation of the CI-
Module may be added to the GFM library that 
integrates all the fundamental components and 
permits the design of an architecture for a GFM 
controller. 

4 APPLICATION 

As mentioned before, each time a GF module is 
developed a corresponding application must be 
programmed and tested in parallel because the 
module is supposed to be able to perform as a 
controller on its own. Such an application represents 
the challenge that directs the development of a 
specific module. 

In cognitive psychology, mazes constitute natural 
tools to investigate causal inference. The obtained 
results in this area have inspired in some way the 
present study as, for example, the reference 
introduced at the end of section 2.4.2. Actually, a 
maze is the application defined to evaluate the 
performance of the CI-Module. Nevertheless, the 
behaviour of a rat in a maze is more complex than a 
causal inference based control system because others 
cognitive abilities like spatial representation take 
part in the process.  

In the current application, maze’s positions 
correspond to states whose current one is provided 
as feedback to the controller; meanwhile the set of 
actions is composed of the elementary moves in 
each of the four possible directions: north, south, 
east and west. The task of the module consists of 
learning the configuration of a particular maze as 
illustrated on figure 6 and learning to satisfy a 
request that stipulates which position to reach. Thus 
a classic maze is implemented with three additional 
characteristics:  

 First, the internal walls constituting the maze 
may shift randomly from time to time;  

 Second, some “sliding effect” sometimes alters 
the response to an action, in other words the 
maze is not fully deterministic. 

 Third, the cost of each move is a function of its 
direction. 

Experimentally, the CI-Module is perfectly able 
to perform the task of learning and solving the maze. 
This is obvious since the maze offers a mirror 
representation of the state graph that describes the 
internal structure of the module. In fact, initially, the 
maze has been conceived as an illustration of the 
module’s expectations and then, it has been 
employed to guide its development. Hence, for the 
designer, the maze serves as a reference of the 
ability of the CI-Module. 

The major difficulty has been to deal with the 
walls’ shifts in absence of tactile or visual 
perception and thus, to discover a potential shorter 
path as the emergent one indicated with dashed lines 
on figure 6. In absence of any complementary 
perception, the solution, given in section 2.4.3 
consists of occasionally, triggering apparently 
inefficient commands, thus giving the system the 
ability of discovering new opportunities. Despite its 
slowness, this mechanism satisfies the initial 
requirement of adaptability inherent to the 
architecture.  

The tests have been realized running the single 
module on a computer and the maze application on 
another, both connected by a serial connection 
implemented with the GFM standard protocol. The 
results show that the version of the CI-Module 
described in this paper, comply with all its expected 
functionalities. 

Finally, the importance of feedback timing must 
be considered. In practice, the perception of a causal 
inference depends of the proximity in space and 
mostly time between an action and an effect. So, as 
the delay increases, the consistency of the relation 
decreases. The feedback is provided to the CI-
Module once the command has been fully 
performed. In the case of commands triggered by 
modules that involve requests to lower modules, the 
feedback is provided when all the subsequent 
commands have been applied and, consequently this 
will increase the feedback’s delay. However, the 
reaction of the environment is not always 
instantaneous; for example, “the production of heat 
as resulting from switching on a lamp” represents a 
complex inference as a result of the extended delay 
that occurs between both events. In such case, the 
sensing Area is supposed to help providing the 
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interpretation of the phenomenon, but, at this time 
there is no evidence to support this hypothesis.  

5 CONCLUSIONS 

The present paper introduced a novel Growing 
Functional Module designed to perform causal 
inference. Its conception and implementation are 
fully described and its behavior illustrated by the 
application to a dynamic maze problem.  

The foremost conclusion is that this module 
shows to be fully functional and compliant with the 
requirements of any Growing Functional Module. 
Consequently, it has been added to the GFM library 
that incorporates all the components employed to 
automatically build GFM controllers. Besides, the 
internal structure of the CI-Module exhibits the 
intrinsic qualities of the epigenetic approach: both 
processes of learning and propagation are guided by 
a (restricted) feedback of the environment. 

Forthcoming works derived from the present one 
include a module conceived as a counterpart of the 
CI-Module designed to integrate the Acting Area. 
The internal structure of this future module of the 
Sensing Area is based on a Finite State Automaton. 
Furthermore, an improved version of the present 
module is also under study; it has a more 
complicated internal structure based on an 
Interpreted Petri Net. 
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