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Abstract: This paper describes an early stage of cytological image recognition and presents a comparision of two hybrid
segmentation methods. The analysis includes the Hough transform with conjunction to the watershed algo-
rithm and with conjunction to the active contours techniques. One can also find here a short description of
image pre-processing and an automatic nucleuses localization mechanisms used in our approach. Preliminary
experimental results collected on a hand-prepared benchmark database are also presented with short discussion
of common errors and possible future problems.

1 INTRODUCTION

Construction of a fully automatic cancer diagnosis
system is a challenging task. In last decade we can ob-
serve a very dynamic growth in number of researches
conducted in this area not only by university centers
but also by commercial institutions (Kimmel et al.,
2003). Because the breast cancer is becoming most
common disease of the present female population,
much attention of the present-day researchers is di-
rected to this issue. The attention covers not only cur-
ing the external effects of the disease but also its fast
detection in its early stadium.

The nucleus of the cell is the place where breast
cancer malignancy can be observed. Therefore, it is
crucial for any camera based automatic diagnosis sys-
tem to separate the cells and their nuclei from the
rest of the image content. Until now many segmen-
tation methods were proposed (Gonzalez and Woods,
2002; Pratt, 2001; Russ, 1999) but unfortunately
each of them introduces different kinds of additional
problems and usually works in practice under given
assumptions and/or needs end-user’s interaction/co-
operation. Since many cytological projects assume
rather full automation and real-time operation with
high degree of efficacy, a method free of drawbacks
of already known approaches has to be constructed.

In this paper two hybrid methods of cytological

image segmentation are presented, that is the Hough
transform with conjunction to the watershed algo-
rithm and with conjunction to the active contours
techniques. One can also find here a short descrip-
tion of image pre-processing and fully automatic nu-
clei localization mechanisms used in our approach.

2 PROBLEM FORMULATION

Mathematical formulation of the segmentation pro-
cess is very difficult because it is a poorly conditioned
problem. Thus we give here only some informal defi-
nition of the problem we have to face.

What we have on input is a cytological material
obtained using the Fine Needle Biopsy technique and
imagined with aSony CCD Iriscamera mounted atop
of anAxiophotmicroscope. The material comes from
female patients of Zielona Góra’sOnkomedmedical
center (Marciniak et al., 2005). The 704×576 pixel
image itself is coded using the RGB colourspace and
is not subject of any kind of lossy compression.

What we expect on output is a binary segmenta-
tion mask with one pixel separation rule which will
allow us to more robust morphometric parameters es-
timation in our future work. Additionally, the algo-
rithm should be insensitive to colours of contrasting
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Hrebień M., Steć P. and Korbicz J. (2007).
COMPARISON OF FINE NEEDLE BIOPSY CYTOLOGICAL IMAGE SEGMENTATION METHODS.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 305-310
DOI: 10.5220/0001645603050310
Copyright c© SciTePress



(a) (b)

Figure 1: Exemplary fragment of: (a) cytological image,
(b) appropriate segmentation mask.

pigments used for preparation of the cytological ma-
terial (see an example in Fig. 1).

3 IMAGE PRE-SEGMENTATION

3.1 Pre-processing

The colour components of an image do not carry as
important information as the luminosity does, so they
can be removed to reduce processing complexity in
stages that require only e.g. gradient estimations.
An RGB colour image can be converted to greyscale
by removing blue and red chrominance components
from the image defined in YCbCr colour space (Pratt,
2001).

Since the majority of images we deal with have
low contrast, an enhancement technique is needed to
improve their quality. In our approach we use sim-
ple histogram processing with linear transform of im-
age levels of intensities, that is the cumulated sum ap-
proach (Russ, 1999). The contrast correction opera-
tion is conducted for each colour channel separately
resulting in an image being better-defined for later
stages of the presented hybrid segmentation methods
(see Fig. 2).

3.2 The Background of the Algorithm

If we look closely at the nuclei we have to segment,
they all have elliptical shape. Most of them remind
ellipse but unfortunately detection of ellipse which
is described by two parametersa andb (x = acosα,
y = bsinα) and which can be additionally rotated is
computationally expensive. The shape of ellipse can
be approximated by a given number of circles. De-
tection of circles is much more simpler in the sense
of required computations because we have only one
parameter, that is the radiusR. This observations and
simplifications constitute grounding for fast nucleus
pre-segmentation algorithm – in our approach we try
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Figure 2: Flow graph of the presented solutions.

to find such circles with different radii in a given fea-
ture space.

3.3 Circles Detection

The Hough transform (Toft, 1996;̇Zorski, 2000) can
be easily adopted for the purpose of circle detection.
The transform in the discrete space can be defined as:

HTdiscr(R, î, ĵ) =

î+R

∑
i=î−R

ĵ+R

∑
j= ĵ−R

g(i, j)δ
(

(i − î)2 +( j − ĵ)2−R2
)

, (1)

whereg is a two dimensional feature image andδ is
the Kronecker’s delta (equal to unity at zero) which
defines sum only over the circle. TheHTdiscr plays
the role of accumulator which accumulates levels of
feature imageg similarity to circle placed at the(î, ĵ)
position and defined by the radiusR.

The feature spaceg can be created by many differ-
ent ways. In our approach we use gradient image as
the feature indicating nucleus’ occurrence or absence
in a given fragment of cytological image. The gra-
dient image is a saturated sum of gradients estimated
in eight directions on greyscale image prepared in the
pre-processing stage. The base gradients can be cal-
culated using e.g. Prewitt’s, Sobel’s mask methods or
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Figure 3: Influence ofθ threshold value on objects’s cover
and lack of differences (left) and overcovering (right) for
Prewitt (×), Sobel (∗), heavy (•) and light (+) base gradient
masks (experiments performed on a randomly selected 346
element Zielona Góra’sOnkomed(Marciniak et al., 2005)
cytological benchmark database for radii in the 4-21 pixel
range).

(a) (b)

Figure 4: Exemplary results of the pre-segmentation stage
for two differentθ threshold strategies: (a) high and (b) low.

their heavy or light versions (Gonzalez and Woods,
2002; Tadeusiewicz, 1992).

3.4 Final Actions

Thresholding the values in the accumulator by a given
θ value can lead us to a very good pre-segmentation
mechanism with the lower threshold strategy (see for
instance Fig. 4). Since the threshold value strongly
depends on the database and used feature imageg
(Fig. 3), the method can only be used as a pre-
segmentation stage. Smaller value of the thresh-
old causes fast removal of non-important information
from the background what can constitute a base for
more sophisticated and going into details algorithms.

4 IMAGE SEGMENTATION

4.1 Terrain Modeling

The results obtained from the pre-segmentation stage
can lead us to the estimation of average background
colour. This information can be used to model the nu-
clei as a colour distance between background and ob-
jects what fulfils requirements of lack of any colour

(a) (b) (c)

Figure 5: Exemplary fragment of: (a) cytological im-
age, (b) Euclidian distance to the mean background colour,
(c) smoothed out version of (b).

dependency in imaged material (the colour of con-
trasting pigments may change in the future). In
our research we tried few distance metrics: Manhat-
tan’s, Chebyshev’s, absolute Hue value from HSV
colourspace but Euclidian one gives the best visual
results (Fig. 5ab).

Since the modeling distance can vary in local
neighborhood (see Fig. 5b) mostly because of cam-
era sensor simplifications, a smoothing technique is
needed to reconstruct the nuclei shape. The smooth-
ing operation in our approach relies on the fact that
this sort of 2D signal can be modeled as a sum of si-
nusoids (Madisetti and Williams, 1997) with defined
amplitudes, phase shifts and frequencies. Cutting all
low amplitude frequencies off (leaving only a few sig-
nificant ones with the highest amplitude) will result
in a signal deprived our problematic local noise effect
(Fig. 5c).

4.2 Nuclei Localization

Localization of objects on a modeled map of nu-
clei can be performed locally using various methods.
In our approach we have chosen evolutionary (1+1)
search strategy (Arabas, 2004) mostly because it is
simple, quite fast despite appearances, can be easily
parallelized due to its nature and it settles very good
in local extrema what is very important in our case.

The used watershed segmentation algorithm
forced us to create two population of individuals. The
first population is localizing the background. Speci-
mens are moved with a constant movement step equal
to unity and the movement is preferred to the places
with a smaller density of population to maximize
background coverage. The second population is lo-
calizing the nuclei. Specimens are moved with a ex-
ponentially decreasing movement step to very fast
group the population near local extrema in first few
epochs and to finally work on details in the ending
ones. The movement of individuals is preferred to the
places with a higher population density to create the
effect of nuclei localization.

The change for the better position of an individ-
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(a) (b)

Figure 6: Exemplary localization: (a) screenshot after
8 epochs, (b) final result (localization points are marked
with red asterisks).

ual searching for nuclei is calculated as a product
of randomly generated distance with normal distri-
bution N(0,1) and an decreasing in time radiusrt =

Rmax

(

1
Rmax

)
t

tmax , whereRmax is the maximal radius

detected by the Hough transform. Specimens cover-
ing background are generated in a similar way except
R= 1 during mutation.

The fitness function calculates the averageheight
of the terrain in a given position including nearest
neighborhood defined by the smallest radius detected
by the Hough transform in the pre-segmentation
stage. Such definition of the fitness function avoids a
possible split of population, localized near a nucleus
with multimodal character of its shape, giving only
one marker for a nucleus (Fig. 6b).

Finally, the nucleus is localized in the place where
the density of the population searching for hilltops in
the modeled terrain is locally maximal.

The used active contours techniques have lower
requirements concerning nucleus localization. In this
approach it is allowed to have more than one marker
pointing the same nucleus. Thus the localization al-
gorithm in this case can be much simplified. We
need only one population, that is the one searching
for nuclei and the fitness function is simply the ter-
rain heightat an individuals position. Additionally, it
is allowed to have not optimal or even false localiza-
tion points what reduces number of needed iterations
of the algorithm.

4.3 Building Watersheds

The watershed segmentation algorithm is inspired by
natural observations, that is a rainy day in moun-
tains (Gonzalez and Woods, 2002; Pratt, 2001; Russ,
1999). A given image can be defined as a terrain on
which nuclei correspond to valleys (upside down ter-
rain modeled in previous steps). The terrain is flooded
by rainwater and arising puddles are starting to turn

into basins. When the water from one basin begins to
pour away to another, a separating watershed is cre-
ated.

The flooding operation have to be stopped when
the water level reaches a givenθ threshold. The
threshold should preferably be placed somewhere in
the middle between the background and a nucleus lo-
calization point. In our approach nuclei are flooded
to the half of the altitude between nucleus localiza-
tion point and the average height of the background
in the local neighborhood. Since the images we have
to deal with are spot illuminated during imaging op-
eration (resulting in a modeled terrain being higher
in the center of the image and much lower in the cor-
ners) this mechanism protects the basins against being
overflooded and in consequence nuclei being under-
segmented. To satisfy the one pixel separation rule
the algorithm needs to have multi-label extension and
the watersheds are built only when there is a neighbor
nearby with other label.

4.4 Active Contours

An active contour segmentation is performed using
multilabel fast marching algorithm presented in (Steć,
2005; Hrebién and Stéc, 2006) which is extension to
the original fast marching method (FMM) developed
by Sethian (Sethian, 1998). The problem with the
original FMM is that the contour can be moved only
in one direction. This means that any error in seg-
mentation cannot be corrected and algorithm requires
additional stop condition. To deal with this problem,
multilabel extension to the classical FMM was pro-
posed.

Initialization of the multilabel fast marching is
done in similar way as it was done for the watershed
algorithm. The difference is that the watershed ini-
tialization image requires an additional processing to
leave exactly one seed per nucleus while the FMM al-
lows more seeds in one nucleus. Similar method of
initialization will allow direct comparison of the seg-
mentation results.

Initial contour propagation is similar to original
FMM method. Expansion of the contour is governed
by a propagation speed defined globally for all the
contours. Speed is based on the difference between
mean colour in the initialization area and colour of
the pixel under the contour:

F =
1

|g(x,y)− ḡ(i)|3 +1
, (2)

whereg(x,y) is the colour under the contour and ¯g(i)
is the mean colour under thei-th segment. Such a
speed definition slows down the contour near the de-
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tected object boundary what increases probability of
contours meeting near nucleus boundary.

When two segments meet, mean colour of the seg-
ments is compared. Comparison is taken at the point
where contours start to overlap. When difference be-
tween mean colours from these two segments is below
certain threshold segments are merged into one. To
ensure maximum efficiency, labels from the smaller
segment are changed to the value of those from the
larger segment. Additionally, new mean colour for
the segment is calculated from mean colours of con-
nected segments.

If two segments that meet are not classified to
be merged, the propagating segment can push back
another segment under certain circumstances. At
the meeting point differences between current pixel
colour and mean colour of each segment is compared.
Segment with lower difference value wins and re-
places current label with its own. Replacement is per-
formed as long as condition is meet. Contour that was
pushed back cannot be propagated farther at places
where its labels was replaced by another contour.
Contour points that cannot be moved are no longer
considered during calculations. Since contour can be
pushed back only once, there is no oscillation at the
object boundary known from the classical active con-
tour methods. Additionally reduction of the contour
length increases performance of the algorithm.

The presented algorithm stops propagation when
all image points are assigned to segments and there
is no segment that could push back another segment.
The algorithm cannot run infinitely because oscilla-
tions between segments are impossible. No segment
can visit twice the same area. Namely, when a seg-
ment was pushed back by another segment, it cannot
get the lost pixels back.

4.5 Exemplary Results

Exemplary results of the presented watershed seg-
mentation method and common errors observed on
our hand-prepared benchmark database can be di-
vided into four classes:

• class 1: good quality images with only small ir-
regularities and rarely generated subbasins (basin
in another basin) (Fig. 7ab),

• class 2: errors caused by fake circles created by
spots of fat (Fig. 7cd),

• class 3: mixed nucleus types: red and purple
in this case and those reds which are more pur-
ple than yellow (background) are also segmented
what is erroneous (Fig. 7ef),

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Exemplary results of the watershed segmentation.

• class 4: poor quality image with a bunch of
nuclei glued together what causes basin’s over-
flooding and in consequence undersegmentation
(Fig. 7gh).

Conducted experiments show that the watershed
algorithm gives 68.74% on the average agreement
with the hand-prepared templates using simple XOR
metric. As one can easily notice most errors are lo-
cated at boundaries of nuclei (see for instance Fig. 8)
where the average distance between edges of seg-
mented and reference objects is about 3.28 pixles on
the average. This causes the XOR metric to be un-
derestimated as a consequence of not very heigh level
of water flooding the modeled terrains. For the active
contours algorithm the situation is very similar, that
is the XOR metric gives 22.32% score and the aver-
age distance is equal to 4.1 pixels. Despite the under-
estimation fact the shape of nuclei seems to be pre-
served what is important for our future work, that is
estimation of morphometric parameters of segmented
nuclei.
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(a) (b)

Figure 8: Common XOR metric errors for: (a) the water-
shed and (b) the active contours method.

5 CONCLUSIONS

Conducted preliminary experiments show that the
Hough transform adopted for circle detection in the
pre-segmentation stage, the (1+1) search strategy
used for automatic nuclei localization, the watershed
algorithm and the active contours techniques used for
the final segmentation stage can be effectively used
for the segmentation of cytological images.

The problem regarding fake circles created by
spots of fat and unwanted effects it gives in the fi-
nal output should also be considered and eliminated
in future work. Images with mixed nucleus type still
constitute a challenge because it seems to be impos-
sible to detect only one type without end-user’s in-
teraction and when there should not be any depen-
dencies and assumptions concerning colour of con-
trasting pigments used to prepare cytological mate-
rial. The proposal hybrid methods should also be ex-
tended to perform better on poor quality images or a
fast classifier should be constructed to reject too poor
(or even fake) inputs.

Summarizing, the presented solutions are promis-
ing and give a good base for our further research in the
area of cytological image segmentation. Additionally,
all preparation steps including pre-segmentation and
the automatic nucleus localization stage can be reused
with other segmentation algorithms which need such
a information.

Performance of both algorithms is comparable.
There was no result that clearly shows superiority of
one algorithm above the other. The outcome was de-
pendent on the used metric. Visually, segmentation
results from both algorithms look very similar (see
Fig. 8). Both algorithms have problems with the tight
clusters of nuclei. They are usually detected as a sin-
gle object.

Time reaction of both algorithms is similar too
and it takes several seconds on today’s PCs per im-
age to give the final segmentation mask. All prepara-
tion steps are much more time consuming (2-3 min-

utes) but authors believe that it can be significantly
reduced mostly because of the fact that this steps
were simulated in MATLAB environment. Taking
the advantage of today’s multi-core machines, thread-
oriented operating systems, the nature of used algo-
rithms which are easy to parallelize and rewriting
them using native code generating programming lan-
guage can speed up the whole process significantly. A
dedicated hardware could also be considered.
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