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Abstract: A central requirement for the development of robotic systems, that are capable of autonomous operation in
non-specific environments, is the ability to create maps of their operating locale. The creation of these maps is
a non trivial process as the robot has to interpret the findings of its sensors so as to make deductions regarding
the state of its environment. Current approaches fall into two broad categories: on-line and offline. An on-line
approach is characterised by its ability to construct a map as the robot traverses its operating environment,
however this comes at the cost of representational clarity. An offline approach on the other hand requires all
sensory data to be gathered before processing begins but is capable of creating more accurate maps. In this
paper we present a new means of constructing occupancy grid maps which addresses this problem.

1 INTRODUCTION

In recent times Occupancy Grids have become the
dominant paradigm for environmental modelling in
mobile robotics (D. Kortenkamp and Murphy, 1998).
An Occupancy Grid is a tessellated 2D grid in which
each cell stores fine grained qualitative information
regarding which areas of a robots operating environ-
ment are occupied and which are empty (Moravec and
Elfes, 1985; Elfes, 1989). Specifically, each individ-
ual cell in the grid records a certainty factor relating
to the confidence that the particular cell is occupied.
Such maps are extremely useful for mobile robotic
applications as they facilitate tasks such as naviga-
tion, path planning, localisation and collision avoid-
ance (Borenstein and Koren, 1991; Dissanayake et al.,
2001).
Currently in the Occupancy Grid mapping domain
there are two broad approaches: on-line and off-line.
The on-line approach is characterised by traditional
paradigms such as those from Moravec (Moravec and
Elfes, 1985), Matthies (Matthies and Elfes, 1988)
and Konolige (Konolige, 1997). The off-line ap-
proach has emerged from a more recent paradigm
from Thrun (Thrun, 2003). The on-line approach is
capable of generating maps in real-time as the robot

operates. However these maps often contain incon-
sistencies such as over estimation of occupied or free
space which is undesirable. The off-line approach on
the other hand, is capable of generating more consis-
tent maps but cannot do so in real time. These dia-
metric approaches give rise to a mode versus clarity
dilemma.
In this paper we introduce and empirically evaluate
a novel robotic mapping framework called ConForM
(ContextualForward Modelling) which solves this
dilemma through combining the beneficial aspects
of both existing approaches. Results from empirical
evaluations we have undertaken show that ConForM
provides maps that are of better quality than existing
paradigms.

2 ON-LINE VS. OFFLINE
OPERATION: THE ROBOTIC
MAPPING DILEMMA

Two types of model are available for sensory inter-
pretation in robotic mapping. These are theInverse
and theForward models (Thrun, 2003). An inverse
model attempts to describe an environment by trans-
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(a) Ideal Map (b) Inverse model:
Moravec and Elfes 1985

(c) Inverse model: Thrun
1993

(d) Forward model:
Thrun 2001

Figure 1: Illustrating map generation using inverse/forward sensory models. Overall environmental size:44m x 35m. Corri-
dor width:1.5m.

lating from effects (sensory measurements) to causes
(obstacles). The forward model describes the charac-
teristics from causes to effects. The inverse model is
associated with on-line real-time paradigms such as
those mentioned previously and the forward with the
offline, non real-time approach.
Traditional approaches using inverse sensor mod-
els are prone to generating maps that are inconsis-
tent with the operational data from which they were
constructed (Thrun, 2003). This is because such
techniques decompose the high-dimensional mapping
problem into a number of one-dimensional estimation
problems, one for each cell in the map. In doing so
they do not consider the dependencies that exist be-
tween these cells. The forward sensory model ad-
dresses this deficit by considering the dependencies
that exist between neighbouring grid cells thereby
generating more consistent maps.
Figure 1 presents some illustrative maps. Each
paradigm used identical sensory data in generating the
maps shown. As can be seen the map generated by the
forward model is more compatible with the ideal map.
This demonstrates the problem currently inherent in
the domain which we are addressing. That is, the
dilemma of selecting an on-line paradigm that yield
maps of lower accuracy versus an off-line paradigm
which produces better quality maps.

3 SPECULARITY AND
REDUNDANT INFORMATION
IN ROBOTIC MappINg

In addition to the type of sensory model used by
a mapping paradigm two other issues have a direct
correlation on the quality of map produced. These
are Specular Reflectionand Redundant Information
(Murphy, 2000; Konolige, 1997).

• Specular Reflection: generally occurs when a
sonar beam hits a smooth surface and is reflected
off the surface at an obtuse angle. This results
in either no reading being returned to the sensor

or an erroneous reading being returned that has
bounced off many surfaces.

• Redundant Information: commonly arises when
the robot has been in the same pose for a period
of time and hence its sensors report multiple iden-
tical readings from that pose.

4 THE CONFORM APPROACH
TO ROBOTIC MAPPING

ConForM has two distinct aspects. These are:

1. The explicit modelling of sensory data to deal
with the specular and/or redundant information.

2. The use of an on-line forward sensory model to
translate the sensory readings into occupancy val-
ues for inclusion in the grid map.

4.1 Conform: Dealing With Specular
Readings

ConForM’s treatment of the problem of specularity
is novel as we consider it from two perspectives. The
first is labelledAcceptability/Agreeabilityand the sec-
ondTrait Verification. At each time-stepAcceptabil-
ity/Agreeability consider solely the set of readings
currently received and evaluates each with respect to
its neighbouring readings.Trait verification on the
other hand takes a wider perspective by evaluating
readings in relation to the current perceived state of
the environment.

4.1.1 Acceptability and Agreeability

Acceptability: Consider a readingsand let us assume
that it reports a range reading with a distance ofd. As
operating environments are formed from regular fea-
tures and as the perceptual fields of neighbouring sen-
sors generally overlap we can assess the consistency
of a particular reading by evaluating its probabilistic
profile in relation to its neighbours. A reading whose
measurement is corrupted by Gaussian noise of zero
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mean and varianceσ2 has the following probability
distribution wherem is the map as illustrated in equa-
tion 1. This is based on the standard specification of
a sensory model (Elfes, 1989).

p(st |m) =
1√

2πσ2
e
− 1

2
(d)2

σ2 (1)

Strictly speakingm is the local map corresponding to
the current perceptual field and therefore a sub set of
the overall map that is produced.
Now consider the readingss−1 ands+1 the neighbour-
ing readings on either side of the readings. The prob-
abilistic profile of these readings are used to support
or refute the readings. If reporting an obstacle each
will have an associated distanced−1 andd+1. There-
fore we can calculate the probability distribution for
these readings using equation 1. These distributions
are compared to determine if the readings are con-
sistent. This is accomplished by translating the read-
ing s to the position ofs−1. Upper and lower bound
profiles for s are calculated at this position through
scaling the original distance to the point of interest
d by the amount of translation required and also tak-
ing cognisance of the natural error range of the sen-
sor. If the readings are reporting on the same environ-
mental conditions the readings will be encompassed
by the determined bounds. If this is so the reading
is deemed as being acceptable and subsequently al-
lowed to progress for further consideration. An iden-
tical procedure is utilised when considering the read-
ing s+1. A readings is discarded only when both ac-
ceptability tests indicate that it is unacceptable.
Agreeability: The sister concept of acceptability is
Agreeability. It considers readings that report free
space. It is similar toAcceptabilityin that we evaluate
a reading in terms of its neighbours. Robotic sensors
are good at accurately reporting free space meaning
that we can use a direct comparison method with free
space readings as it is the detection of an obstacle or
not which is important, not the actual difference in
any distance reported. Therefore when determining
agreement, for efficiency, we do not construct prob-
abilistic profiles for the readings. Rather we use the
ranges reported instead. If one of a readings immedi-
ate neighbours is not in agreement with the reading it-
self we allow the readings to proceed to the next stage
of the process where it will be checked in the context
of the generated map, usingTrait Verification. If nei-
ther of s’s immediate neighbours report a free-space
reading then the reading is discarded.

4.1.2 Trait Verification

Agreeability and acceptability deal with specular
readings in a bottom up fashion at the local level.

Specifically this is in the context of a single reading
set. As outlined above there are cases when the relia-
bility of readings cannot be determined from purely
considering the local view of the reading set from
which they originated. Therefore we also need to con-
sider the top down, global, perspective which takes
into account the environmental features determined to
date and recorded in the map being constructed. This
is the basis of theTrait Verification.
In its operation Trait Verification makes use of the fact
that environments contain structural regularities and
symmetries such as walls that can be approximated
using line segments. This is used as a basis for the
construction of two environmental views:

• V: A temporary sonar view which consists of
traits, or line segments, that can be estimated from
the current set of sensory readings.

• L: A local view which contains a history of the
line segments estimated from past sensory read-
ings. Line segments are maintained for an area
covering four times the perceptual field of the
robot along the path the robot has traversed.

L is used to form a hypothesis as to theprobablestate
of the environment from the robots current perspec-
tive. This is accomplished by extendingL to cover
the current location of the robot using the historical
perspectives as a reference point.
Following thisL andV are reconciled. Firstly, cer-
tainty values in the range 0→ 1 are calculated for the
readings that give rise to traits inV. This is accom-
plished through use of standard singular displacement
specifications presented in (Elfes, 1989).
Having determined certainty values in the readings,V
andL are reconciled. Two courses of action are ap-
plicable, depending on whether or not sufficient state
was available forL’s construction.
If enough state was not present to provide four per-
ceptual lengths centred on the oath traversed by the
robot,vi ’s attributes are considered.vi is a trait inV
and its attributes relate to the reading(s) that gave rise
to the trait. For example the certainty associated with
the reading(s) or whether the reading(s) were previ-
ously flagged as potentially erroneous. If the reading
was flagged as potentially erroneous from theAccept-
ability/AgreeabilityandTrait Verificationsteps or the
reading certainty is below a determined threshold and
there is not an equivalent trait inL, where in this case
L has a size equivalent to maximum perceptual range
available, the reading is discarded.
If sufficient state was availableL andV are compared
directly. If traits coincide in both views the readings
that gave rise to those traits are accepted, provided
that they have not been flagged as possibly erroneous.
If they have been flagged the attributes of the traitvi
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in V are considered. If two or more sensors agree on
the existence of the trait then the flagged reading is
accepted. If the trait was detected by a single sen-
sor the certainty value associated with that reading is
consulted. If the certainty is below the threshold the
reading is rejected. Otherwise it is accepted. If a trait
occurs solely inV and not inL then the attributes of
the trait are considered. If the flagged status and con-
fidence value of the reading(s) that gave rise to the
trait are acceptable, the reading is allowed to proceed
for further utilisation. The problem of a reading relat-
ing to a trait solely inL and not inV is dealt with in
the same manner.

4.2 Conform: Addressing Redundant
Information

To deal with the problem of redundant informa-
tion ConForM makes use of pose buckets (Konolige,
1997). With pose buckets a map has a dual repre-
sentation where each cell represents both the occu-
pancy of the area and the pose of readings that have
affected that cell. Therefore a record is maintained
stating whether a reading from a given distance and
angle has affected a particular cell. This means that
the first reading received from a specific pose will be
utilised, and all following readings from that pose for
this cell are discarded, as they merely duplicate infor-
mation already in the model.

4.3 Conform: Sensor Model

As per the original formulation, ConForM’s forward
model it also based on optimisation using the EM al-
gorithm (Dempster et al., 1977). It is a mixture model,
which accounts for the potential causes of a reading
(Thrun, 2003). A measurement may correspond to
the detection of an obstacle somewhere in the per-
ceptual field of the sensor, failure to detect any ob-
stacle thereby reporting freespace, or indeed, a ran-
dom fluctuation of a sensor. Each case has an associ-
ated probability. The model convolves these potential
causes and associated Gaussian noise into an amalga-
mated probability distribution which is subsequently
optimised by the EM algorithm to determine the most
likely cause of the received reading.
Our model differs from the original in that operates
on-line and in real-time. The on-line and real-time
use of the EM algorithm in ConForM is facilitated
through a two step approach. The first step consists of
explicitly dealing with potentially erroneous or redun-
dant information throughAcceptability/Agreeability,
Trait VerificationandPose Buckets. As such the read-
ings available for the second stage encompass more

accurately the true state of the perceived environment
meaning that EM can be applied to a search space that
is tractable during real-time operation.

Using the EM algorithm to determine a map

1. Initialisation: Unlike traditional occupancy grid
mapping algorithms using inverse sensor models
EM does not estimate posteriors. Therefore maps
resulting from EM are discrete with each cell be-
ing either occupied or empty. As such the cells
in the map being constructed are initialised to an
occupancy of 0.5.

2. E-step: The E-Step calculates the expectations for
the potential causes of readings conditioned on the
mapm and the current set of readingsS.

3. M-step: The M-step assumes all expectations are
fixed and calculates the most likely map based on
these expectations. The probability distributions
calculated in the E-Step encapsulate all potential
causes of the readings inS when determining a
new mapm. Maximisation of these distributions
are performed by hill climbing in the space of all
maps. The search is terminated when the target
function is no longer increasing.

4. Incorporating Uncertainty: EM calculates only a
single map not an entire posterior. An approxi-
mation which conditions the posterior on the map
generated by EM is utilised to incorporate uncer-
tainty into the map, thereby providing useful in-
formation for real-time operation.

5. Finally we integrate the map generated by EM
into the overall map using a Bayesian based in-
tegration.

5 EMPIRICAL EVALUATION

Real world and simulated environments were used to
empirically evaluate ConForM. The simulator used
was the Saphira architecture with the associated Pio-
neer simulator. For simulated experiments odometry
error was turned off so that wheel slippage would not
be a factor thus allowing us to focus on evaluating the
performance of the mapping paradigms in large cyclic
environments such as those illustrated earlier. For real
world experimentation we used relatively small office
environments purely for the reason that wheel slip-
page and thus odometric error is minimal over such
short distances.
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5.1 Benchmarking Technique

To evaluate the maps generated during our exper-
iments we use an extensible suite of benchmarks
which allow for the empirical evaluation of map
building paradigms (Collins et al., 2004; Collins et al.,
2005).

1. Correlation: As a generated map is similar to an
image it is possible to use a technique from image
analysis known asBaron’s cross correlation coef-
ficient (Baron, 1981) as a basis for evaluating the
map.

2. Map Score: This is a technique which calcu-
lates the difference between a generated map and
an ideal map of the environment (Martin and
Moravec, 1996).

3. Map Score of Occupied CellsThis metric is simi-
lar to the previous one but only tests those cells in
the map that are occupied.

4. Path Based Analysis: To fully evaluate a gener-
ated map its usefulness to a mobile robot must be
considered.

• The degree to which the paths created in the
generated map would cause the robot to collide
with an obstacle in the real world, and are there-
fore invalid.False Positives.

• The degree to which the robot should be able to
plan a path from one position to the another us-
ing the generated map, but cannot.False Nega-
tives.

5.1.1 Determining an Overall Score

To allow an overall score to be determined we have
developed an amalgamation technique which can be
used to rank the overall performance of mapping
paradigms relative to each other as outlined in equa-
tion 2.

Cmap∈M =
Dmap +Pmap

2
(2)

Dmap =
(1−MapScoreall )+(1−MapScoreocc)+Bn

300

Pmap = 1− (FP)+(FN)

200
Cmap∈M is the overall classification score obtained,M
is the set of maps generated in an experiment,map is a
particular map within the set of mapsM. MapScoreall
and MapScoreall are the normalised result from the
Map Scoremetrics,Bn is the normalisedCorrelation
result. FP is the normalisedFalse Positiveresult and
FN is the normalisedFalse Negativeresult.

5.2 Results

In determining the performance of ConForM we em-
pirically evaluated it in relation to its peer mapping
paradigms, the original Forward Modelling paradigm
of Thrun (Thrun, 2003) and an on-line paradigm
from Konolige (Konolige, 1997) which has proven to
have the best performance of the inverse model based
paradigms (Collins et al., 2005).
Benchmarking consisted of completing a number of
data acquisition runs in the environments and using
this data in conjunction with the mapping paradigms
to generate the grid maps. Our experiment used four
differing environments, two simulated and two real
world, with three data acquisition runs being com-
pleted per environment. Therefore the results pre-
sented here are derived from evaluating a total of
thirty six individual grid maps. Table 5.2 presents the
amalgamated score for the mapping paradigms ob-
tained using the benchmarks outlined above. A larger

Table 1: Evaluating the ConForM approach to robotic map-
ping.

Mapping Paradigm Result
Moravec and Elfes 1985 0.67
Matthies and Elfes 1988 0.65

Konolige 1997 0.76
Thrun 2001 0.84
ConForM 0.87

evaluation recently completed and to be reported on,
which consisted of ten differing environments and
3600 individual maps, reported trends consistent with
those outlined here.

(a) Konolige
1997

(b) ConForM (c) Thrun 2003

Figure 2: Illustrative maps from the ConForM evaluation.

5.3 Analysis

Overall the results show that ConForM has outper-
formed the other approaches. ConForM outperforms
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the inverse model based approaches because of its
improved sensor model and the manner in which it
tackles the problem of specularity in addition to its
use of pose buckets. In dealing with specularity,
the multi-faceted approach consisting ofAcceptability
and AgreeabilityandTrait Verificationis capable of a
finer reading set analysis when compared to inverse
model based approaches. This also has the knock-
on effect of making the operation of the pose buckets
more accurate as they suffer less from the problem of
spurious readings giving rise to false hypothesis re-
garding the perceived state of the environment.
ConForM outperforms the original Forward Mod-
elling approach because of its pro-active approach to
the problems of specularity and redundant informa-
tion. That original approach addressed the problems
of seemingly conflicting information through the EM
algorithm. The likelihood of the reading was evalu-
ated in a global context meaning that some localised
accuracy may be sacrificed. In ConForM the Forward
Model used considers the local perspective meaning
that it is capable of capturing and retaining more sub-
tle characteristics that may be dismissed in the offline
approach.

6 SUMMARY

Overall ConForM overcomes the problems inherent
in traditional approaches such as the need for assump-
tion of cell independence or the need for offline op-
eration. It also overcomes the issue of the existing
forward model approach not being applicable in an
on-line context. In addition it generates maps that
are more consistent then existing approaches. The ar-
eas for further consideration and research in relation
to ConForM include refining the threshold used with
trait verification, investigating the use of EM as a ba-
sis for refining already generated portions of the map
and investigating alternative EM formulations such as
Bayesian based approximations.
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