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Abstract: As part of our work on hand gesture interpretation, we present our results on hand shape recognition. Our 
method is based on attribute extraction and multiple binary SVM classification. The novelty lies in the 
fashion the fusion of all the partial classification results are performed. This fusion is (1) more efficient in 
terms of information theory and leads to more accurate result, (2) general enough to allow other source of 
information to be taken into account: Each SVM output is transformed to a belief function, and all the 
corresponding functions are fused together with some other external evidential sources of information. 

1 INTRODUCTION 

Hand shape recognition is a widely studied topic 
which has a wide range of applications such as HCI 
(Pavlovic, 1997), automatic translators, tutoring 
tools for the hearing-impaired (Ong, 2005), (Aran, 
2005), augmented reality, and medical image 
processing. 

Even if this field is dominated by Bayesian 
methods, several recent works deal with evidential 
methods, as they bring a certain advantage in the 
fashion uncertainty is processed in the decision 
making (Quost, 2007), (Capelle, 2004). 

The complete recognition of a hand shape with 
no constraint on the shape is an open issue. Hence, 
we focus on the following problem: (1) the hand is 
supposed to roughly remain in a plan which is 
parallel to the acquisition plan (2) only nine different 
shapes are taken into account (Figure 1a). On the 
contrary, no assumption is made on the respective 
location of the fingers (whether they are gathered or 
not) except for hand shapes 2 (gathered fingers) and 

8 (as separated as possible), as this is their only 
difference. These nine hand shapes correspond to the 
gesture set used in Cued Speech (Cornett, 1967). 

 

(a) Artificial representation of the hand shape classes. 

(b) Segmented hand shape examples from real data 

Figure 1: The 9 hand shape classes. 

There are many methods already developed to 
deal with hand modeling and analysis. For a 
complete review, see (Derpanis, 2004), (Wu, 2001). 
In this paper, we do not develop the segmentation 
aspect. Hence, we consider several corpuses of 
binary images such as in Figure 1b, as the basis of 
our work. The attribute extraction is presented in 
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Section 2. The required classification tools are 
presented in Section 3. Section 4 is the core of this 
paper: we apply the decision making method, which 
is theoretically presented in (Burger, 2006), to our 
specific problem, and we use its formalism as a 
framework in which it is possible to combine 
classifiers of various nature (SVMs and expert 
systems) providing various partial information. 
Finally, Section 5 provides experimental results. 

2 ATTRIBUTE DEFINITION 

2.1 Hu Invariants 

The dimensionality of the definition space for the 
binary images we consider is too large, and it is 
intractable to use pixel coordinates in that space to 
perform the classification. One needs to find a more 
compact representation of the information contained 
in the image. Several such binary image descriptors 
are to be found in the image compression literature 
(Zhang, 2003). They can be classified into two main 
categories:  

 Region descriptors, which describe the binary 
mask of a shape, such as Zernike moments, Hu 
invariants, grid descriptors… 

 Edge descriptors, which describe the closed 
contour of the shape, such as Fourier descriptors, 
Curvature Scale Space (CSS) descriptors…  

Region descriptors are less sensitive to edge 
noise because of an inertial effect of the region 
description. Edge descriptors are more related to the 
way human compare shapes.  

A good descriptor is supposed to obey several 
criteria, such as several geometrical invariance, 
compactness, being hierarchical (so that the 
precision of the description can be truncated), and be 
representative of the shape. 

We focus on Hu invariants, which are successful 
in representing hand shapes (Caplier, 2004). Their 
purpose is to express the mass repartition of the 
shape via several inertial moments of various orders, 
on which specific transforms ensure invariance to 
similarities. 

Let us compute the classical definition of 
centered inertial moments of order p+q, for the 
shape (invariant to translation, as they are centered 
on the gravity center): 
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With andx y  being the coordinates of the 

gravity center of the shape and ( , ) 1x yδ =  if the 
pixel belongs to the hand shape and 0 otherwise. In 
order to make these moments invariant to scale, we 
normalize them: 
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Then, we compute the six Hu invariants, which 
are invariant to rotation, and mirror reflection: 
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(3)

A seventh invariant is available. Its sign permits 
to discriminate mirror images and thus, to suppress 
the reflection invariance: 
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(4)

The reflection invariance has been removed at 
the acquisition level and only left hands are 
processed. Hence, we do not need to discriminate 
mirror images. We nevertheless use S7 as both the 
sign and the magnitude carry information: it 
sometimes occurs that hand shapes 3 and 7 (both 
with separated fingers) really look like mirror 
images. Finally, the attributes are: 
{S1, S2, S3, S4, S5, S6, S7}. 

2.2 Thumb Presence 

The thumb is an easy part to detect, due to its 
peculiar size and position with respect to the hand. 
Moreover, the thumb presence is a very 
discriminative piece of evidence as three hand 
shapes require the thumb and six do not require it. 
The thumb detector works as follows: 
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Figure 2: Thumb detection.  

(1) Polar parametric definition: By following the 
contour of the hand shape, a parametric 
representation {ρ(τ), θ(τ)} is derived in polar 
coordinates (Figure 2)  

(2) Peak detection: After smoothing the 
parametric functions, (low-pass filtering and sub-
sampling), the local maxima of the ρ function are 
detected. Obviously, they correspond to the potential 
fingers (Figure 2b). 

 (3) Threshold adaptation: Thresholds must be 
defined on the distance and the angle values to 
indicate the region in which a thumb is plausible. 
The angle thresholds that describe this region are 
derived from morphological statistics (Norkin, 
1992). In practice, the thumb angle with respect to 
the horizontal axis (Figure 2b) is between 20° and 
65°. The distance thresholds are derived from a basic 
training phase whose main purpose is to adapt the 
default approximate values (1/9 and 5/9 of the hand 
length) via a scale normalization operation with 
respect to the length of the thumb.  Even if the 
operation is simple, it is mandatory to do so, as the 
ratio of the thumb length with respect to the total 
hand length varies from hand to hand. 

(4) Peak measurement: If a finger is detected in 
the area defined by these thresholds, it is the thumb. 
Its height with respect to the previous local minima 
(Figure 2) is measured. It corresponds to the height 
between the top of the thumb and the bottom of the 
inter-space between the thumb and the index. This 
value is the thumb presence indicator (it is set to 
zero when no thumb is detected). In practice, the 
accuracy of the thumb detection (the thumb is 
detected when the corresponding indicator has a 
non-zero value) reaches 94% of true detection with 
2% of false alarms. 

The seven Hu invariants and the thumb presence 
indicator are used as attributes for the classification. 

3 CLASSIFICATION TOOLS 

3.1 Belief Functions 

In this section, we briefly present the necessary 
background on belief functions. For deeper 
comprehension of these theories, see (Shafer, 1976) 
and (Smets, 1994). 

Let Ω be the set of N exclusive hypotheses 
h1…hN. We call Ω the frame. Let m(.) be a belief 
function on 2Ω (the powerset of Ω) that represents 
our mass of belief in the propositions that 
correspond to the elements of 2Ω: 

      [ ]: 2 0,1m Ω →  

( ) with ( ) 1
A

A m A m A
⊆Ω

=∑6  
(5)

Note that:  
 Belief can be assigned to non-singleton 

propositions, which allows modeling the hesitation 
between elements; 

 Ø belongs to 2Ω. A belief in Ø corresponds to 
conflict in the model, throughout an assumption in 
an undefined hypothesis of the frame or throughout 
a contradiction between the information on which 
the decision is made.  

To combine several belief functions (each 
associated to one specific captor) into a global belief 
function (under associativity and symmetry 
assumptions), one uses the conjunctive combination. 
For N belief functions, m1…mN, defined on the same 
frame Ω, the conjunctive combination is defined as:  
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(a) Binary hand shape 

image. 
(b)  Hand polar parametric representation along the curvilinear abscissa τ (distance ρ and 

angle θ). The thumb is within a peculiar distance and angle range (horizontal lines). 
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with B Ω being the set of belief functions defined on 
Ω and m(∩) being the global combined belief 
function. Thus, m(∩) is calculated as: 
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The conjunctive combination means that, for 
each element of the power set, its belief is the 
combination of all the beliefs (from the N sources) 
which imply it: the evidential generalization of the 
logical AND. 

After having fused several beliefs, the knowledge 
in the problem is modeled via a function over 2Ω, 
which expresses the potential hesitations in the 
choice of the solution. In order to provide a 
complete decision, one needs to eliminate this 
hesitation. For that purpose, we use the Pignistic 
Transform (Smets, 1994), which maps a belief 
function from 2Ω onto Ω, on which a decision is easy 
to make. The Pignistic Transform is defined as: 
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(8) 

 
where A is a subset of Ω, or equivalently, an element 
of 2Ω, and |A| its cardinal when considered as a 
subset of Ω. 

This transform corresponds to sharing the 
hesitation between the implied hypotheses, and 
normalizing the whole by the conflictive mass. 

As an illustration of all these concepts, let us 
consider a simple example. Assume that we want to 
automatically determine the color of an object. The 
color of the object can be one of the primary colors: 
red (R), green (G) or blue (B). The object is 
analyzed by two sensors of different kind, any of 
each giving an assumption of its color. 

 
Table 1: Numerical example for belief function use. 

 

 ∅
 

R
 

G
 

B
 

{R
, G

} 

{R
, B

} 

{B
, G

} 

{R
, G

, B
} 

m1 0 0.5 0 0 0.5 0 0 0 
m2 0 0 0 0 0 0 0.4 0.6 

m1 (∩) m2 0.2 0.3 0.2 0 0.3 0 0 0 
BetP 0 0.56 0.44 0 0 0 0 0 

 

 
The observations of the sensors  are 

expressed as belief functions m1(.) and m2(.) and the 
frame is defined as Ωcolor = {∅, R, G, B, {R, G}, {R, 

B}, {B, G}, {R, G, B}} representing the hypothesis 
about the color of the object. Then, they are fused 
together into a new belief function via the 
conjunctive combination. As the object has a single 
color, the belief in union of colors is meaningless 
from a decision making point of view.  Hence, one 
applies the Pignistic Transform on which a simple 
argmax decision is made. This is summarized and 
illustrated with numerical values in Table 1. 

3.2 Support Vector Machines 

SVMs (Boser, 1995), (Cortes, 1995) are powerful 
tools for binary classification. Their purpose is to 
materialize the correlation of the attributes for each 
class by defining a separating hyperplane derived 
from a training corpus, which is supposed to be 
statistically representative of the classes involved. 
The hyperplane is chosen among all the possible 
hyperplanes through a complex combinatorial 
problem optimization, so that it maximizes the 
distance (called the margin) between each class and 
the hyperplane itself (Figure 3a & Figure 3b). 

 

(a) (b) 

Figure 3: (a) combinatorial optimization of the hyperplane 
position under the constraints of the training corpus item 
positions. (b) The SVM provides good classification 
despite the bias of the training. 

To deal with the nine hand shapes in our 
database, a multiclass classification with SVMs must 
be performed. As SVMs are restricted to binary 
classification, several strategies are developed to 
adapt them for multiclass classification problems 
(Hsu, 2002). For that purpose, we have developed a 
scheme (Burger, 2006) which fuses the outputs of 
the SVMs using the belief formalism, and which 
provides a robust way of dealing with uncertainties. 
The method can be summarized by the following 
three steps: 

(1) 36 SVMs are used to compare all the possible 
class pairs among nine classes; 

(2) A belief function is associated to each SVM 
output, to model the partial knowledge brought by 
the corresponding partial binary classification; 
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(3) The belief functions are fused together with a 
conjunctive combination, in order to model the 
complete knowledge of the problem, and to make a 
decision according to its value. 

4 DECISION SCHEME 

4.1 Belief in the Thumb Presence 

In order to fuse the information from the thumb 
presence indicator with the output of the SVM 
classifier, one needs to express it throughout a belief 
function. As it is impossible to have a complete 
binary certitude on the presence of the thumb (it is 
possible to be misled at the thumb detection stage as 
explained previously), we use a belief function 
which authorizes hesitation in some cases.  

 

(a) (b) 

Figure 4: (a) The peak height determines (b) the belief in 
the presence of the thumb. 

From an implementation point of view, we use a 
technique based on fuzzy sets, as explained in Figure 
4: The higher the peak of the thumb is, the more 
confident we are in the thumb presence. This process 
is fully supported by the theoretical framework of 
belief functions, as the set of the finite fuzzy sets 
defined on Ω is a subset of B Ω (the set of belief 
functions defined on Ω). Moreover, as belief 
functions, fuzzy sets have peculiar properties which 
make them really convenient to fuse with the 
conjunctive combination (Denoeux, 2000). 

The three values that define the support of the 
hesitation in Figure 4b have been manually fitted 
according to observations on the training set. 
Making use of the "fuzziness" of the threshold 
between the thumb presence and absence, these 
values are not necessarily precisely settled. In 
practice, they are defined via three ratios (1/5, 1/20 
and 1/100) of the distance between the center of 
palm and the furthest element from it of the contour. 

Then, the belief in the presence of the thumb can 
be associated to a belief in some hand shapes to 
produce a partial classification: In hand shapes 0, 1, 
2, 3, 4, and 8, there is no thumb, whereas it is visible 
for shapes 5, 6 and 7. In case of hesitation in the 
thumb presence, no information is brought and the 
belief is associated to Ω. 
 

 
Figure 5: Global fusion scheme for hand shape classification. 
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4.2 Partial Classification Fusion 

Thanks to the evidential formalism, it is possible to 
fuse partial information from various classifiers (36 
SVMs and 1 expert system) through the conjunctive 
combination (Figure 5). In that fashion, it is possible 
to consider a SVM-based system and integrate it into 
a wider data fusion system. 

This fusion provides a belief function over the 
powerset 2Ω of all the possible hand shapes Ω. This 
belief is mapped over Ω via the Pignistic Transform, 
to express our belief in each singleton element of Ω. 
Then, the decision is made by an argmax function 
over Ω. 

( )* argmax BetP(.)D
Ω

=  (9) 

5 RESULTS 

In this section, we present various results on the 
methodology described above. In the first paragraph, 
the database and the evaluation methods are 
detailed. In the second paragraph, the experiments 
and their corresponding results are given. 

5.1 Database & Methodology 

The hand shape database used in this work is 
obtained from Cued Speech videos. The transition 
shapes are eliminated manually and the remaining 
shapes are labeled and used in the database as binary 
images representing the 9 hand shapes (Figure 1). 

Table 2: Details of the database. 

Hand Shape Corpus 1 
(Training set) 

Corpus 2 
(Test set) 

0 37 12 
1 94 47 
2 64 27 
3 84 36 
4 72 34 
5 193 59 
6 80 46 
7 20 7 
8 35 23 

Total 679 291 

 
The training and test sets of the database are 

formed such that there is no strict correlation 
between them. To ensure this, two different corpuses 
are used in which a single user is performing two 

completely different sentences using Cued Speech. 
The respective distribution of the two corpuses is 
given in Table 2. The statistical distribution of the 
hand shapes is not balanced at all within each 
corpus. The reason of such a distribution is related to 
the linguistics of Cued Speech, and is beyond our 
scope. 

For all the experiments, Corpus 1 is used as the 
training set for the SVMs and Corpus 2 is used as 
the test set. As for each image, since the real labels 
are known, we use the classical definition of the 
accuracy to evaluate the performance of the 
classifier: 

 
Νumber Οf Well Classified Items100

Τotal Νumber Οf Ιtems
Accuracy = ⋅  (10) 

 
To fairly quantify the performances of each 

classification procedure, two indicators are used: (1) 
The difference between the respective accuracies, 
expressed in a number of point ΔPoint, and (2) the 
percentage of avoided mistake %AvMis: 

 

( ) ( )_ 2 _1Point Accuracy Method Accuracy MethodΔ = −  

( )

Number of Avoided Mistakes% 100
Total Number of Mistakes

100
100 _1

AvMis

Point
Accuracy Method

= ⋅

Δ
= ⋅

−

 (11) 

5.2 Experiments 

The goal of the first experiment is to evaluate the 
advantage of the evidential fusion for the SVM. 
Thus, we compare the classical methods for SVM 
multi-classification to the one of (Burger, 2006). For 
both of the methods, the training is the same and the 
SVMs are tuned with respect to the training set and 
the thumb information is not considered. 
For the implementation of the SVM functionalities, 
we use the open source C++ library LIBSVM 
(Chang, 2001). We use:  

 C-SVM, which is a particular algorithm to 
solve the combinatorial optimization. The cost 
parameter is set to 100,000 and termination criteria 
to 0.001. 

 Sigmoid kernels in order to transform the 
attribute space so that it is linearly separable: 
 

( ), ( , ) tanh
with 0.001 and 0.25

T
RKer u v u v R

R
γ γ

γ
= ⋅ ⋅ +

= = −
 (12) 
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For the evidential method, we have made various 
modifications on the software so that the SVM 
output is automatically presented throughout the 
evidential formalism (Burger, 2006). These 
modifications are available on demand.  

The results are presented in Table 3, as the test 
accuracy of the classical voting procedure and the 
default tuning of the evidential method. The 
improvement in ΔPoint is worth 1.03 points and 
corresponds to an avoidance of mistakes of 
%AvMis = 11.11%.  

Table 3: Results for experiments 1 & 2. 
    

Evidential method 

 
Classical 
Voting 

procedure 
Default  

(no thumb 
detection) 

With Thumb 
Detection 

Test 
Accuracy 90.7% 91.8% 92.8% 

    

 

The goal of the second experiment is to evaluate 
the advantage of the thumb information. For that 
purpose, we add the thumb information to the 
evidential method. Thus, the training set is used to 
set the two thresholds, which defines the possible 
distance with respect to the center of palm. 
However, the thumb information is not used during 
the training of the SVMs as they only work on the 
Hu invariants, as explained in Figure 5. The results 
with and without the thumb indicator are presented 
in Table 3.  

Table 4: Confusion matrix for the second method on 
Corpus 2, with the Thumb and NoThumb superclasses 
framed together. 

           
  0 1 2 3 4 5 6 7 8 
           

0  12 0 0 0 0 0 0 0 0 
1  0 46 0 0 0 0 0 0 1 
2  0 2 23 2 0 0 0 0 0 
3  0 2 0 29 2 2 1 0 0 
4  0 0 0 1 32 0 0 0 1 
5  0 0 0 0 0 58 0 1 0 
6  0 0 2 0 0 0 41 3 0 
7  0 0 0 0 0 0 1 6 0 
8  0 0 0 0 0 0 0 0 23 

    
 
The evidential method that uses the thumb 

information provides an improvement of 2.06 points 
with respect to the classical voting procedure, which 
corresponds to an avoidance of 22.22% of the 
mistakes. Table 4 presents the corresponding 
confusion matrix for the test set: Hand shape 3 is 
often misclassified into other hand shapes, whereas, 

on the contrary, hand shape 1 and 7 gather a bit 
more misclassification from other hand shapes. 
Moreover, there are only three mistakes between 
THUMB and NO_THUMB super-classes. 

6 CONCLUSION 

In this paper, we propose to apply a belief-based 
method for SVM fusion to hand shape recognition. 
Moreover, we integrate it in a wider classification 
scheme which allows taking into account other 
sources of information, by expressing them in the 
Belief Theories formalism. The results are better 
than with the classical methods (more than 1/5 of the 
mistakes are avoided) and the absolute accuracy is 
high with respect to the number of classes involved. 
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