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Abstract: This paper describes a new approach to the shape from shading problem, using loopy belief propagation
which is simple and intuitive. The algorithm is called Loopy Belief Propagation Shape-From-Shading (LBP-
SFS). It produces reasonable results on real and synthetic data, and surface information from sources other
than the image (eg range or stereo data) can be readily incorporated as prior information about the surface
elevation at any point, using this framework. In addition, this algorithm proves the use of linear interpolation
at the message passing level within a loopy Bayesian network, which to the authors’ knowledge has not been
previously explored.

1 INTRODUCTION

The interested reader is referred to two surveys,
(R. Zhang and Shah, 1999), and (Jean-Denis Durou,
2004). In (R. Zhang and Shah, 1999), SFS approaches
are classified into minimization e.g. (Szeliski, 1994),
propagation e.g. (S. Osher, 1988), local e.g. (Pent-
land, 1984), or linear e.g. (P.S. Tsai, 1994) ap-
proaches. In (Jean-Denis Durou, 2004), SFS meth-
ods are classified into methods based on partial dif-
ferential equations (characteristic strips (B.K.P.Horn,
1975), power series expansion (Bruss, 1982), and
viscosity solutions e.g. (M. G. Crandall, 1983)),
minimization methods (P. Daniel, 2000), and ”meth-
ods approximating the image irradiance equation”,
which contain the local and linear methods surveyed
in (R. Zhang and Shah, 1999).

These surveys describe the development of shape
from shading methods, in which researchers have
tried to mimic the way the human brain and eyes ex-
tract shape information from shading on the object,
as well as trying to find analytical solutions based on
geometry and reflectance characteristics. This paper
describes the casting of the SFS problem into the be-
lief propagation paradigm, which would place it in
the minimization and also the propagation class of
method. Our method is algorithmically similar to

(Jian Sun, 2002), in which Sun et al. use Loopy Be-
lief Propagation (LBP) to solve the dense stereo cor-
respondence problem. In (Jian Sun, 2002), each pixel
in the left image is probabilistically assigned dispar-
ities for matching to a pixel in the right image, and
belief propagation is performed on the nodes which
are connected to their immediate (Ising) neighbours.
Our method uses a more complicated energy function
to approximate the correct elevation map for the sur-
face given the irradiance map, and to enforce surface
smoothness conditions. It also incorporates a multi-
resolution interpolation based approach which to our
knowledge has not used before in Loopy Belief Prop-
agation.

2 LAMBERTIAN LIGHTING
MODEL

This algorithm calculates a surface on the Lambertian
assumption that the intensity of a pixel is proportional
to the inner product of the direction vector of the in-
cident light and the surface normal at that point. We
may follow the notation of (Jean-Denis Durou, 2004),
to formulate this. The image irradiance equation is

R(−→n (x)) = I(x) (1)
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√
(1+ p(x)2 +q(x)2)

(−p(x),−q(x),1) (2)

where
p = ∂u/∂x1 (3)

and
q = ∂u/∂x2 (4)

where u is the height of the surface. If there is a
unique light source at infinity, and shining in direc-
tion −→w = (w1,w2,w3), the pixel intensity is the inner
product

R(−→n (x)) =−→w ·−→n (x) (5)
Hereafter, without loss of generality (but assuming
all surface points are visible to both camera and light
source) we assume the light source is in the same di-
rection as the camera, which produces an orthogonal
projection.

3 LOOPY BELIEF
PROPAGATION

The Loopy Belief propagation algorithm using factor
nodes may be expressed in the following equations
(following loosely the notation of (Murphy, 2002)):

µx→ f (x) = o(x) ∏
g6= f

µg→x(x) (6)

µ f→x(x) = ∑
u\x

f (u)∏
y6=x

µy→ f (y) (7)

where x and y are the variable nodes, f and g are fac-
tor nodes, o(x) is the prior probability (observation)
on the variable node x, and where it is assumed µ is in
the domain of f . Our algorithm uses a parallel updat-
ing scheme, with the max product algorithm. After
the specified number of update iterations, the poste-
rior distribution on each corner vertex node may be
given as:

px(x) = o(x)∏
g

µg→x(x), (8)

where g is the set of factor node neighbours of x.

4 FORMULATION OF LBP TO
SOLVE SFS

This algorithm calculates a posterior for the height
at each corner vertex on the image. A corner ver-
tex occurs at the corner of a pixel; at the intersec-
tion of four pixels, one corner vertex represents the

Figure 1: Depiction of the connectivity between vertex
nodes (round) and factor nodes (square). These four ver-
tex nodes correspond to the heights of the four corners of a
single pixel.

height of the surface at that location. Our energy func-
tional is evolved using Factor nodes which represent
the probability of triplets of these corner vertex nodes.
Each triplet of vertices creates a unique plane, and the
orientation of that plane relative to the direction of
the light source allows a probability to be assigned
to that configuration for that triplet. If the dimen-
sions of the image are width w and height h and if
only simple right angled triangles are used, with the
topology shown in Fig. 1, the number of vertices is
(h+1)(w+1) and the number of factor nodes is 4wh.
If smoothing using point triplets (described later) is
incorporated, the number of Factor nodes is 8wh. A
diagram of the topology for this scheme is shown in
Fig.1. The plane generated by each triplet of corner
nodes forms an angle against the incident light, giving
an illumination for that pixel. This is shown in Fig. 3.
Next we define a Markov Random Field (MRF) on
this set of vertex nodes X , given the image data Y and
explicit range data (which gives a prior probability for
the height of the surface at a particular location on the
surface):

P(X |Y,Z) ∝ ∏
i, j,k:k> j>i

exp−ψt
i jk(xi,x j,xk,yi jk) · · ·

∏
i

exp−ψi(xi,zi) (9)

Each element of the state vector of a vertex node
corresponds to the vertex node taking on a particular
height. At each iteration, our implementation of Eqn.
7 is the maximum product (aka max. prod. algorithm)
of the input messages with the elements of factor node
u. A factor node is therefore a 3D array which con-
tains probabilities, each element is derived from the
energy

ψt
i jk(xi,x j,xk,yi) ∝ |yi jk−|−→n i jk(xi,x j,xk) ·

−→
L ||, (10)
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Figure 2: Factor node connectivity for first and second order
smoothing on collinear triplets of corner vertex nodes. The
corner nodes are circles and factor node squares. Factor
node ”A” implements smoothing over a small scale, while
factor node ”B” implements smoothing over a larger scale.
The numbers correspond to pixels (there is one pixel interior
to four corner vertices).

to reflect the new heights of the state vector of the cor-
ner vertex nodes, using linear interpolation between
the points on the original values.

µnew
x→ f (x) = L(µold

x→ f (x),h
new,hold), (15)

with L the linear interpolation function, and hnew,hold

are the height labels at the new and old resolutions,
respectively. Linear interpolation at point b between
two points a and c given function f (·) is given by
f (b) = f (a)+(b−a)( f (c)− f (a))/(c−a) or f (b) =
f (c)− (c−b)( f (c)− f (a))/(c−a).

4.3 Smoothing

If the energy terms used is that for the triangle topol-
ogy used are simply those shown in Fig. 1 and written
in Eqn. 9, it is likely that the algorithm may converge
to a solution (digital elevation map) with undesirable
high frequency components.

4.3.1 Smoothing with Triangles of Varying Size

Undesirable high frequency characteristics may be re-
duced using larger triangles (i.e. with the same kind
of factor node entries, but with larger areas, and with
the intensity over the surface of each triangle averaged
over its surface), as is shown in Fig. 4.

4.3.2 Smoothing with Collinear Point Triplets

An alternative is to form an energy term over all
collinear (adjacent) point triplets on the height map.
The smoothing term should correspond to the true na-
ture of the surface as closely as possible. If the surface
is known to have only low frequency spatial change
in height, then the smoothing energy term should pe-
nalize rapid height variation. The topology of the
Bayesian network w.r.t. vertex and factor nodes for
smoothing is shown in Fig. 2. Two factor nodes
are depicted, to show how different smoothing energy
terms may be applied at different scales.

Figure 3: Depiction of the plane generated by corner ver-
tex nodes each at a particular height. The inner product of
the plane’s normal and the light source’s direction gives the
pixel intensity at the pixel corresponding to those three cor-
ner vertex nodes, which in this diagram is 158/255.

Figure 4: The connectivity of an isosceles triangle (factor
node ”D”), and a large right angled triangle (factor node
”C”). The factor nodes are square, the corner nodes are
round, and the energy terms for each triangle are repre-
sented in the factor nodes.

The energy function associated with the smooth-
ing of the corner vertex node triplets is (cf. Eqn. 10)

ψs
i jk(xi,x j,xk) =

exp(
(

h(x j)−h(xi)
d(i, j)

− h(xk)−h(x j)
d( j,k)

)2

/σ), (16)

where h(·) is the height of a corner vertex node for
a particular value, and d(i, j) is the distance between
the two corner vertex nodes i and j. It is assumed
in this equation that point j lies between i and k, and
the three points are collinear. The smoothness may be
adjusted through σ. With this smoothing energy term,
we can rewrite Eqn.9 as

P(X |Y,Z) ∝ ∏
i, j,k:k> j>i

ψt
i jk(xi,x j,xk,yi) · · ·

ψs
i jk(xi,x j,xk)∏

i
ψi(xi,zi) (17)

5 RESULTS
We tested the algorithm on real and synthetic data:
the synthetic data was created by generating differ-
ent smooth 3D shapes, and calculating the image of
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Figure 5: A good run using LBP-SFS. In this example 26
labels per vertex node were used, and 7 Resolutions were
done with a compression ratio of 0.8, with 200 iterations
per resolution. The top left surface is the true one, the top
right surface is LBP-SFS run using a single reflectance map,
the bottom left uses 2 reflectance maps, and the bottom right
surface uses 3 reflectance maps. More information allows
for improved surface calculation.

those shapes under the Lambertian model. The light
source was assumed to be in the same direction as the
camera, and the image projection of the surface or-
thogonal. For real data we used images of individual
froth bubbles from a mineral ore flotation cell.

5.1 Synthetic Data

For this synthetic data, we generate some smooth sur-
faces and supply a lighting direction and camera posi-
tion to calculate the intensity map of the image under
Lambertian assumptions. Examples of the synthetic
surfaces are shown in Fig. 5.

5.2 Real Data

For the real data we show the 3D models along with
the images of the bubbles on which LBP-SFS was run.
The algorithm was run at various height resolutions,
and the run times at each of the resolutions is shown.
In the real images, noise was removed by applying
convolution with a Gaussian kernel

6 DISCUSSION

The algorithm has advantages and disadvantages. The
main problem is that is is prone to fall into local min-
ima which are incorrect, resulting in deformation in

Figure 6: Images of two bubbles and a vase with overhead
lighting. The circumference of each object is chosen as
a zero level boundary condition for the bubble. (This is
smoothed with a Gaussian kernel before LBP-SFS is ap-
plied).

Figure 7: A LBP-SFS reconstruction of the objects shown
in in Fig. 6, assuming Lambertian reflectance. The first and
second bubble (first and second row surfaces respectively)
had no surface points given. The surfaces in the third row
show the reconstructed vase with no surface points given,
and in the last row it is shown with a single surface point
given. Energy terms used were those corresponding to small
triangles (Fig. 1), isosceles triangles (Fig. 4) and first order
smoothing (Fig. 2) with σ = 1.
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