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Abstract: In the past decade, information theory has been studied extensively in medical imaging. In particular, image
matching by maximizing mutual information has been shown to yield good results in multi-modal image
registration. However, there has been few rigorous studies to date that investigate the statistical aspect of the
resulting deformation fields. Different regularization techniques have been proposed, sometimes generating
deformations very different from one another. In this paper, we apply information theory to quantifying the
magnitude of deformations. We examine the statistical distributions of Jacobian maps in the logarithmic
space, and develop a new framework for constructing log-unbiased image registration methods. The proposed
framework yields both theoretically and intuitively correct deformation maps, and is compatible with large-
deformation models. In the results section, we tested the proposed method using pairs of synthetic binary
images, two-dimensional serial MRI images, and three-dimensional serial MRI volumes. We compared our
results to those computed using the viscous fluid registration method, and demonstrated that the proposed
method is advantageous when recovering voxel-wise local tissue change.

1 INTRODUCTION

Non-linear image registration is a well-established
field in medical imaging with many applications
in functional and anatomic brain mapping, image-
guided surgery, and multimodality image fusion
(Avants and Gee, 2004; Grenander and Miller, 1998;
Thompson and Toga, 2002). The goal of image reg-
istration is to align, or spatially normalize, one im-
age to another. In multi-subject studies, this serves
to reduce subject-specific anatomic differences by de-
forming individual images onto a population average
brain template.

The deformations that map each anatomy onto a
common standard space can be analyzed voxel-wise
to make inferences about relative volume differences
between the individuals and the template, or statistical
differences in anatomy between populations. Simi-
larly, in longitudinal studies it is possible to visual-
ize structural brain changes that occur over time by
deforming subjects’ baseline scans onto their subse-

quent scans, and using the deformation map to quan-
tify local changes. This general area of computa-
tional anatomy has become known as tensor-based
morphometry (Davatzikos et al., 1996; Shen and Da-
vatzikos, 2003; Thompson et al., 2000).

To construct a deformation that is one-to-one and
differentiable (Christensen et al., 1996; Miller, 2004;
Holm et al., 2004), we must impose a regularizing
constraint. Thus, the problem of image registration is
often cast as a minimization problem with a combined
cost functional consisting of an image matching func-
tional and a regularizing constraint on the deforma-
tion. Common choices of image matching functional
include squared intensity difference, cross correlation
(Collins et al., 1994), and (normalized) mutual in-
formation or other divergence-based or information-
theoretic measures (D’Agostino et al., 2003; He et al.,
2003; Pluim et al., 2004), while choices of regular-
ization usually involve differential operators inspired
by thin-plate spline theory, elasticity theory, fluid
dynamics and the Euler-Poincare equations (Miller,
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2004; Thompson and Toga, 2000).

2 THEORY

2.1 Global Preservation of Density
Maps

In this paper, we study smooth deformations~h that
map computational domainΩ bijectively onto itself.
Let us assume, without loss of generality, that the vol-
ume of this domain is 1, i.e.,|Ω|= 1. The inverse map
of~h is denoted as~h−1 and the Jacobian matrix of~h as
D~h. The Jacobian map can thus be defined as the de-
terminant of the Jacobian matrix|D~h|.

In volumetric studies, the determinant of the Jaco-
bian matrix (density) applied to any given deforma-
tion~h is an important quantity, encoding the voxel-
wise volume change. As~h (and~h−1) is bijective and
thus globally volume preserving, we have the follow-
ing preservation of global density:Z

Ω
|D~h(ξ)|dξ =

Z
Ω

d~y = 1,Z
Ω
|D~h−1(ξ)|dξ =

Z
Ω

d~x = 1.
(1)

Given global preservation of density maps, we can as-
sociate three probability density functions to~h,~h−1,
and the identity map (id):

Ph(·) = |D~h(·)|,
Ph−1(·) = |D~h−1(·)|,

Pid(·) = 1.

(2)

Differentiating the identity~h−1(~h(~x)) = ~x on both
sides and setting~y =~h(~x), we obtain

D~h−1(~y) ·D~h(~x) = id, (3)

and hence,

|D~h−1(~y)| · |D~h(~x)| = 1. (4)

By identifying deformations with their corre-
sponding global density maps, we can now apply in-
formation theory to quantifying the magnitude of de-
formations. In our approach, we choose the symmet-
ric Kullback-Leibler (sKL) distance:

sKL(Ph,Pid) = KL(Pid ,Ph)+ KL(Ph,Pid) (5)

to measure the magnitude of any deformation~h. Here
KL, the Kullback-Leibler distance between two prob-
ability density functionsX andY , is defined as

KL(X ,Y ) =
Z

Ω
X log

X
Y

d~x ≥ 0. (6)

To motivate this approach, notice that the first part
of sKL measure is simply integrating the log-density
over the entire computational image domain:Z

Ω
log|D~h(~x)|d~x =−

Z
Ω

log
1

|D~h(~x)|
d~x

=−
Z

Ω
Pid log

Pid

Ph
d~x

=−KL(Pid ,Ph) ≤ 0.

(7)

To attach geometric meaning to the second term, we
notice that theKL distance has skew-symmetry with
respect to~h and its inverse

KL(Pid ,Ph−1) =−
Z

Ω
log|D~h−1(~y)|d~y

=
Z

Ω

(
log|D~h(~x)|

)
|D~h(~x)|d~x

=
Z

Ω
Ph log

Ph

Pid
d~x

= KL(Ph,Pid),

(8)

where the second equality was obtained using a
change of variables,~y =~h(~x). Similarly, we have

KL(Pid ,Ph) = KL(Ph−1,Pid). (9)

2.2 Unbiased Deformation in the
Logarithmic Space

Before developing formulations to construct unbiased
deformations in the logarithmic space, we generalize
equation (7) to the case of mapping regions of interest
(ROI). Assuming we have a priori knowledge that one
ROI is mapped to another, we would like to recover a
mapping that is unbiased in the logarithmic space. In-
tuitively, without further knowledge other than overall
ROI matching, the resulting Jacobian map should take
a constant value inside the ROI. This can be achieved
using the proposed formulations. Indeed, given any
deformation~g mapping domainA in the source (with
volumea) to domainB in the target (with volumeb),
we have the following

1
a

Z
A

log|D~g(~x)|d~x ≤ log
b
a
, (10)

with equality obtained if and only if the Jacobian map
of~g takes a constant value (i.e.,b/a). This generaliza-
tion can be shown by observing that the logarithmic
mapping is a convex mapping:

∑
n

log(xi) ≤ n log(x̄); x̄ =
1
n ∑

n
xi. (11)

With the above generalization, one can see that, as-
suming the only constraint being an ROI deformation
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(a) (b)

(a) (b)

(c) (d)

Figure 1: Circle-to-Ellipse example. (a) imageT ; (b) image
S; (c) imageT is deformed to imageS using Christensen’s
model; (d) imageT is deformed to imageS using the pro-
posed model. Blue, yellow and red contours represent the
boundaries of objects inT , S, and deformedT , respectively.
Note that for both methods, yellow contour is essentially
invisible due to a very close match. However, the resulting
grid of the proposed method is visually more regular.

(a) (b)

(a) (b)

Figure 2: Circle-to-Ellipse example. Jacobian map of the
deformation using (a) Christensen’s model and (b) the pro-
posed model.

from A to B, the unbiased mapping under the logarith-
mic operation has an evenly distributed Jacobian field,
which is also intuitively correct (as there is no reason
to assume non-uniformity of the Jacobian field).

Given equation (7) and its generalization, we now
propose to quantify the distance between any given
deformation and the identity map by computing the
symmetricKL distance through their density func-
tions. Due to the above mentioned skew-symmetry,
this distance takes the following several equivalent
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Figure 3: Circle-to-Ellipse example. Histograms of Jaco-
bian values of the deformations inside the ellipse for Chris-
tensen’s model and the proposed model.
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Figure 4: Circle-to-Ellipse example. (a) Standard deviation
of Jacobian values inside the ellipse per iteration. (b) Sym-
metricKL distance. For Christensen’s model (dashed blue),
both standard deviation and symmetricKL distance increase
while for the proposed model (solid red), both standard de-
viation and symmetricKL distance stabilize.

forms:
sKL(Ph,Pid) = sKL(Ph−1,Pid)
= KL(Ph,Pid)+ KL(Ph−1,Pid)
= KL(Ph,Pid)+ KL(Pid,Ph)

= KL(Pid ,Ph−1)+ KL(Pid,Ph)
= KL(Pid ,Ph−1)+ KL(Ph−1,Pid)

=
Z

Ω

(
|D~h(~x)|−1

)
log|D~h(~x)|d~x

=
Z

Ω

(
|D~h−1(~y)|−1

)
log|D~h−1(~y)|d~y.

(12)

To see why minimizing equation (12) leads to unbi-
ased deformation in the logarithmic space, we ob-
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Figure 5: Serial MRI example. (a) imageT ; (b) imageS; (c)
imageT is deformed to imageS using Christensen’s model;
(d) imageT is deformed to imageS using the proposed
model.

serve that the integrand is always non-negative, and
only evaluates to zero when~h is volume-preserving
everywhere (Jacobian of~h is 1 everywhere). Thus,
by treating it as a cost, we recover zero-change by
minimizing this cost when we compare images dif-
fering only in noise. Also, this approach is unbiased
for mapping ROIs in the logarithmic space, due to the
inequality in (10).

3 IMPLEMENTATION

Let us denote the template image asT (~x) and the
study image asS(~x) defined on the spatial domainΩ.
We solve for deformation~h, such thatT ◦~h matchesS,
while minimizing the symmetricKL distance in equa-
tion (12). The deformation~h is usually expressed at
each voxel in terms of the displacement vector~u from
the original position:~h(~x) =~x−~u(~x). In this paper,
we will use the sum of the squared differences (SSD)
to measure the accuracy of matching between the de-
formed template and the study:

SSD(T,S,~u) =
1
2

Z
Ω
|T (~x−~u)−S(~x)|2 d~x, (13)

(a) (b)

(a) (b)

Figure 6: Serial MRI example. Results obtained with (a)
Christensen’s model and (b) the proposed model. Blue, yel-
low and red contours represent the boundaries of ventricles
in T , S, and deformedT , respectively. Note that for both
methods, yellow contour is essentially invisible due to a
very close match. However, the resulting grid of the pro-
posed method is visually more regular.

(a) (b)

(a) (b)

Figure 7: Serial MRI example. Jacobian map of the defor-
mation using (a) Christensen’s model and (b) the proposed
model.

which is also known as a Gaussian sensor model. To
numerically implement our approach, we propose to
minimize a combined cost function

C = SSD+ λ(sKL). (14)

This can be achieved using incremental updating
along the gradient descent of the corresponding Euler-
Lagrange equation. Hence, we obtain theith compo-
nent of the force field:

fi(~x,~u(~x,t)) = −[T(~x−~u)−S(~x)]
∂T
∂xi

∣∣∣∣
~x−~u

−λ∑
j

∂
∂x j

[(
1+ log|D~h(~x)|− 1

|D~h(~x)|

)
Coi j(~x)

]
,

(
D~h(~x)

)−1 =

(
Coi j(~x)

)T

|D~h(~x)|
,

(15)

whereCoi j is the matrix cofactor of the(i, j)-th com-
ponent of the Jacobian matrixD~h.
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Figure 8: Serial MRI example. Histograms of Jacobian val-
ues of the deformations inside ventricles for Christensen’s
model and the proposed model.
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Figure 9: Serial MRI example. (a) Standard deviation of
Jacobian values inside the ventricle per iteration. (b) Sym-
metricKL distance. For Christensen’s model (dashed blue),
both standard deviation and symmetricKL distance increase
while for the proposed model (solid red), both standard de-
viation and symmetricKL distance stabilize.

In this paper, we follow the approach in
(D’Agostino et al., 2003) solving the viscous fluid
model (Christensen et al., 1996). Of note, in (Chris-
tensen et al., 1996), the authors used the sum of the
squared differences (SSD) as a cost functional for
minimization (no control over the distribution of the
Jacobian values was employed). Given the velocity
field~v, the following partial differential equation can
be solved to obtain the displacement field~u:

∂~u
∂t

=~v−~v ·~∇~u. (16)

The instantaneous velocity as in (D’Agostino et al.,
2003) is obtained by convolving~f with Gaussian ker-
nelGσ of varianceσ:

~v = Gσ ∗ (−~f (~x,~u)). (17)

4 RESULTS AND DISCUSSION

In this section, we implemented and tested the pro-
posed nonlinear registration model. The deforma-
tion fields were computed using adaptive time step-
ping, with maximal change in displacement of 0.1 al-
lowed in each iteration. In order to obtain a fair com-
parison between the proposed and the viscous fluid
method, re-gridding was not employed. Re-gridding
is essentially a memoryless procedure, as how im-
ages are matched after each re-gridding is indepen-
dent of the deformation before the re-gridding, ren-
dering the comparison of final Jacobian fields and cost
functionals problematic. Moreover, the strategy of re-
gridding, through the relaxation of deformation over
time, is less rigorous from a theoretical standpoint.

In order to gain more insight into the effect of the
symmetricKL distance term in (12), we first consider
matching two binary synthetic images. In Figures 1
through 4, we show the results of deforming a disk
into an ellipse (both 128 by 128;λ = 500 in (15)).
As seen in Figure 1(c,d), both the fluid registration
(Christensen’s) model and the proposed model gener-
ated a close match between the deformed image and
the study. Here, optimal matching was considered
achieved once the overall cost functional stopped de-
creasing. However, as seen in Figures 2 and 3, the
proposed method more evenly distributes deformation
inside and outside an ellipse (resulting from the con-
vex property of the logarithmic mapping in inequality
(10)). Note the vertical stretching of the grid in the
center of the ellipse for the proposed method, which
is a consequence of uniform distribution of Jacobian
values. On the other hand, using Christensen’s model,
the grid does not uniformly adjust to object’s volume
change; this is especially noticeable in the center of
the ellipse. Figure 4(a) plots the standard deviation
of the Jacobian field inside the ellipse as a function
of iteration number. For Christensen’s model, the
standard deviation inside the ellipse increased with
the number of iterations, while the proposed method
yielded an optimized standard deviation as more it-
erations were computed. The proposed symmetric
KL distance also increased for Christensen’s method,
while it was minimized for the proposed method as
shown in Figure 4(b).

In Figures 5 through 9, we show the results of
matching a pair of 2D slices from a set of Serial MRI
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(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 10: 3D Serial MRI example. Rows depict slices in axial(row 1), sagittal (row 2), and coronal (row 3) planes. Columns
depict (a)T ; (b) S; (c) T deformed using Christensen’s model; (d)T deformed using the proposed model.

images (each of size 226 by 256;λ = 400 in (15)),
where visually significant ventricle enlargement is
present. Both Christensen’s method and the proposed
model generated a close match between the deformed
image and the study (Figure 5(a-d)). Here, there is no
reason to not evenly distribute Jacobian field inside
the ventricles, as realized using the proposed method.
In contrast, Christensen’s method generated a density
map with extreme values along the ventricular bound-
ary. Indeed, given the overall longitudinal ventricu-
lar dilatation, we argue that the corresponding density
change map should be constant inside the ventricle.
As seen in Figure 9, both the standard deviation inside
the ventricle and the symmetricKL distance increased
for Christensen’s method, while these quantities sta-
bilized for the proposed method.

In the last numerical example (Figures 10
through 12), we tested the proposed model using
two 3D Serial MRI volumes obtained from a patient
with right-side temporal atrophy (6 years apart; each
of size 112x128x128;λ = 500). In this example,
the same conclusions were reached, demonstrating
both the numerical and theoretical advantages of our

method. In particular, in Figure 11(b), right temporal
atrophy (RT) and ventricular enlargement (V) are eas-
ily visualized in the Jacobian map generated using the
proposed method, while Christensen’s method gener-
ated a very noisy map (Figure 11(a)).

5 FUTURE DIRECTIONS

This paper introduces a new framework for the con-
struction of diffeomorphic maps that yield theoreti-
cally and intuitively correct Jacobian statistics. Simi-
lar concept can be applicable to constructing joint reg-
istration and segmentation algorithms, with the lat-
ter based on Jacobian values. To this end, we are
currently investigating a level set method (Osher and
Sethian, 1988; Osher and Fedkiw, 2003) based imple-
mentation (Chan and Vese, 2001) that would alow us
to simultaneously register serial images and identify
regions of atrophy/expansion.

The idea of employing symmetricKL distance in
nonlinear image registration presented in this work
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(a) (b)

Figure 11: 3D Serial MRI example. Jacobian map overlaid
with the deformed volume for Christensen’s model (column
a) and the proposed model (column b), with localized atro-
phy in right temporal area. Rows depict slices in axial (rows
1 and 2), sagittal (row 3), and coronal (row 4) planes.

is also closely related to other scientific fields. For
example, optimization problems involving Jacobian
operator are commonly encountered in grid gener-
ation (Liseikin, 1999) and in continuum mechanics
and computational physics, where the Hencky tensor
arises in modeling very large deformations. However,
we believe that the logarithmic transform has not been
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Figure 12: 3D Serial MRI example. (a) Standard devia-
tion of Jacobian values inside the ventricle per iteration.(b)
SymmetricKL distance.

formally introduced in the grid generation literature
and may also be useful there.
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