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Abstract: This paper presents a video-based camera tracker that combines marker-based and feature point-based cues in
a particle filter framework. The framework relies on their complementary performance. Marker-based trackers
can robustly recover camera position and orientation when a reference (marker) is available, but fail once the
reference becomes unavailable. On the other hand, feature point tracking can still provide estimates given a
limited number of feature points. However, these tend to drift and usually fail to recover when the reference
reappears. Therefore, we propose a combination where the estimate of the filter is updated from the individual
measurements of each cue. More precisely, the marker-based cue is selected when the marker is available
whereas the feature point-based cue is selected otherwise. The feature points tracked are the corners of the
marker. Evaluations on real cases show that the fusion of these two approaches outperforms the individual
tracking results.
Filtering techniques often suffer from the difficulty of modeling the motion with precision. A second related
topic presented is an adaptation method for the particle filer. It achieves tolerance to fast motion manoeuvres.

1 INTRODUCTION

Combination of tracking techniques has proven to be
necessary for some camera tracking applications. To
reach a synergy, techniques with complementary per-
formance have first to be identified. Research on cam-
era tracking has concentrated on combining sensors
within different modalities (e.g. inertial, acoustic, op-
tic). However, this identification is possible within
a single modality: video trackers. Video-based cam-
era tracking can be classified into two categories that
have compensated weaknesses and strengths: bottom-
up and top-down approaches (Okuma et al., 2003).
For the first category, the six Degrees of Freedom
(DoF), 3D position and 3D orientation, estimates are
obtained from low-level 2D features and their 3D geo-
metric relation (such as homography, epipolar geom-
etry, CAD models or patterns), whereas for the sec-
ond group, the 6D estimate is obtained from top-down
state space approaches using motion models and pre-
diction. Marker-based systems (Zhang et al., 2002)
can be classified in the first group. Although they

have a high detection rate and estimation speed, they
still lack tracking robustness: the marker(s) must be
always visible thus limiting the user actions. In con-
trast to bottom-up approaches, top-down techniques
such as filter-based camera tracking allow track con-
tinuation when the reference is temporarily unavail-
able (e.g. due to occlusions). They use predictive
motion models and update them when the reference
is again visible (Davison, 2003; Koller et al., 1997;
Pupilli and Calway, 2005). Their weakness is, in gen-
eral, the drift during the absence of a stable reference
(usually due to feature points difficult to recognise af-
ter perspective distortions).

Filtering techniques often suffer from the diffi-
culty of modelling the motion with precision. More
concretely, the errors in the system of equations are
usually modelled with noise of fixed variance, also
called hyper-parameter. In practice, these variances
are rarely constant in time. Hence, better accuracy
is achieved with filters that adapt, or self-tune, the
hyper-parameters online (Maybeck, 1982).

In this paper, we present a particle-filter based
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Figure 1: Square marker used for the MC.

weight of each particle n is calculated using its mea-
surement noise (likelihood)

wn = p(Y |Tn), (4)

where wn is the weight of particle n and Y is the mea-
surement. The key role of the combination filter is to
switch between two sorts of likelihood depending on
the type of measurement that is used: MC or FPC.
Once the weights are obtained, these are normalised
and the update step of the filter is concluded. The cor-
rected mean state T̂ is given by the weighted sum of
Tn. T̂ is used as output of the camera tracking system.

3.2 Marker-based Cue (MC)

We use the marker-based system provided by (Kato
and Billinghurst, 1999) to calculate the transforma-
tion T between the world coordinate frame and that of
the camera (3D position and 3D orientation). As ex-
plained in Section 3.4, this transformation is the mea-
surement fed into the filter for update.

At each frame, the algorithm searches for a square
marker (see Figure 1) inside the field-of-view (FoV).
If a marker is detected, the transformation can be
computed. The detection process works as follows.
First, the frame is converted to a binary image and the
black marker contour is identified. If this identifica-
tion is positive, the 6D pose of the marker relative to
the camera (T ) is calculated. This computation uses
only the geometric relation of the four projected lines
that contour the marker in addition to the recognition
of a non-symmetric pattern inside the marker (Kato
and Billinghurst, 1999). When this information is not
available, no pose can be calculated. This occurs in
the following cases: markers are partially or com-
pletely occluded by an object; markers are partially
or completely out of the FoV; or not all lines can be
detected (e.g., due to low contrast).

3.3 Feature Point-based Cue (FPC)

In order to constrain the camera pose estimation, the
back-projection of salient or feature points in the
scene can be used. For this purpose, both the 3D loca-
tion of the feature point P and the 2D back-projection
p is needed. In homogeneous coordinates,

p = K · [R|t] ·P, (5)

COMBINATION OF VIDEO-BASED CAMERA TRACKERS USING A DYNAMICALLY ADAPTED PARTICLE
FILTER

365



π · ((Tn,i−TMC,i)2 + r2
i )

, (6)

where r is the measurement noise and i indexes the
elements of the vectors. This particular distribu-
tion’s choice has its origin in the following reason-
ing. In the resampling step of the filter, particles
with insignificant weights are discarded. A problem

may arise when the particles lie on the tail of the
measurement noise distribution. The transition prior
p(Tn(k)|Tn(k−1)) determines the region in the state-
space where the particles fall before their weighting.
Hence, it is relevant to evaluate the overlap between
the likelihood distribution and the transition prior dis-
tribution. When the overlap is small, the number of
particles effectively resampled is too small. Figure 2
shows an instance of overlapping region. It must be
pointed out that due to computing limits, some values
fall to zero even though their real mathematical value
is greater than that (the support of a Gaussian distri-
bution is the entire real line). In the example of this
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Figure 2: Overlap between transition prior distribution and
the likelihood distribution: modelled with a Gaussian (no
overlap) and with a Cauchy distribution (thick line).

figure, there is no sufficient computed overlap for the
Gaussian distribution (commonly used), whereas the
tail of the Cauchy distribution covers the necessary
state-space. Therefore, we have chosen a long-tailed
density that better covers the state-space, while still
being a realistic measurement noise (Ichimura, 2002).
Once the weighting is computed, the templates asso-
ciated to each corner of the marker are also updated.
This is done every time the marker is detected. For
this purpose the patch around the back-projection of
each corner is exchanged with the previous template
description. As this template is used by the FPC, it is
important that the latest possible description is avail-
able. Contrary to what might be thought, template up-
dating does not introduce drift in this case. The patch
around the corner is a valid descriptor every time the
marker is detected.

On the other hand, when the MC fails to de-
tect the marker, the system relies on the FPC (Y =
correlation maps) and another likelihood is used. As
a previous step to obtaining the correlation maps pro-
vided by the FPC (see Section 3.3), it is necessary
to calculate the regions around the estimated location
of each feature point. For each corner, all the back-
projections given the transformations Tn are computed
(see Eq. 5). The region is the bounding box contain-

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

366



map j(cx,cy) > thcorr
}

,
(7)

where j indexes the corners of the marker. Second,
for each particle, a subset is kept with the points in S j
that are within a certain Euclidean distance from the
corresponding back-projection [pn,x, pn,y]

Ŝn, j =
{
[cx,cy] ∈ S j

∣∣dist(c, pn) < thdist
}

. (8)

The weight of the particle n is proportional to the
number of elements (|.|) in the subsets Ŝn, j

wn = exp(−∑
j

∣∣Sn, j
∣∣). (9)

As it can be seen, the likelihood for the FPC measure-
ment is much less straightforward to compute than the
MC. Nevertheless, the weights can be calculated inde-
pendently of the number of feature points recognised
whereas the likelihood for the MC is available only if
the marker is visible.

Algorithm 1 expresses the process followed by the
combination. It is assumed that the filter has been ini-
tialised at the first detection of the marker. The de-
scription of the marker is stored in the pattern vari-
able.

Algorithm 1 Combination procedure.
loop

v f rame← getVideoFrame()
marker← detectMarker( v f rame )
if pattern.correspondsTo( marker ) then

TMC←MC.calcTransformation( marker )
templates← extractPatches( marker , v f rame )
T̂ ← filter.updateFromMC( TMC )

else
reg← filter.calcRegions()
corr maps← FPC.calcMaps( reg , templates )
T̂ ← filter.updateFromFPC( corr maps )

end if
end loop

This filtering framework has several advantages.
Combination through a filter provides a continuous
estimate which is free of jumps that disturb the user’s
interaction. Frameworks often fall into static solu-
tions giving little opportunity for shaping. The like-
lihood switching method proposed is generic enough
to be used with very different types of cues or sensors
such as inertial, etc.

3.5 Dynamic Tuning of the Filter

The goal of the dynamic tuning is to achieve better
tracking accuracy together with robustness in front of
manoeuvres.

The long-tailed Cauchy-type distribution of the
measurement noise is not sufficient to cover the state-
space in front of rapid manoeuvres. Figure 3 shows
the effect of a large manoeuvre on the probabilistic
model assumed. Again, the computing limits play a
role on the positive overlap of distributions.
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Figure 3: Slow motion (top) and fast motion (bottom).
Overlap indicated with a thick line. When a fast manoeuvre
occurs, the overlap between transition prior (uniform distri-
bution) and the likelihood (cauchy distribution) is small.

Either the likelihood or the transition prior distri-
butions should broaden in order to face this problem.
The measurement noise model is related to the sen-
sor. Hence, the model should only be tuned if a qual-
ity value of the measurement provided by the sensor
is available. This quality value is usually unrelated
to motion and thus of no use to face the manoeuvre
problem. On the other hand, the process noise vari-
ance q is related to the motion model. We propose
to tune the process noise adaptively. As said before,
there are six DoF, three for orientation and three for
position. Practice demonstrates that motion changes
do not necessarily affect all axes in the same manner.
Contrary to the adaptive estimators cited before, we
propose a tuning that considers each degree of free-
dom independently. The process variance for each
axis qi is tuned according to the weighted distance
from the current corrected mean state T̂i(k) to that in
the previous frame T̂i(k−1)

ϕi =
[T̂i(k)− T̂i(k−1)]2

qi(k)2 +∆min

qi(k +1) = max(qi(k) ·min(ϕi;∆max) ; q̃i,min) , (10)

where ∆min and ∆max are the minimal and maximal
variations, respectively, and q̃i,min is the lower bound
for the hyper-parameter of axis i. This method permits
a large dynamic range for the variance of each axis as
it uses the previous qi to calculate the current value. In
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Figure 4: First experiment. Translation and rotation in X,Y
and Z axes. Shaded regions represent occlusions (Manually
produced: frames 182-246, 345-448. Marker partially out
of FoV: frames 655-744).

is difficult to observe because it is very close to the
filtered estimate of our approach, except during the
occlusions, where no output is produced at all. The

FPCT (inverted triangles) is capable of tracking de-
spite the first two occlusions. However, it looses track
after the third occlusion. This could be due to an in-
complete update step (only two 3D points are avail-
able while the marker is partially outside the FoV,
frames 655-744), leading to a bad prediction. As this
experiment illustrates, using the MC to update the
filter and the templates of the FPC produces better
results. In addition, using the FPC enables the fu-
sion to provide an estimate throughout the whole se-
quence. The fusion addresses the main drawbacks of
each component: partial occlusions for the MC, and
the viewpoint change for the FPC. Snapshots from
several frames of the augmented scene during occlu-
sions are shown in Figure 5.

(a) Occlusion (b) Escaping the FoV

Figure 5: First experiment. A virtual teapot placed on the
marker to show correct alignment.

In a second experiment, the adaptive filtering pro-
posed is compared to similar work. Xu (Xu and Li,
2006) presented an adaptation method for 2DoF that
can be extended in terms of Eq. (10) to 6DoF as fol-
lows

ϕ = exp

(
−0.5∑

i

[T̂i(k)− T̂i(k−1)]2

q̃2
i

)

qi(k +1) = max
(

min
(

q̃i ·
√

1/ϕ; q̃i,max

)
; q̃i,min

)
, (11)

where q̃max and q̃min are the upper and lower bound
vectors and q̃i is the nominal value for axis i. Note that
q̃i, q̃i,max and q̃i,min are fixed offline to a single value
for the three rotation axes and another single value for
the three translation axes. Remark that the prediction
error in one axis affects all other hyper-parameters, as
ϕ is unique for all the axes. Consequently, the model
of process noise in one axis may grow even when
the real error in that axis is small. Moreover, the dy-
namic range of the variance of each axis is limited of-
fline whereas our proposed dynamic tuning has only
a lower bound to insure stability when motion is al-
most static. In order to compare the proposed method
to this approximation of Xu’s approach, a second cus-
tom video sequence with several abrupt manoeuvres
is used. The upper bound is fixed to the maximal
value achieved by our technique in this particular se-
quence. The lower bound is the same for both. The
variances in our method are initialised with the nomi-
nal values q̃i. The variation bounds ∆min and ∆max are
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(a) FPCT tracks despite the low contrast (first frames), but gets confused with background as the feature points move fast.

(b) MCT. Limited by the illumination conditions, the detection algorithm fails in the first frames.

(c) Fusion without adaptive tuning. Estimated camera state lags behind the measurement.

(d) Fusion with adaptive tuning. Addition of the individual strengths together with precise estimated camera state.

Figure 6: Third experiment. Frames 135,148,161,174,187,200. Illumination offset varies from -70 to -100 and then up to 0
changing the cue from FPC. (green teapot) to MC (red teapot). Speed is ∼250 mm/s.

fixed to 0.5 and 2, respectively. Along this sequence,
the MC is available as the input of the filter. Since
the evolution of the estimates of both approaches is
very similar, instead of showing the curves, another
metric is used. The Root Mean Square Error (RMSE)
between the ground truth (provided by the MC) and
the estimate of the filter has been selected as a scalar
performance measure. The RMSE is calculated for
each axis along the 590 frames of the sequence. The
most relevant motion changes are for the translation in
the X,Y, and Z directions (see Table 1). Quantitative
results show the superiority of the proposed adaptive
tuning method.

Table 1: RMSE [mm] without adaptive tuning, the exten-
sion of (Xu and Li, 2006) and the proposed method.

Adaptation method X Y Z
without 1.24 1.67 1.45
Xu (extens. to 6 DoF) 0.98 0.28 0.52
proposed 0.46 0.16 0.13

Finally, a third experiment has been conducted to
analyse the tracking performance in front of illumina-

tion changes. As stated before (see Section 3.2), the
MC uses a fixed threshold for binarisation and further
marker identification. When the illumination changes
considerably, the contrast becomes too low in the con-
tour of the marker and the detection algorithm fails.
On the other hand, the FPC is illumination invariant
because the templates are normalised with respect to
their luminance means. The second custom video se-
quence of experiment two has been used, adding an
offset varying between −100 and +100 to the RGB
channels. Snapshots of several frames from the se-
quence are shown in Figure 6. This test shows that
the proposed system can successfully face illumina-
tion variations together with abrupt motion changes
(∼ 10→∼ 250 mm/s).

All the experiments were carried out on 1700
MHz processor. Table 2 shows mean frame rates
achieved for a 320x240 pixels video stream (acquisi-
tion at 30 Hz). The difference between individual and
fusion tracker’s frame rates is very small and real-time
performance is achieved.
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frame rate [Hz]
MCT 26.9
FPCT (1000 particles) 19.1
Fusion (update with MC) 23.8
Fusion (update with FPC) 17.9

5 CONCLUSION

We have presented a combination of video trackers
within a particle filter framework. The filter uses two
cues provided by a marker-based approach and a fea-
ture point-based one. The motion model is adapted
online according to the distance between past esti-
mates.

Experiments show that the proposed combination
produces a synergy. The system tolerates occlusions
and changes of illumination. Independent adaptive
tuning for the model of each DoF demonstrates su-
perior performance in front of manoeuvres.

In our future research, we will focus on extending
the FPC to feature points beyond the four corners of
the marker and enhancing their viewpoint sensibility.
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