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Abstract: Osteoarthritis is a chronic and crippling disease affecting an increasing number of people each year. With
no known cure, it is expected to reach epidemic proportions in the near future. Accurate segmentation of
knee cartilage from magnetic resonance imaging (MRI) scans facilitates the measurement of cartilage volume
present in a patient’s knee, thus enabling medical clinicians to detect the onset of osteoarthritis and also cru-
cially, to study its effects. This paper compares four model-based segmentation methods popular for medical
data segmentation, namely Active Shape Models (ASM) (Cootes et al., 1995), Active Appearance Models
(AAM) (Cootes et al., 2001), Patch-based Active Appearance Models (PAAM) (Faggian et al., 2006), and
Active Feature Models (AFM) (Langs et al., 2006). A comprehensive analysis of how accurately these meth-
ods segment human tibial cartilage is presented. The results obtained were benchmarked against the current
“gold standard” (cartilage segmented manually by trained clinicians) and indicate that modeling local texture
features around each landmark provides the best results for segmenting human tibial cartilage.

1 INTRODUCTION

Model-based segmentation methods have become a
standard and popular method for detecting structures
in medical images. They meet the need to consis-
tently identify landmarks on images with complex
content by the use of a priori knowledge. Active
Shape Models (ASM) (Cootes et al., 1995) and Ac-
tive Appearance Models (AAM) (Cootes et al., 2001)
have proven to provide reliable localisation of land-
marks.

ASM is based on building a statistical shape
model for a given class of objects. Since its introduc-
tory application for segmenting heart ventricles from
echocardiogram, ASM has undergone many modifi-
cations and found numerous new applications for seg-
menting medical images. Some examples include
segmenting lungs from chest radiographs (van Gin-
neken et al., 2001), metacarpal bone from hand ra-
diographs (Langs et al., 2003), and human knee car-
tilage from MRI scans (Cheong et al., 2005). The
concept of ASM was extended to include a model of
the object’s texture and this new method was termed

Active Appearance Models, AAM. Common uses of
AAM these days include segmenting brain structure
from brain MRI and heart ventricles from cardiac
MRI (Oost et al., 2003).

Recent modifications to speed up AAM have re-
sulted in methods that model only relevant parts of
an object’s texture instead of the entire texture. For
example, Patch-based AAM (PAAM) (Faggian et al.,
2006) model a texture patch oriented along each land-
mark, while Active Feature Models (AFM) (Langs
et al., 2006), represent image texture by means of lo-
cal texture descriptors. These methods produce re-
sults similar to or better than AAM even with a sig-
nificantly reduced amount of training information.

The motivation behind this study is to identify
a model-based segmentation method that can ac-
curately and efficiently segment human tibial carti-
lage, with the ultimate goal being a fully automated
method. Accurate segmentation enables the carti-
lage volume of a patient to be estimated, and stud-
ies have shown that such measures will enable eval-
uation of osteoarthritis severity in the knee (Cicuttini
et al., 2003; Raynauld, 2002). The current method
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of cartilage volume measurement involves some form
of manual segmentation performed by a trained clin-
ician; and the process is slow, tedious, and subjec-
tive. There is thus a strong demand to develop a non-
subjective and more efficient segmentation method
to meet the needs of large-scale clinical trials and
epidemiological studies that have been conducted to
evaluate therapies that may slow down or stop carti-
lage degradation.

This paper is organised as follows. In Section 2,
we describe the four model-based segmentation meth-
ods used. In Section 3, the experimental setup is ex-
plained and the results are presented and discussed.
Concluding remarks are given in Section 4.

2 METHODS

2.1 Active Shape Models

Active Shape Models (ASM) (Cootes et al., 1995) is a
model-based segmentation technique that models the
variation of object shape in images. Objects are repre-
sented as a set ofn labeled points referred to as land-
marks. The locations of these landmarks are extracted
either manually or automatically from a set ofp train-
ing images. In the segmentation process, the algo-
rithm searches for the best candidate points for each
landmark in the image based on local edge features,
with the solution space constrained by a global shape
model.

The shape model is constructed by stacking the
landmarks(x1,y1, ...xn,yn) for each training image
into a shape vector,si .

si = (x1,y1, ...xn,yn)T . (1)

The shape vectors are aligned by scaling, rotation and
translation using an iterative scheme known as Gen-
eralised Procrustes Analysis (GPA) (Goodall, 1991)
to minimise the sum of squared distances between the
landmarks. A mean shape, ¯s, is then calculated from
the shape vectorss,

s̄=
1
p

p

∑
i=1

si , (2)

as well as the covariance matrix,

C =
1

p−1

p

∑
i=1

(si − s̄)(si − s̄)T . (3)

Principal component analysis (PCA) is then applied
using eigenvalue decomposition of the covariance
matrix. Eigenvectors corresponding to ther largest
eigenvaluesλi are retained in a matrixS. The number

of eignevalues to retain,r, is chosen such that their
sum sufficiently explains the variance in the training
shapes, since the variance explained by each eigen-
vector is equal to the corresponding eigenvalue.r
is usually set such that the explained variance ranges
from 90% to 99.5%. Any shape in the training set can
now be approximated by:

ŝ= s̄+Sα, (4)

whereα is a vector ofr elements containing the shape
coefficients, calculated by:

α = ST(ŝ− s̄). (5)

To ensure that new shapes generated are in the al-
lowable shape domain, the values ofα are constrained
to lie within the range±m

√
λi , wherem has a value

between 2 and 3.
The shape model is fitted onto an image by placing

the mean shape, with shape coefficients initialised to
0, onto an initial location. The neighborhood of each
landmark of the initial fit is then examined to find bet-
ter locations for the fitting. This is implemented by
examining the normals along each landmark for the
strongest edge. The shape and pose of the fit is then
updated, constrained by limits set to the variation of
α. This procedure is iterated until convergence, i.e.
there is no significant change in shape between two
consecutive iterations.

There are many different improvements that have
been made to ASMs, these usually deal with dif-
ferent implementations of better landmark position
searches. The most common improvement is to build
some form of texture model around each landmark
(van Ginneken et al., 2001; Yan et al., 2002), very
much like PAAM, discussed in Section 2.3. This ex-
tra model is claimed to produce more accurate land-
mark localisation compared to searching only for the
strongest edge.

2.2 Active Appearance Models

Active Appearance Model (AAM) (Cootes et al.,
2001) is a more powerful and more computer-
intensive model based segmentation technique. Un-
like ASM, it models two principle modes of object
variation in images, shape and texture. The idea
behind AAM is to improve segmentation results by
modeling the complete texture of an object. AAM
uses a fixed number of landmarks to represent objects
and encodes shape variation much like ASM.

The texture variation of an object is modeled in a
similar fashion. In the texture model, GPA is replaced
with an object transformation step. Here, objects are
transformed to the mean coordinate frame. This mean
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is provided by the shape model in equation (4). PCA
is then applied to the aligned objects to form a simple
linear representation for a novel texture,t̂:

t̂ = t̄ +Tγ, (6)

wheret̄ is the mean texture,T is a linear combination
of the orthogonal subspace of textures, andγ consists
of the texture coefficients. By combining these tex-
ture and shape models, it is possible to render a novel
image:

I(α,γ) = F(s̄+Sα, t̄ +Tγ). (7)

Rendering is defined as the process of transform-
ing a generated texture to fit a desired shape. The
texture exists in a shape free representation and is
bi-linearly re-sampled (F) to the desired shape using
a piecewise affine transformation. The shape model
is triangulated and these triangles are transformed to
the mean coordinate frame through a series of affine
transformation, different for each triangle. The search
process now involves fitting the texture and shape
model to the image. This is a non-linear optimisation
task and there are many strategies to implement this.
For this paper, Inverse Compositional Image Align-
ment (ICIA) was used for AAM fitting (Faggian et al.,
2005). This approach minimises the difference,e, be-
tween the mean AAM template and the image:

e= ∑
x

[A0− I(W(x;α))]2, (8)

where A0 is the mean shape and mean texture that
AAM renders andI(W(x;α)) is the image sampled
to the mean shape coordinate frame using the shape
coefficientsα.

2.3 Patch-based Active Appearance
Models

Patch-based AAM (PAAM) (Faggian et al., 2006) is
a modification to AAM. It differs from AAM in the
way it samples texture in images. Instead of using
triangulation, PAAM makes use of oriented patches
centered on each landmark. An oriented patch is de-
fined at each landmark location by the shape model’s
connectivity using its two adjacent landmarks. For ex-
ample, the second landmark in a model, v2 and its ad-
jacent landmarks, v1 and v3 are used to define a patch
about v2. A patch is now constructed by computing
two principle directions. The first principle direction
is the normal of v1 to v3, called u⊥. The second prin-
ciple direction is orthogonal to the first and is called
u. These principle directions can be used to transform
pixels from one patch into another using Barycentric
coordinates, an example is shown in Figure 1.

The size of each patch is defined by a constant,
k. This constant must be suitably selected by the user
during PAAM construction. In practice, a larger k in-
creases the robustness of the method with respect to
alignment errors while a smaller k increases conver-
gence when alignment is known to be good. The fit-
ting process for PAAM is similar to AAM; ICIA is
used to minimise the difference,e, between the mean
AAM template and the patch-sampled image.

v1

v2

u

u⊥

v̂1

v̂3v3

û⊥

v̂2

û

x̂ = v̂2 + α(û − v̂2) + β(û⊥ − v̂2)

x x̂

α

β

Figure 1: Transforming a pixel, x, in patch defined by v1,
v2, v3 to its corresponding position, x̂, in a different patch
defined by v̂1, v̂2, v̂3, (Faggian et al., 2006).

2.4 Active Feature Models

Active Feature Models (AFM) (Langs et al., 2006)
build a model based on a set of training images for
which corresponding positions of a set of landmarks
are known. A statistical shape model is built based on
the training shapes, much like ASM. Instead of mod-
eling local texture around the landmarks directly, as
in PAAM, AFM compacts the local texture by feature
extraction using descriptors. In addition, AFM does
not use landmark connectivity like PAAM, thus de-
scriptors are independent of the shape’s contour di-
rection. Any descriptor can be used, allowing for
straightforward adaptation of the algorithm to dif-
ferent data, especially if descriptors with favorable
specificity and robustness with respect to the appli-
cation are known.

During training, model parameters are perturbed
randomly generating a large number of displaced
model instances. A functional relation is then learned
from the resulting feature vectorsf describing lo-
cal texture and the corresponding parameter displace-
ment δp by Canonical Correlation Analysis (CCA).
This is analogous to a CCA based AAM search ap-
proach proposed in (Donner et al., 2006).

The AFM search process involves extracting local
texture features at the current landmark position esti-
mates and updating the model parameters according
to the trained relation
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3 EXPERIMENTS

3.1 Setup

Experimental results are reported for two datasets,
medial tibial cartilage and lateral tibial cartilage. Car-
tilage boundaries segmented by Operator 1 in July
2005 were used as the baseline “gold standard” mea-
sures for all experiments as this was the only dataset
available to us until recently. Manual segmentations
carried out as followup tests by Operators 1 and 2
in September 2006 provide target benchmarks. From
our database of “gold standard” cartilage outlines, we
randomly selected 5 patients, totalling 78 medial and
87 lateral image slices. Correspondences of 32 land-
marks for images of each dataset were obtained using
a Minimum Description Length (MDL) shape algo-
rithm (Thodberg, 2003). 5-fold cross-validation was
performed on the datasets for ASM, AAM, PAAM
and AFM to compare segmentation results.

All methods were initialised with the true center
of gravity (CoG) of the corresponding cartilage, cal-
culated by finding the mean of the 32 landmark lo-
cations. An optimal normal length of 3 was used
to search for landmark positions with ASM. For the
PAAM experiments, the patch size,k, was set to 14
and for the AFM experiments, steerable filters (Free-
man and Adelson, 1991) were used due to their reli-
ability and low dimensionality. A gabor jet with fil-
ter frequencyφ = 1 and directionsθ ∈ {π/2,3π/4}
proved to give the best descriptions for cartilage seg-
mentation.

The following measures were employed to com-
pare the different segmentation results, Goodness of
Fit (GOF), sensitivity, and the difference in area be-
tween the segmentation results and the “gold stan-
dard”. The GOF measure is defined as:

GOF =
TP

TP+FP+FN
, (9)

where TP represents true positive (segmented area
correctly classified as cartilage),FP represents false
positive (segmented area incorrectly classified as car-
tilage), andFN represents false negative (cartilage
area incorrectly classified as background). A GOF of
1 represents a perfect overlap with the “gold standard”
and a GOF of 0 represents no overlap with the “gold
standard”. Sensitivity is defined:

Sensitivity=
TP

No. of pixels in “gold standard” seg.
. (10)

Sensitivity measures the proportion of the “gold stan-
dard” that is segmented and provides a useful indica-
tion of oversegmentation or undersegmentation when

Table 1: Mean and standard deviation results of the Good-
ness of Fit (GOF), sensitivity, and difference in area when
compared to the “gold standard” for different segmentation
methods.

Medial Tibial GOF Sensitivity Area Diff.
Cartilage µ ± σ µ ± σ (mm2)

µ ± σ
ASM 0.60± 0.14 0.74± 0.14 10.27± 7.85

AAM 0.41± 0.15 0.56± 0.20 21.31± 14.22

PAAM 0.64± 0.15 0.74± 0.13 9.95± 7.38

AFM 0.54± 0.11 0.69± 0.10 9.08± 7.27

Manual Operator 1 0.82± 0.07 0.89± 0.06 3.47± 2.79

Manual Operator 2 0.79± 0.09 0.88± 0.08 5.17± 4.42

Lateral Tibial GOF Sensitivity Area Diff.
Cartilage µ ± σ µ ± σ (mm2)

µ ± σ
ASM 0.60± 0.16 0.74± 0.17 18.68± 16.85

AAM 0.48± 0.13 0.61± 0.19 30.35± 20.27

PAAM 0.72± 0.09 0.79± 0.10 15.76± 14.50

AFM 0.54± 0.20 0.69± 0.20 17.65± 17.77

Manual Operator 1 0.85± 0.06 0.92± 0.05 3.09± 2.67

Manual Operator 2 0.80± 0.08 0.88± 0.06 4.92± 3.64

combined with the GOF measure. GOF and sensitiv-
ity provide a measure of the segmentation accuracy
while the area difference provides an estimation of
measurement accuracy.

3.2 Results

The results of all experiments are given in Table 1,
and Figures 2 and 3 show typical result for each exper-
iment. PAAM produces the best segmentation results
for both medial and lateral tibial cartilage. It is the
only method from the four that models background
texture locally around the landmarks, taking into ac-
count the connectivity of the landmarks. The tex-
ture patch model includes both foreground and back-
ground, thus enabling PAAM to correctly locate the
cartilage boundaries with higher success.

AAM produces the worst results because it mod-
els only the texture within the cartilage. This leads to
poor performance because there is inherently a large
variation in texture due to the biochemically hetero-
geneous property of cartilage. Without modeling any
background information, it is difficult for AAM to lo-
cate the cartilage boundaries.

AFM produces reasonable results even though the
data in Table 1 ranks AFM as third best behind ASM
and PAAM. The segmented shapes of PAAM and
AFM are smoother than ASM and examples can be
observed in Figures 2 and 3. Background texture is
not used directly by AFM but represented by means
of features extracted by descriptors using steerable fil-
ters. AFM tends to oversegment images because the
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filter blurs the edges of the cartilage, thus making it
harder to locate the correct boundary.

Figure 2a displays a common problem that ASM
exhibits. Landmarks are attracted to regions with
strong edges, therefore in slices where the tibial and
femoral cartilage touch, there is no edge information
for the upper boundary of the tibial cartilage and ASM
locates the upper boundary of the femoral cartilage
instead. The resulting shape estimate from ASM also
tends to be uneven, compared to PAAM and AFM.
This is because when new landmark locations are
found, the pose and shape parameters are updated to
best match the shape model to these landmark points.
This step can potentially shift the shape model away
from the true landmark positions.

All methods perform very poorly on a few par-
ticular slices, namely slices located at the very ends
of the cartilage in the middle of the knee. On these
slices, the cartilage areas are very small and also dis-
play very poor contrast and high shape variability.
Even the manual operators exhibit some discrepancy
in their results for these slices.

4 CONCLUSION

In this paper, we have compared four different model-
based segmentation methods (ASM, AAM, PAAM
and AFM) for the purpose of tibial cartilage segmen-
tation. All four methods have been fine tuned so that
only the optimal settings for cartilage segmentation
were compared. In conclusion, methods that work on
local texture perform better for cartilage segmentation
due to a restriction to more relevant information being
used for regression and fitting. In addition, the use of
landmark connectivity for orientation consistency re-
sults in an even more specific description of the tex-
ture.
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(a) ASM

GOF = 0.70, Sens = 0.92, Area Diff. = 11.43mm2

 

(b) AAM

GOF = 0.53, Sens = 0.76, Area Diff. = 10.94mm2

 

(c) PAAM

GOF = 0.77, Sens = 0.87, Area Diff. = 0.78mm2

 

(d) AFM

GOF = 0.59, Sens = 0.70, Area Diff. = 0.92mm2

 

(e) Manual Operator 1

GOF = 0.88, Sens = 0.94, Area Diff. = 0.68mm2

 

(f) Manual Operator 2

GOF = 0.79, Sens = 0.91, Area Diff. = 4.54mm2

Figure 2: Example results for medial tibial cartilage. Seg-
mentations are given by the solid line and the “gold stan-
dard” by the dotted line. NOTE: Images are best viewed in
colour.

 

(a) ASM

GOF = 0.65, Sens = 0.72, Area Diff. = 16.70mm2

 

(b) AAM

GOF = 0.43, Sens = 0.44, Area Diff. = 51.56mm2

 

(c) PAAM

GOF = 0.79, Sens = 0.82, Area Diff. = 13.28mm2

 

(d) AFM

GOF = 0.69, Sens = 0.86, Area Diff. = 15.72mm2

 

(e) Manual Operator 1

GOF = 0.92, Sens = 0.95, Area Diff. = 1.42mm2

 

(f) Manual Operator 2

GOF = 0.88, Sens = 0.90, Area Diff. = 7.08mm2

Figure 3: Example results for lateral tibial cartilage. Seg-
mentations are given by the solid line and the “gold stan-
dard” by the dotted line. NOTE: Images are best viewed in
colour.
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