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Abstract: This paper addresses the problem of spherical image processing. Thanks to projective geometry, the omnidi-
rectional image can be presented as a function on sphere S2. The target application includes omnidirectional
image smoothing. We describe a new method of smoothing for spherical images. For that purpose, we in-
troduce a suitable Wiener filter and we use the Tikhonov method to these images. In order to compare their
performances, we present the most used classical spherical kernels.
We present several examples for filtering real and synthetical spherical images. a.

aThis project was financed by the D.G.A.

1 INTRODUCTION

Images defined on a spherical surface rather than in
the image plane arise in various domains like en-
vironment mapping, and medical imaging (Chung,
2006). . . . Omnidirectional images appear with distor-
sion (because of the used mirror) in the image plane
and are naturally defined on the sphere as shown in the
model of Geyer (Geyer and Daniilidis, 2001). Most
approaches analysing omnidirectional images applied
classical operators. However the analysis or the fil-
tering of these images by traditional methods pro-
duces erroneous results. In (Daniilidis et al., 2002),
Daniilidis proposed of the very first approaches of
adaptation of the operations of filtering to the omni-
directional images. The proposal of the authors is to
project the image plane to a non-deformed space (unit
sphere) (Geyer and Daniilidis, 2000).

The spherical images are obtained by stere-
ographic projection of omnidirectional image, as
shown in Fig.1.Daniilidis then define kernels in the
space of the spherical coordinates and propose to
carry out the convolution on the surface of the sphere.
In (Strauss and Comby, 2005), the authors present
new morphological operators that use the projective
property of omnidirectional sensor. These operators

Figure 1: Omnidirectional image of Office and the corre-
sponding spherical image.

make use of a structural element with a varying shape.
Another work (Ieng et al., 2003), advocates the prin-
ciple of kernel with varying shape to match indices
from two omnidirectional images. Except a few at-
tempts to adapt the method of processing omnidirec-
tional images, no normalization method has been es-
tablished for these images.
A simple technique for smoothing planar images is
the convolution of the image with a Gaussian kernel
as

g(x; t) =
1

4πkt
exp(− x2

4kt
)

Rather then just using this kernel for noise-removal, a
linear scale-space theory can be built upon the appli-
cation of this convolution kernel. This idea has been
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k
∂
∂t

u(x; t) (1)

In the case of omnidirectional images, the major dif-
ficulties of these approaches have to deal with explic-
itly include shrinkage, dependency of the smoothing
results on the mesh connectivity. In order to be able
to deal with well defined globally parameterized do-
main we restrict the class of omnidirectional images
to those which can be described as functions on the
sphere, as defined in the model of Geyer.
Diffusion smoothing of surfaces then corresponds
to convolution of the surface with the spherical
Gaussian.
We propose in this paper to adapt the classical Wiener
filter and the Tikhonov regularization to the spheri-
cal images. We compare the denoising performances
of these methods with the classical spherical kernels.
The remainder of this paper is structured as follows.
In the next section, we recall mathematical framework
related to spherical harmonics, which will be used for
the solution of the spherical diffusion equation, and
convolution on the sphere. In Section 3, we define
the most important classical spherical kernels, and we
describe the spherical form of Wiener and Tikhonov
filtering. Section 4 shows results of the spherical fil-
tering process applied to synthetical and real indoor
omnidirectional images. Finally we give some con-
clusions and future work.

2 SPHERICAL THEORY

Filtering is based on convolution operators. We
present in this section the various definitions of this
operation and the mathematical tools used for its im-
plementation.

2.1 Spherical Fourier Transform

We parametrize the unit sphere, embedded in R3, by
using the spherical coordinates η ∈ S2: η(θ,ϕ) =
(cos(ϕ)sin(θ),sin(ϕ)sin(θ),cos(θ)) with ϕ ∈ [0,2π[,
angle of longitude and θ ∈ [0,π], angle of colatitude
(latitude + π/2).
The effect of planar diffusion smoothing can be well

understood in the frequency domain as a low-pass fil-
ter. Since we are going to carry out the corresponding
analysis on the sphere we need a spherical analog of
the Fourier transform. Such a tool exists in the expan-
sion of a function into a series of spherical harmonic
functions.
Notice by Ylm the spherical harmonic of l(∈N) degree
and order m as follows

Ylm(θ,ϕ) =
√

2l +1
4π

(l−m)!
(l +m)!

Pm
l (cos(θ))eimϕ for m ≥ 0

where the Pm
l (x) are the polynomials of Legendre as-

sociated with l degree and order m. We can notice that
the spherical harmonics of l degree form a subspace
of L2(S2) of dimension 2l +1 which is invariant under
rotations of the sphere. Since the spherical harmonics
form an orthonormal basis for L2(S2), we have

f̂lm = f̂ (l,m) = 〈 f ,Ylm〉
where the scalar product on the sphere is defined as

〈 f ,h〉=
Z 2π

0

Z π

0
f (θ,ϕ)h(θ,ϕ)sin(θ)dθdϕ

The set of the coefficients f̂lm is called spherical
Fourier transform or spectrum of f. For the imple-
mentation, we will use the sampling theorem (Healy
et al., 1998).
Theorem: Let f ∈ L2(S2) be a bandlimited function
of bandwith B, then:

f̂lm =
√

2π
2B

2B−1

∑
j=0

2B−1

∑
k=0

a(B)
j f (θ j,ϕk)Ylm(θ j,ϕk)

for |m| ≤ l < B. The sampling grid is the equiangular
or lat-lon grid with θ j = π(2 j+1)

4B et ϕk = πk
B .

2.2 The Convolution on the Sphere

Two definitions were proposed to carry out a prod-
uct of Convolution on the sphere : that introduced
by Driscoll-Healy (Driscoll and Healy, 1994) and that
used, by Daniilidis (Daniilidis et al., 2002) and Wan-
delt (Wandelt and Górski, 2001).
We begin by introducing some notations.
We represent the sphere S2 as the quotient
SO(3)/SO(2) where SO(3) is the group of rotations
which acts on the sphere (Vilenkin, 1969). The rota-
tion of a function f ∈ L2(S2) by an element g∈ SO(3)
is then defined with the operator Λg such as

Λg f (η) = f (g−1η)
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4π
2l +1

f̂lmĥl0 (2)

We can observe that only the coefficients of spheri-
cal transform of the filter ĥlm with m = 0 are used in
expression (2). These coefficients correspond to the
zonal harmonics Yl0 and thus represent the invariant
part by rotation of the filter h. So the filtering opera-
tor is invariant under the actions of rotations.

3 SPHERICAL FILTERS

3.1 Spherical Kernels

The question which we put is to know to define
Gaussian on the sphere. Bülow (Bulow, 2004) pro-
posed to determine the Green function, as a solu-
tion of the spherical diffusion equation. The spherical
equation of diffusion is :

∆S2u(θ,φ, t) =
1
k

∂
∂t

u(θ,φ, t)

where

∆S2 =
1

sin(θ)
∂

∂θ

(
sin(θ)

∂
∂θ

)
+

1
sin2(θ)

∂2

∂2ϕ

Let us recall that the spherical harmonics are the
eigenfunctions of the spherical Laplace operator :

∆S2Yl,m =−l(l +1)Yl,m

Consequently, it is checked easily that the functions

ul,m(θ,φ, t) = Yl,m(θ,φ)exp(−l(l +1)kt)

are solutions of the spherical equation of diffusion.
To obtain the function of Green G, we force like initial
condition :

u(θ,φ,0) = G(θ,φ,0) := δS2(θ,φ)

where δ is defined by f (n0) =
R

S2 f (η)δS2(η)dη.
By using the decomposition of spherical Dirac in the
basis of the spherical harmonics, we obtain

G(.,0)= δS2 = ∑
l∈N

√
2l +1

4π
Yl,0 = ∑

l∈N

√
2l +1

4π
ul,0(.,0)

From where finally for the Green function

G(θ,φ, t) = ∑
l∈N

2l +1
4π

P0
l (cos(θ))e−l(l+1)kt

we carry out then the spherical Fourier transform to
find

Ĝ(., t)(l,m) =

{ √
2l+1

4π e−l(l+1)kt if m = 0
0 if not

Let us define another functions candidates to build
Gaussian on the sphere.

3.2 Spherical Gaussian

If we start with the definition of the Gaussian on a
plane, we can obtain the spherical Gaussian using the
inverse stereographic projection

Gs(θ,φ, t) = e−(tan(θ/2)/t)2

3.3 Poisson Kernel

This Kernel is given by the function

P(θ,φ, t) = ∑
n∈N

(2n+1)tnP0
n (cos(θ))

=
1− t2

(1−2t cos(θ)+ t2)3/2 for t ∈ [0,1]

This equation is the solution of the equation

∆S2P(θ,ϕ, t) =−t
∂2

∂t2 (hP(θ,ϕ, t))
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(2l +1)4π t l if m = 0
0 else

For more details, we refer to (Bulow, 2004).

3.4 Spherical Form of the Wiener Filter

We present in this section a Wiener filter adapted to
spherical functions.
We consider our original image f ∈ L2(S2), corrupted
by an additive white noise n. We denotes x = f +n,
the data, i.e. the corrupted image.
We seek to obtain the best possible estimate g of f
starting from our data x.
For that purpose we proceed to obtain the maximum
of the SNR defined as

SNR = 10log10
E(‖ f‖2)

E(‖ f −g‖2)

by minimizing the average quadratic error

e = E(‖ f −g‖2)

The image f and the estimator g are related to L2(S2),
whose spherical harmonics form a basis. As a conse-
quence, we can use the theorem of Riesz-Fischer to
obtain

e = E(∑
l∈N

∑
|m|≤l

∣∣∣ f̂ (l,m)− ĝ(l,m)
∣∣∣
2
)

We propose to search g as the result of a filter (of
impulse response h) applied to the data x, which is
equivalent to write g as

g =
1

2π
x∗h

We apply the convolution theorem of Driscoll-Healy,
we obtain :

e = E
(

∑
l∈N

∑
|m|≤l

∣∣∣∣∣ f̂ (l,m)−
√

4π
2l +1

x̂(l,m)ĥ(l,0)

∣∣∣∣∣

2 )

(3)
We must thus find the filter h which minimizes e, de-
fined in (3). We wish that this filter to be invariant
by rotation, i.e. of form

h(η) = ∑
k∈N

ĥ(k,0)Yk,0(η)

That amounts determining the ĥ(k,0) which mini-
mizes e, and so solve the equation

∂e

∂ĥ(k,0)
= 0

By considering that noise is a white noise with
standard deviation σ, we have E|n̂(k,m)|2 = σ2.

We assume
E| f̂ (k,m)|2 =

c
k2

where c is a constant to be chosen, we are led with

ĥ(k,0) =

√
2k +1

4π
1

1+
σ2k2

c

3.5 Regularization Process of Tikhonov

In 1977, Arsenin and Tikhonov (Tikhonov and Ars-
enin, 1977) have proposed a method for determining
the best possible estimator.
The idea is to find

min
f∈H1(S2)

Z
S2
|∇ f |2 +λ‖ f − x‖2

where as above, ‖.‖ represents the standard L2(S2)
norm. We recall that for a smooth function f with
compact support, we haveZ

|∇ f |2 =−
Z

f ∆ f

Therefore :Z
S2
|∇ f |2 +λ‖ f − x‖2 =−

Z
S2

f ∆ f +λ‖ f − x‖2

However the spherical harmonics, which form an or-
thonormal basis of L2(S2), are the eigenfunctions of
Laplace-Beltrami operator. Consequently, we obtain
Z

S2
|∇ f |2 +λ‖ f − x‖2 = ∑

l∈N
∑
|m|≤l

f̂ 2(l,m)l(l +1)+λ‖ f − x‖2

Then by using the Riesz-Fischer theorem, we have

J =
Z

S2
|∇ f |2 +λ‖ f − x‖2 =

∑
l∈N

∑
|m|≤l

f̂ 2(l,m)l(l+1)+λ ∑
l∈N

∑
|m|≤l

∣∣∣ f̂ (l,m)− x̂(l,m)
∣∣∣
2

Tikhonov methods aims to find the function f where
the minimum is achieved. However by using the ex-
pansion of f in the basis of the spherical harmonics,

f (η) = ∑
l∈N

∑
|m|≤l

f̂ (l,m)Yl,m(η) ∀η ∈ S2

We have to estimate the function J according to
f̂ (k, p).

∂J

∂ f̂ (k, p)
= 2k(k +1) f̂ (k, p)+2λ( f̂ (k, p)− x̂(k, p))
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∂ f̂ (k, p)
= 0

⇔ f̂ (k, p) =
λ

λ+ k(k +1)
x̂(k, p)

Let g be the estimator which minimizes the function
J. We infer from the computations above that

ĝ(k, p) =
λ

λ+ k(k +1)
x̂(k, p)

As for the Wiener filter, we suppose that the estimator
is the result of a filtering of the data, i.e.,

g =
1

2π
x∗h

with a h that is the impulse response of the filter of
restoration. We thus find

ĥ(k,0) =

√
2k +1

4π
1

1+
k(k +1)

λ
The filter h of restoration has a form similar to the
Wiener filter, that is a classical result in the framework
of the planar images denoising.

4 EXPERIMENTAL RESULTS

We have compared our denoising process on synthet-
ical, real indoor and outdoor omnidirectional images.
The used mirror is parabolic and verifies the prop-
erty of single effective viewpoint. So we can ap-

(a) Office image (b) Office image noised

Figure 2: Noised Office image with additive noise
N(σ,µ) = N(40,0).

ply the Geyer model and process the filtering on
spherical images. For the implementation, omnidi-
rectional images are projected on S2 and redefined on
the lat-lon grid. The spherical transform of images
and kernels are computed by using the yawtb tool-
box (http://rhea.tele.ucl.ac.be/yawtb/). The noise is
an additive white noise with varying standard devi-
ation σ and is added directly to the spherical images

Table 1: Optimal SNR for Office image N(σ,µ) = N(40,0).

Kernel Scale t SNR
Green 2.6650∗10−4 19.7852
Gaussian spherical 0.0164 19.7842
Wiener 2903000 19.1174
Tikhonov 1900 19.1013
Poisson 0.9850 18.6118

as seen in Fig.2. The scale is an important parameter
in the process, and the result of filtering depends on
this value. Fig. 3 shows an example of filtering results
(Green filter) with different scale value. For each fil-
ter, we search (numerically) the optimal scale, which
provides the highest SNR. This SNR is calculated on
the whole sphere, while the projected omnidirectional
image is defined on the hemisphere. The optimal SNR
is approximately the same whatever the filter and the
type of images (indoor or outdoor) as proved in Fig.4,
Fig.5, and Table 1, even if the Green function and the
gaussian kernel provide often ligthly higher SNR. We
have obtained similar results for other types of noise
(like exponential noise. . . ).
However if we carry out a zoom in some images,
see Fig.6 and Fig.7 we can notice (visually) that the
Wiener filter and the method of Tikhonov give further
precision on edges. This precision is independent of
position on the sphere, (close or far from the pole of
the sphere). The SNR calculated at different regions
on the sphere are similar, see Fig. 6. We can also
show this conclusion for various images. These re-
sults have a considerable benefit if we want to detect
edges, or extract important primitive from images.

5 CONCLUSION AND FUTURE
WORK

We presented a panorama on the tools and the
methods to treat the spherical images. We adapted the
Wiener filter and Tikhonov method in that case and
compared their performances to classical spherical
gaussian filters. The SNR obtained for various types
of images prove the effectiveness of these filters for
the denoising application. Moreover the treatments
can be carried out in real time. The filters are
invariant by rotation, the results are thus independent
of the position on the sphere. We also noticed that
the Wiener filter and Tikhonov regularization are
relatively better, if we want to analyse precisely some
parts of images for edge detection for example.

For the continuation of our work, we propose to
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Synthetical image (b) Noised synthetical im-
age N(σ,µ) = N(40,0) (c) Green result filtering at scale
t = 5e−10 (d) Green result filtering at scale t = 1.375e−5

(e) Green result filtering at scale t = 1.375e−5 (f) Green re-
sult filtering at scale t = 5−4.

develop a harmonization of methods of edge detec-
tion for spherical images, and we have to apply the
detectors to the omnidirectional images.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: (a) Original Frame Image (b) Noised Frame by
N(σ,µ) = N(10,0) (c) Evolution of the snr (green filter) of
image Frame with scale (d) Green result at scale t = 2.10−5

(e) Evolution of the snr (Tikhonv method) of image Frame
with scale (f) Tikhonv result at scale t = 42500 (g) Evolu-
tion of the snr (Wiener filer) of image Frame with scale (h)
Wiener filer result at scale t = 4203000.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: (a) Original Aerial image of Picardie (b) Noised
Aerial image by N(σ,µ) = N(10,0) (c) Evolution of the
snr (spherical gaussian filter) of Aerial image with scale
(f) Spherical gaussian result at scale t = 0.0081 (e) Evo-
lution of the snr (Wiener filter) of Aerial image with scale
(f) Wiener result at scale t = 1153000 (e) Evolution of the
snr (Poisson filter) of Aerial image with scale (f) Poisson
filtering result at scale t = 0.9950.

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6: (a) Zoom on smoothing of Frame in two zones (b)
Noised image of zone close to pole σ = 40, (c) Green filter-
ing result SNR= 9.8385 (d) Poisson filtering result SNR=
10.1110 (e) Tikhonov filtering result SNR= 10.0101 (f)
Noised image of zone far from the pole σ = 40, (g) Green
filtering result SNR= 11.2535 (h) Tikhonov filtering result
SNR= 10.7965 (i) Wiener filer result SNR= 10.8076.
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(a) (b)

(c) (d)

Figure 7: Zoom on smoothing of synthetical Edge im-
age (a) Noised image σ = 40, (b) Green filtering result
SNR= 13.6474 (c) Spherical Gaussian filtering result SNR=
13.6527 (d) Wiener filtering result SNR=13.7851.
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