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Abstract: Symmetry detection is an important problem with many applications in pattern recognition, computer vision
and computational geometry. In this paper, we propose a novel algorithm for computing a hyperplane of re-
flexive symmetry of a point set in arbitrary dimension with approximate symmetry. The algorithm is based on
the geometric hashing technique. In addition, we consider a relation between the perfect reflective symmetry
and the principal components of shapes, a relation that was already a base of few heuristic approaches that
tackle the symmetry problem in 2D and 3D. From mechanics, it is known that, ifH is a plane of reflective
symmetry of the 3D rigid body, then a principal component of the body is orthogonal toH. Here we extend
that result to any point set (continuous or discrete) in arbitrary dimension.

1 INTRODUCTION AND
RELATED WORK

Symmetry is one of the most important features of
shapes and objects, which is proved to be a power-
ful concept in solving problems in many areas includ-
ing detection, recognition, classification, reconstruc-
tion and matching of different geometrics shapes, as
well as compression of their representations. In gen-
eral, symmetry in Euclidean space can be defined in
terms of three transformations: translation, rotation
and reflection. A subsetP of Rd is approximately
symmetricwith respect to transformation T if for a
big enough subsetP′ of P, thedistancebetweenT(P′)
andP′ is less then small constantε, where the distance
is measured using some appropriate metric, for exam-
ple Hausdorff,RMS (root mean square)or bottleneck
distance measuresas most commonly used metrics.
If P′ = P andε = 0, thenT(P) = P, and we say that
P is perfectly symmetricwith respect toT. In this
paper we are interested in both approximate and per-
fect symmetry in terms of transformation of reflection
through a hyperplane.

In what follows, we briefly survey the most rel-
evant existing algorithms and techniques, we are
aware of, for identifying both perfect and approxi-

mate symmetry.

Traditional approaches consider perfect symme-
try in discrete settings as a global feature. Some of
these methods reduced the symmetry detection prob-
lem to a detection of symmetries in circular strings
(Atallah, 1985; Wolter et al., 1985; Highnam, 1986;
Zhang and Huebner, 2002), for which efficient so-
lutions are known (Knuth et al., 1977). Other effi-
cient algorithms based on the octree representation
(Minovic et al., 1993), the extended Gaussian im-
age (Sun and Sherrah, 1997) or the singular value
decomposition of the points of the model (Shah and
Sorensen, 2005) also have been proposed. Further,
methods for describing local symmetries were devel-
oped. (Blum, 1967) proposed an algorithm based on
a medial axis transform. An algorithm presented in
(Thrun and Wegbreit, 2005) detects perfect symme-
tries in range images, exploiting taxonomy of differ-
ent types of symmetries and relations between them,
by explicitly searching an increasing sets of points.
A very recent approach, based on generalized mo-
ment functions and their spherical harmonics repre-
sentation, was introduced by (Martinet et al., 2006).
However, since the above mentioned methods con-
sider only perfect symmetries, they may be inaccu-
rate in detection the symmetry for shapes with added
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noise or missing data.

As a result to this challenge, several algorithms
for measuring imperfect symmetries have been de-
veloped. For example, Zabrodsky et al. proposed
an algorithm based on ameasure of symmetry, de-
fined as minimum mean squared distance required to
transform a shape into a symmetric shape (Zabrodsky
et al., 1993; Zabrodsky et al., 1995). A method of
detecting a line of approximate symmetry of 2D im-
ages considering only the boundary of the image, us-
ing a hierarchy of certain directional codes, was pre-
sented in (Parui and Majumder, 1983). Marola in-
troduced a measure of reflective symmetry with re-
spect to a given axis where global reflective symmetry
is found by roughly estimating the axis location and
then fine tuning the location by minimizing the sym-
metry measure (Marola, 1989). Kazhdan et al. intro-
duced thesymmetry descriptors, a collection of spher-
ical functions that describe the measure of a model
symmetry with respect to every axis passing through
the center of gravity (Kazhdan et al., 2003; Kazhdan
et al., 2004). Very recently, Podolak et al. proposed
theplanar reflective symmetry transform, which mea-
sures the symmetry of an object with respect to all
planes passing through its bounding volume (Podolak
et al., 2006). A method of detecting planes of reflec-
tive symmetry, by exploiting the topological config-
uration of the edges of a 2D sketch of a 3D objects,
was developed by (Zou and Lee, 2005). Mitra et al.
proposed a method of finding partial and approximate
symmetry in 3D objects (Mitra et al., 2006). Their ap-
proach relies on matching geometry signatures (based
on the concept of normal cycles) that are used to ac-
cumulate evidence for symmetries in an appropriate
transformation space.

Till now, most of the research was dedicated to
investigation of symmetry in 2D and 3D. Here, we
consider two approaches which lead to algorithms in
arbitrary dimension. The contribution of this work is
two-fold. First, we propose a novel algorithm, based
on geometric hashing, for computing the reflectional
symmetry of point sets with approximate symmetry in
arbitrary dimension. Second, we give a proof of the
relation between the perfect reflective symmetry and
the principal components of discrete or continuous
geometrical objects in arbitrary dimensions. The rela-
tion, in the case when rigid objects in 3D are consid-
ered, is known from mechanics and is established by
analyzing a moment of inertia (Symon, 1971). With-
out rigorous proof for other cases than 3D rigid ob-
jects, this result was a base as a heuristic in several
symmetry detection algorithms (Minovic et al., 1993;
O’Mara and Owens, 1996; Sun and Sherrah, 1997).
Banerjee et al. also tackle this relation in 3D, in the

case when the objects are represented as 3D binary
arrays, but a formal proof is missing in their paper
(Banerjee et al., 1994).

The rest of the paper is organized as follows: In
Section 2 we present the algorithm based on geomet-
ric hashing for computing a reflectional symmetry of
a point set with approximate symmetry. The behavior
of the algorithm in the 2D case is estimated by prob-
abilistic analysis and evaluated on real and synthetic
data. In Section 3, we give a proof of the relation be-
tween the perfect reflective symmetry and the princi-
pal components of geometrical objects in arbitrary di-
mensions. Conclusions and indications of future work
are given in Section 4.

2 DETECTION OF REFLECTIVE
SYMMETRY: GEOMETRIC
HASHING APPROACH

Geometric hashing is a recognition technique based
on matching of transformation-invariant object repre-
sentations stored in a hash table (Wolfson and Rigout-
sos, 1997; Alt and Guibas, 1999). Here, we assume
that the given point setP⊆Rd is approximately sym-
metric, and our goal is to compute the hyperplane of
symmetryHsym with a geometric hashing technique.
More precisely, hashing is utilized to compute the
normal vector ofHsym. Additionally, one could use
the fact that the center of gravity ofP lies onHsym in
the case whenP has a perfect symmetry, or with high
probability near toHsym in the case whenP is approx-
imately symmetric. However, to be on the safe side,
if some outliers cause that the center of gravity is far
from Hsym, we can apply a second phase of geometric
hashing to compute a point onHsym.

We start from the hypothesis that each point pair
(p,q) is a candidate for a pair of points that are sym-
metric with respect toHsym. Without loss of gener-
ality, we assume that the first coordinate ofp is less
than or equal to the first coordinate ofq. If p is sym-
metric toq, the vector

−→
pq is orthogonal toHsym. We

note that this vector is characterized uniquely by the
tuple of angles(α2,α3, . . . ,αd) whereαi is the angle
between

−→
pq and thei-th vector of the standard base of

Rd.
Since we assume at least a weak form of sym-

metry, we can expect that the number of point pairs
(approximately) symmetric regardingHsym, is bigger
than the number of point pairs (approximately) sym-
metric regarding any other hyperplaneH. For exam-
ple, if we have a perfect symmetric point set withn
points, then we haven2 point pairs perfectly symmet-
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ric regardingHsym. In contrast to that, the hyperplanes
corresponding to remaining

(n
2

)
− n

2 point pairs are
randomly distributed. See Fig. 1 for illustration in
R2.
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Figure 1: The angleα betweeny-axis and the line seg-
mentss1s′1 ands2s′2, formed by symmetric points, occurs
two times. All other angles occurs only once.

In the standard approach of geometric hashing
a numberK ∈ N is fixed and the interval[0,π] is
subdivided intoK subintervals of equal lengthπ/K.
Then, the hash function maps a tuple of angles
(α2,α3, . . . ,αd) to a tuple of integers(a2,a3, . . . ,ad),
where eachai denotes the index of the subinterval
containingαi , i.e.,

ai =
⌊

αi ·K
π

⌋
.

Equivalently one can describe this approach with
a so-called voting scheme by subdividing the cube
[0,π]d−1 into a grid with Kd−1 cells. Each cell is
equipped with a counter, collecting votes of all point
pairs whichs angle tuple is contained in the cell. In the
end one has to search for the cell with the maximum
number of votes. However, this simple idea has some
drawbacks related to the choice ofK. SinceKd−1 is a
lower bound for both, time and storage complexity of
the algorithm,K should not be too large. Moreover,
if K is large, the noise might cause that the peak of
votes is distributed over a larger cluster of cells. On
the other side, ifK is small, the preciseness of the re-
sult is not satisfactory.

We overcome these problems generalizing an idea
from (Pleißner et al., 1999) that combines a rather
coarse grid structure with a quite precise information
about the normal vector. To this end, we use coun-
ters for the grid’s vertices instead of counters for the
grid’s cells. Any vote(α2,α3, . . . ,αd) for a grid cell
(a2, . . . ,ad) will be distributed to the incident vertices
of the cell such that vertices close to(α2,α3, . . . ,αd)
get a larger portion of the vote than more distant ver-
tices.

v

v by the shaded area

increasing the score of

vopp

α

Figure 2: Updating the score for the angle vectorα =
(α1,α2).

To explain this idea more precisely, we introduce
some more notations. LetQ be a grid cell, andv a grid
vertex incident withQ. Among the vertices incident
with Q, there is exactly one, called the opposite ver-
tex vopp, that differs in alld−1 coordinates fromv.
If ~α = (α2,α3, · · · ,αd) is a vote forQ (i.e., a point in
Q) we denote byQ(~α,v) the (axis-parallel) subcube
of Q spanned by the points~α andv. It is clear that the
closer~α is tov the larger is the volume ofQ(~α,vopp).
Thus, the unit score of~α will be distributed to all
vertices incident withQ such that each vertexv gets
the scorevol(Q(~α),vopp)/vol(Q). See Figure 2 for
illustration inR3. We remark thatKd−1 counters suf-
fice for (K +1)d−1 grid vertices because the scoring
scheme must be treated as cyclic structure in the sense
that any vertex of the form(β2, . . . ,π, . . . ,βd) is iden-
tified with (π−β2, . . . ,0, . . . ,π−βd).

Outline of the algorithm.

Input: A set ofn pointsP∈ Rd,d ≥ 2, with approxi-
mate symmetry.
Output: An approximation ofHsym.

1. Let X be the set of all point pairs(p,q) from P
such that the first coordinate ofp is less than or
equal to the first coordinate ofq. Compute for
each pair the angle tuple~α = (α2, . . . ,αd).

2. Install a voting scheme ofKd−1 counters and set
all counters to 0.

3. For each(p,q) ∈ X with ~α = (α2, . . . ,αd) deter-
mine the corresponding grid cellQ. For all ver-
ticesv incident withQ, add to the counter ofv the
votevol(Q(~α),vopp)/vol(Q).

4. Search for the vertexv = vmax with the largest
scorew. Compute the angle tuple of the approxi-
mate normal vector ofHsymas the weighted center
of gravity of v and its neighboring vertices with
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the following formula:

~β =
wv+∑d

i=2w+
i v+

i +∑d
i=2w−

i v−i
w+∑d

i=2w+
i +∑d

i=2w−
i

,

where v+
i ,v−i ,2 ≤ i ≤ d, denote the neighbor-

ing vertices ofv, andw+
i ,w−

i their corresponding
scores. Let~nbe a normal vector inRd correspond-
ing to the angle tuple~β.

5. Approximate a point onHsym selecting all pairs
(p,q) ∈ X that vote forvmax (i.e., ~α is in a cell in-
cident withvmax). For each selected pair project
the centerc = (p+ q)/2 onto the line spanned
by the normal vector~n and store the position of
the projected point on that line in a 1-dimensional
scoring scheme. Use the maximal score to extrap-
olate the location of a point onHsym analogously
as in 4.

Taking into account that we can keep the parameter
K small, the crucial step of the algorithm is the third
one, because it requires the processing ofΘ(n2) point
pairs. However, it is possible to reduce this effort un-
der the assumption that the center of gravityc(P) is
close toHsym. This holds whenever the points without
symmetric counterpart are distributed regularly in the
sense that their center of gravity is close to the center
of gravity of the symmetric point set. In this case it
is sufficient to consider votes of pairs(p,q) of points
with nearly equal distances toc(P). If δ is a bound for
both, the distance ofc(P) to Hsym and the distortion
of the symmetric counterpart of a point with respect
to Hsym, the first step of the algorithm can be replaced
as follows:

• Compute the center of gravityc(P).
• Order the points ofP with respect to the distance

to c(P).
• For all points q ∈ P find the first point pi

and the last point p j in the ordered list
such thatdist(pi ,c(P)) ≥ dist(q,c(P))− 2δ and
dist(p j ,c(P)) ≤ dist(q,c(P)) + 2δ and form X
from the pairs{q, pk}, i ≤ k≤ j.

Although this modification does not improve the run
time in the worst case, it effects a remarkable speed
up of the algorithm for real world data.

2.1 Probabilistic Analysis and Evaluation
of the Algorithm in 2D Case

The 2D version of the algorithm has been imple-
mented and tested on real and synthetic data. The
generation of the synthetic data is based on a prob-
abilistic model, which additionally can be used for

λ

λ

B+

B−

p−

p+

p−
ǫ

α

∼

Figure 3: Point set generation.

a probabilistic analysis of the reliability of the algo-
rithm.

The model incorporates the following two aspects
of an approximately symmetric point setP. First, for
the majority of the pointsp ∈ P there is a counter-
part p̃ that is located close to the symmetric position
of p, where the symmetry, with out loss of generality,
is defined with respect to thex-axis. Second, there
is a smaller subset of points inP without symmetric
counterpart. To obtain such a point set, we apply the
following procedure (see Fig. 3 for illustration). In
the upper half of the unit ballB+, we uniformly gen-
erate a random point setP+ with npoints. In the lower
half B− we reflect the point setP+ over thex-axis and
perturb it randomly. So, we obtain the set of points
P̃− = {(x±δx,−y±δy) | (x,y) ∈ P+}, where (δx, δy)
is random point from the ballB((0,0),ε). Addition-
ally, we generate a random point setM in B, with
m points, which do not have symmetric counterpart.
Point setM represents an additional noise in the form
of missing/extra points in the input data set.

Most pairs of symmetric points span a line that
is nearly parallel to they-axis. A vote of such pair
will be called agoodvote. Nevertheless, for points
p+ ∈ P+ that are close to thex-axis the perturbation
of p− might cause a bigger angleα between they-
axis and the line spanned bỹp− andp+. A vote from
such point pairs, as well as votes from nonsymmetric
point pairs, will be calledbad. Thus, we introduce a
parameterλ > 0 defining a stripe of width 2λ along
thex-axis such that all symmetric point pairs without
this stripe have good votes.

Our goal is to derive an upper bound forε that
makes almost sure, that the given symmetry line cor-
responds to a maximal peak in the scoring scheme.
We first estimate the width of the interval collecting
the votes of the majority of the correct point pairs re-
garding to the symmetry line. On the other side, we
will show that the probability, that another interval of
the the same width would collect the same order of
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Table 1: Empirical probability of finding correct line of reflective symmetry for different values of the ”noise” parametersε
andk.

k \ ε 0.01 0.005 0.004 0.003 0.002 0.001 0.0
0.9 0.90 0.92 0.93 0.94 0.94 0.95 0.95
0.8 0.91 0.93 0.94 0.95 0.95 0.96 0.96
0.7 0.91 0.93 0.94 0.94 0.95 0.96 0.97
0.6 0.94 0.93 0.96 0.96 0.97 0.99 0.99
0.5 0.96 0.99 0.96 0.99 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

votes, is very small for boundedε.
Since the scoring scheme is a cyclic structure, it

also makes sense to speak about negative angles: es-
pecially, anglesα ∈ (π

2 ,π) will be identified with the
negative anglesα−π ∈ (−π

2 ,0). According to Fig. 3,
for a symmetric point pair outside theλ stripe we have
the following bound on the angleα which defines the
vote of the pair: sinα ≤ ε

2λ , or |α| ≤ arcsin ε
2λ . Since

arcsinε
h ≤ π

2
ε
h ≤ π

2
ε

2λ , we have

|α| ≤ arcsin
ε

2λ
≤ πε

4λ
. (1)

We setγ(ε,λ) := πε
4λ and introduce for any angleβ the

random variableVβ counting all votes of the random
point setP that fall into the interval[β− γ(ε,λ),β +
γ(ε,λ)].

Let A1 = π/2 denote the area of the upper half
of the unit ball andA2 = 2λ denote the area of
the rectangle over the horizontal diameter of the
unit ball with heightλ. Thus, the probability that
a point p ∈ P+ generates a good pair is at least
q = A1−A2

A1
= (1− 4λ

π ). SinceV0 is at least the sumS
of n independent variables

Xi =
{

1 with probabilityq;
0 with probability 1−q,

we have
E(V0)≥ E(S) = nq, (2)

and
Pr[V0 < t]≤ Pr[S< t], t > 0. (3)

Combining (3) with the Chernoff inequality
Pr[S< E[S]− t]≤ e−2t2/n, for t = E[S]/2 = nq/2,
we obtain the following estimation:

Pr(V0 < nq/2)≤ e−q2n/2. (4)

LetN≤
(2n+m

2

)
be the number of points pairs with bad

votes, and consider an angleβ, where|β| > 2γ(ε,λ),

i.e.,Xβ doesn’t count any good vote. The expectation
of Xβ is

E(Xβ) = N
2γ(ε,λ)

π
= N

ε
2λ

. (5)

Applying the Markov inequalityPr[Xβ > t]≤ E(Xβ)
t ,

for t = nq/2, we obtain

Pr[Xβ > nq/2]≤ Nε
λqn

. (6)

We would like to note that in the case ofXβ, we can-
not apply any of the Chernoff’s inequalities, which in
general give better bounds than the Markov inequal-
ity, becauseXβ is not a sum of independent random
variables.

Now, we come to the ultimate goal of this analysis
- to estimatePr[Vβ >V0] and to study when it is small,
i.e., when the algorithm gives a correct answer with
high probability. From

Pr[Vβ > V0]≤ Pr[Vβ > t]+Pr[V0 < t], t > 0, (7)

(4) and (6), we obtain

Pr[Vβ > V0]≤ e−q2n/2 +
Nε

λπq
. (8)

The first term of the right side of (8) is signifi-
cantly smaller then the second term. This can be ex-
plained by the fact that the first term was obtained by
the Chernoff inequality, and the second term by the
weaker Markov inequality. However, forε = o(1

n) the
second term will be also small, and then the algorithm
will work well with high probability.

As described above, we randomly generated 100
point sets with same parametersε andk, wherek is
the ratio between the number of additional points and
the number of good point pairs (k = m/n). Table 1
shows the empirical probability of finding the correct
angle of the symmetry line. We present here only
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those combination ofε and k for which the empiri-
cal probability was at least 0.9. The results indicate
that the algorithms is less sensitive to noise, due to
missing/extra data, then to noise that comes from im-
perfect symmetry of the points. This conclusion is
consistent with the theoretical analysis we have ob-
tained. Namely,ε andN occur at the same place in
the last term of the relation (8). The number of addi-
tional pointsm occurs in the relation (8) throughN.
The other variable which determinesN is n, and its
contribution to the value ofN is bigger than that ofm.
Therefore,m has smaller influence to the expression
thanε.

We tested the algorithm also on real data sets. The
tests were performed on pore patterns of copepods - a
group of small crustaceans found in the sea and nearly
every freshwater habitat (see Fig. 4). The pores in a
pattern were detected as points by the method based
on a combination of hierarchical watershed transfor-
mation and feature extraction methods presented in
(Pleißner et al., 1999). The algorithm successfully de-
tected the symmetry line because the extracted point
sets have relatively good reflective symmetry, and ma-
jority of the points (around 90%) have a symmetric
counterpart.

3 DETECTION OF REFLECTIVE
SYMMETRY: PCA APPROACH

Another approach for an efficient detection of the
hyperplane of perfect reflective symmetry in arbi-
trary dimension is that based on principal component
analysis (Jolliffe, 2002). To the best of our knowl-
edge, this approach was used as heuristic without rig-
orous proof (also confirmed in communication with
other researchers in this area (O’Mara and Owens,
2005)). A relation between the principal components
and symmetry of an object, in the case of rigid ob-
jects in 3D, was establish in mechanics by analyzing
a moment of inertia (Symon, 1971). This result, in
the context of detecting the symmetry, was first ex-
ploit by (Minovic et al., 1993). Here we extend that
result to any set of points (continuous or discrete) in
arbitrary dimension. The central idea and motivation
of PCA (also known as the Karhunen-Loeve trans-
form, or the Hotelling transform) is to reduce the di-
mensionality of a data set by identifyingthe most sig-
nificant directions (principal components). Let P =
{p1, p2, . . . , pm}, wherepi is ad-dimensional vector,
andc = (c1,c2, . . . ,cd) ∈ Rd be the center of gravity
of P. For 1≤ k ≤ d, we usepik to denote thek-th
coordinate of the vectorpi . Given two vectorsu and
v, we use〈u,v〉 to denote their inner product. For any

Figure 4: Left side: illustrations of different types of cope-
pods. Right side: a pore pattern of a copepod.

unit vectorv∈ Rd, thevariance of P in direction vis

var(P,v) =
1
m

m

∑
i=1
〈pi −c,v〉2. (9)

The most significant direction corresponds to the unit
vector v1 such thatvar(P,v1) is maximum. In gen-
eral, after identifying thej most significant directions
B j = {v1,v2, . . . ,v j}, the ( j + 1)-th most significant
direction corresponds to the unit vectorv j+1 such that
var(P,v j+1) is maximum among all unit vectors per-
pendicular tov1,v2, . . . ,v j .

It can be verified that for any unit vectorv∈ Rd,

var(P,v) = 〈Cv,v〉, (10)

whereC is thecovariance matrixof P. C is a symmet-
ric d×d matrix where thei j -th component,Ci j ,1≤
i, j ≤ d, is defined as

Ci j =
1
m

m

∑
k=1

(pik −ci)(p jk −c j). (11)

The procedure of finding the most significant di-
rections, in the sense mentioned above, can be formu-
lated as an eigenvalue problem. Ifλ1 > λ2 > · · ·> λd
are the eigenvalues ofC, then the unit eigenvectorv j
for λ j is the j-th most significant direction. Allλ js
are non-negative andλ j = var(P,v j). Since the ma-
trix C is symmetric positive definite, its eigenvectors
are orthogonal. If the eigenvalues are not distinct, the
eigenvectors are not unique. In this case, an orthog-
onal basis of eigenvectors is chosen arbitrary. How-
ever, we can achieve distinct eigenvalues by a slight
perturbation of the point set.

In the case whenP is a continuous set ofd-
dimensional vectors, all above expressions have anal-
ogons defined in terms of integrals instead of finite
sums. Due to the space limitation, we omit them here.

Now, we prove the following connection between
hyperplane reflective symmetry and principal compo-
nents.
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Theorem 3.1 Let P be a d-dimensional point set
symmetric with respect to a hyperplane Hsym and as-
sume that the covariance matrix C has d different
eigenvalues. Then, a principal component of P is or-
thogonal to Hsym.

Proof. Without loss of generality, we can assume that
the hyperplane of symmetry is spanned by the lastd−
1 standard base vectors of thed-dimensional space
and the center of gravity of the point set coincides
with the origin of thed-dimensional space, i.e.,c =
(0,0, . . . ,0). Then, the componentsC1 j andCj1 are 0
for 2≤ j ≤ d, and the covariance matrix has the form:

C =




C11 0 . . . 0
0 C22 . . . C2d
...

...
.. .

...
0 Cd2 . . . Cdd


 (12)

Its characteristic polynomial is

det(C−λ I) = (C11−λ) f (λ), (13)

where f (λ) is a polynomial of degreed−1, with co-
efficients determined by the elements of the(d−1)×
(d−1) submatrix ofC. From this it follows thatC11
is a solution of the characteristic equation, i.e., it is an
eigenvalue ofC and the vector (1, 0, ...,0) is its cor-
responding eigenvector (principal component), which
is orthogonal to the assumed hyperplane of symmetry.
�

As an immediate consequence of Theorem 3.1 we
have:

Corollary 3.2 Let P be a perfectly symmetric point
set in arbitrary dimension. Then, any hyperplane of
reflective symmetry is spanned by n-1 principal axes
of P.

The corollary implies a straightforward algorithm for
finding the hyperplane of reflective symmetry of a
point set in arbitrary dimension.

Outline of the algorithm.
Input: A set ofn pointsP∈ Rd,d ≥ 2, with approxi-
mate symmetry.
Output: An approximation ofHsym.

1. Compute the covariance matrixC of P.

2. Compute the eigenvectors ofC and the candidate
hyperplanes of reflective symmetry.

3. Reflect the points through every candidate hyper-
plane.

4. Find if each reflected point is enough close to a
point inP. The correspondence between reflected
points and points inP is bijection.

The first and third step of the algorithm have linear
time complexity in the number of points. Computa-
tion of the eigenvectors, whend is not very large, can
be done inO(d3) time, for example with Jacobi orQR
method (Press et al., 1995). Computing the candidate
hyperplanes can be done inO(d). Therefore, for fixed
d, the time complexity of the second step is constant.
For very larged, the problem of computing eigenval-
ues is non-trivial. In practice, the above mentioned
methods for computing eigenvalues converge rapidly.
In theory, it is unclear how to bound the running time
combinatorially and how to compute the eigenvalues
in decreasing order. In (Cheng et al., 2005) a mod-
ification of thePower method(Parlett, 1998) is pre-
sented, which can give a guaranteed approximation
of the eigenvalues with high probability. However,
for reasonable bigd the most expensive step is the
forth one. Here we can apply an algorithm for nearest
neighbor search, for example the algorithm based on
Voronoi diagram, which together with preprocessing
has run time complexityO(nlogn), d = 2, orO(n⌈

d
2 ⌉),

d ≥ 3. If we consider point sets with perfect symme-
try, then in the 4-th step, it suffices to check if the
reflection of a point ofP is identical with other point
of P. For this, we will need to sort the points lexi-
cographically, and since this is computationally most
expensive part in the whole algorithm, it follows that
the above algorithm in the case of detecting perfect
symmetry has time complexityO(nlogn) in arbitrary
dimension.

In what follows, we discuss two problems that
may arise in theory, but are relatively uncommon in
practice. The first one considers the case when the
eigenvalues are not distinct, and the other the case
when one or more variables are zero.

Equality of eigenvalues, and hence equality of
variances of PCs, will occur for certain patterned ma-
trices. The effect of this occurrence is that for a group
of q equal eigenvalues, the correspondingq eigen-
vectors span a certain uniqueq-dimensional space,
but, within this space, they are, apart from being or-
thogonal to one another, arbitrary. In the context of
our problem, it means that thed-dimensional point
set will have exactlyd candidates as hyperplanes of
symmetry only when the eigenvalues of the covari-
ance matrix are distinct. For example, if we have 3-
dimensional point set, then if exactly 2 eigenvalues
of the covariance matrix are equal, than the point set
might has rotational and reflective symmetry. If the
all 3 are equal, the point set might have any type of
symmetry, including spherical symmetry. To justify
this geometrically, we can imagine what happens to
the covariance ellipsoid in this cases. For example,
in the case when all 3 eigenvalues are equal it be-
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comes a ball. In the case when the eigenvalues are
not distinct, we can slightly perturb the point set, and
obtain unique approximate hyperplanes of reflective
symmetry.

The case whenq variances equal zero, implies
that the rank of covariance matrix of the point set
diminishes forq. Therefore we can reduce thed-
dimensional problem to a (d− q)-dimensional prob-
lem.

Beside its simplicity and efficiency, as it is known,
detecting symmetry by PCA has two drawbacks. PCA
fails to identify potential hyperplanes of symmetry,
when the eigenvalues of the covariance matrix of the
object are not distinct. The second drawback is that
PCA approach cannot guaranty the correct identifica-
tion when the symmetry of the shape is too weak.

4 CONCLUSION AND FUTURE
WORK

The most of the research effort on symmetry detection
was dedicated to shapes and object in 2D and 3D. In
this paper, we proposed a novel algorithm which is
also able to detect a hyperplane of reflective symme-
try in arbitrary dimension. The algorithm is based on
the modified version of geometric hashing. We have
implemented a 2D variant of the algorithm. The be-
havior of the algorithm was analyzed with a proba-
bilistic model. The tests on real and synthetic data
showed that the algorithm is robust when the symme-
try is not too weak, and that it is quite insensitive on
outlayers.

The second contribution of this paper is the proof
of the relation between the reflective symmetry and
principal components of any type of symmetric ge-
ometric shapes in arbitrary dimension. The only re-
lated result to this is the result known from the me-
chanics, which establish the above relation for rigid
bodies in 3D. We present here a stronger result, which
confirms this relation for any symmetric geometric
shape in arbitrary dimension. That opens a possibility
to generalize some already known ideas from 2D and
3D in higher dimensions.

An implementation of the geometric hashing al-
gorithm in higher dimensions and estimations of its
behavior is one of the tasks for future work. Of
course, the 3D case is of the biggest practical impor-
tance. Comparing the results obtained by both here
presented algorithms, as well as comparing them with
other algorithms for detecting reflective symmetry is
of interest.
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