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Abstract: Many recent techniques in Automatic Image Annotation use a description of image content based on visual 
symbolic elements associating textual labels through symbolic connection techniques. These symbolic 
visual elements, called visual terms, are obtained by a tokenization process starting from the values of 
features extracted from the training images data set. An interesting issue for this approach is to exploit, 
through information fusion, the representations with visual terms derived by different image features. We 
show techniques for the integration of visual information from different image features and compare the 
results achieved by them.  

1 INTRODUCTION 

Automatic image annotation (AIA) is a process of 
associating a test image with a set of text labels 
regarding image content. Different techniques and 
models have been proposed for AIA aiming at 
binding visual information in terms of contents with 
verbal information contained in these labels. Many 
statistical models have been used to characterize the 
joint distribution of the keywords and the visual 
features in a picture. Some recent ones are: 
Translation Model (TM) (Duygulu et al., 2002), 
Cross Media Relevant Model (CMRM) (Jeon et al., 
2003), Maximum Entropy (ME) (Jeon and 
Manmatha, 2004), Markov Random Field (MRF) 
(Carbonetto et al., 2004), Multiple Bernoulli 
Relevance Model (MBRM) (Feng et al., 2004), 
Conditional Random Field (CRF)(He et al., 2004) . 
AIA can be a useful tool to annotate many available 
images so that concept based image retrieval, as 
opposed to content based image retrieval, can be 
performed. 

In this paper we consider the connection among 
image and labels at a coarse level with a set of 50 
classes used to divide the images into different 
categories and bind the class labels to the images 

visual content. We adopt the AIA techniques used in 
(Gao et al., 2006) and conduct an experimental study  
about the use of multiple sets of image features and 
how they can be combined to perform image 
classification and annotation.  

We consider low level features, such as color and 
texture, and perform feature extraction on regular 
16x16-pixel image grids. These feature vectors are 
then used to build multiple codebooks, each forming 
a visual dictionary so that each image can be 
tokenized into arrays of symbols, one for each visual 
codebook. By grouping neighboring symbols to 
form visual sequences of terms, similar to sentences 
in text, each image can then be represented by a 
vector with each element characterizing a co-
occurrence statistic of the visual terms in a visual 
document. So each image can be converted into a 
vector in a similar way to what’s done in vector 
based information retrieval (Salton, 1971). Now 
image classification can be cast as a text 
categorization problem (Sebastiani, 2002) in which a 
topic, or class label, is assigned to a test image 
according to its closeness to some image class 
model. 
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The used approach (Gao et al., 2004) operates 
annotation through a Linear Discriminant Function 
Classifier (LDF) able to associate the visual input to 
its labels. The LDF is composed by a set of 
classification units (named LDU or g-units), in 
number equal to the target labels, that are trained to 
discriminate the positive from the negative examples 
for a specific label. Each g-unit associates to the 
input image a label referred score. 

In this study a LDF classifier is instatiated for 
each visual dictionary (one for each image feature) 
and is trained with the dataset samples coded in term 
of the corresponding visual terms (e.g. Lab 
histograms, YUV histograms, Gabor Wavelets,…). 
The scores produced by the g-units of different LDF 
are used as representation of the input images and 
given as input to information fusion techniques able 
to merge information derived from the different 
image features. A comparation of the fusion 
techniques results is done. 

The remainder of the paper is organized as 
follow: Section 2 discusses the vector representation 
of images, Section 3 describes the multi-topic 
classifier and its training process, Section 3 
describes the fusion information techniques. Section 
5 shows the results of the experiments and in Section 
6 are drawn the conclusions. 

2 VECTOR BASED IMAGE 
REPRESENTATION 

Image content is typically very rich. Information 
captured in a generic picture has a number of 
multiple components that human visual system is 
able to filter to catch the noticeable elements in a 
scene. It is not possible to select a fixed set of visual 
characteristics conveying the main content of 
symbolic information and it is agreeable that the 
selection of the minimal set of characteristic, able to 
describe the visual semantic information, is a hard 
task. Notwithstanding it is commonly accepted that 
all the characteristics relevant for the image 

annotation can be gathered in three main families of 
characteristics referred to color, texture and shape 
information. 

2.1 Feature Symbolic Level 

A visual feature, belonging to one of the above 
families, describes the image content with a 
sequence of values that can be interpreted as the 
projection of the image in the feature space. 

The distribution of the feature values in feature 
space is not random but tends to have different 
density in the vector space. The centroids of the 
regions, shaped by the feature vector density, are 
considered as forming a base for the data 
representation and any image can be represented as 
function of these points called visual terms.  

Visual terms can be used to map single feature 
values, using in this case a representation simply 
based on unigrams, or they can be used considering 
structured displacement of the values. For instance, 
using the two image dimensions as freedom degrees, 
powerful structured forms such as spatial bigrams or 
even more complex structures can be exploited. 

The data-driven approach for the extraction of 
visual terms allows the visual terms to emerge from 
the data set and build generic sets of symbols with 
representation power that is limited only by the 
coverage of the training set.  

Although k-means algorithm has been widely 
used in automatic image annotation (Duygulu et al., 
2002)(Barnard et al., 2003), in this work the 
extraction of the visual terms has been achieved 
applying the Vector Quantization to the entire set of 
the characteristic vectors. In particular the 
codebooks are produced by the LBG algorithm 
(Linde et al., 1980) ensuring less computational cost 
and a limited quantization error. 
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Figure 1: Image samples and their labels. 
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2.2 Image Representation 

A single feature allows capturing particular 
information of the image dataset according to its 
characteristics. Feature statistics in the image are 
dependent from the feature itself and are function of 
its statistical occurrence in the image. 

For example, if A={A1,A2,…,AM} is the set of M 
visual terms for the feature A, each image is 
represented by a vector V=(v1, v2,…, vM) where the i-
th component takes into account the statistic of the 
term Ai in the image.  

Furthermore, the representation of the visual 
content can be enriched exploiting the spatial 
displacement of the visual terms in the images. 

In Figure 2 is shown the usage of bigrams for an 
image partitioned with a regular grid. Each element 
is represented with a visual term identified as Xij.  

All the couples X22X12, X22X13,…, X22X11 allow a 
representation of the visual element as bound not 
only to its own characteristics but also of the nearest 
image parts.  

The increased expressivity of the bigrams allows 
over performing the results achieved with the 
unigrams although at the cost of higher 
dimensionality for image representation. 

As example for bigram-based representation, 
considering a codebook for a single feature formed 
by M elements, the image representation can be built 
placing in a vector the unigram-based representation 
followed by the bigrams-based representation. The 
total dimension of the vector in this case will be, 
M*M+M. For a codebook of 64 elements the total 
dimension of the representation is 4160, for 128 
elements it is 16512 and so on… 

To enhance the indexing power of each element 
of the representation, a function of the normalized 
entropy (both for unigrams and bigrams) is 
computed and used to replace the simple occurrence 
count. Its value is evaluated as: 
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where Ns is the total number of the images, and ti is 
the total number the visual term Ai annotates an 
image in the dataset. The normalized entropy is low 
if the value has a great indexing power in the entire 
data set while tends to 1 if its statistic has reduced 
indexing properties. 

Obviously the complexity of the visual 
information is captured more reliably if more 
characteristics, as orthogonal as possible, are used 
together. A straight way to integrate information 
coming from heterogeneous features is to consider a 
unique composite vector, formed as juxtaposition of 
the values of all the features, and extract a unique 
visual vocabulary from it. This solution, although is 
largely used, has some drawbacks. In particular, the 
computational cost of extracting a base for vectors 
(with k-means or analogue algorithms) is higher if 
computation is done on a vector as long as the sum 
of all the features dimensions instead of applying the 
same algorithm to the single feature vectors. As 
second drawback, each time a new feature is added 
to the previous ones, it is necessary to run from 
scratch the visual term extraction and the 
tokenization process.  

For these reasons is more interesting the study of 
the usage of already formed codebooks coming from 
different features that are put together at the 
symbolic level. In section 4 are shown fusion 
techniques merging information coming from 
different features and exploiting different visual 
dictionaries. 

3 AUTOMATIC IMAGE 
ANNOTATION 

The Automatic Image Annotation process is based  
on a training image set T: 

 

 

Figure 2: Example of spatially displaced bigrams. 

{ }CYRXYXT D ⊂∈= ,),(  (3) 

X11 X12 X13 

X21 X22 X23 

X31 X32 X33 

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

62



 

where (X,Y) is a training sample. X is a D-
dimensional vector of values extracted as described 
in Section 2 and Y is the manually assigned 
annotation with multiple keywords or concepts. The 
predefined keyword set is denoted as  

C={Cj,1 ≤ j ≤ N} (4) 

with N the total number of keywords and Cj the j-th 
keyword.  

The LDF classifier, used for the annotation, in 
this paper, is composed by a set of function gj(X, Λj) 
large as the number of the data classes. Each 
function gj is characterized by a set of parameters Λj 
that are trained in order to discriminate the positive 
samples from the negative samples of the j-th class. 

In the classification stage, each g-unit produces a 
score relative to its own class and the final keyword, 
assigned the input image X, is chosen according to 
the following multiple-label decision rule: 

),(maxarg)(
1
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Each g-unit competes with all the other units to 
assign its own label to the input image X. The ones 
achieving the best score are the most trustable to 
assign the label. 

In the annotation case the most active categories 
are chosen as output of the system and the labels can 
be chosen applying a threshold to the scores of the  

g-units as in equation (6) or assigning the n-best 
values labels to the input image. 

3.1 Multi-Class Maximal Figure of 
Merit Learning 

In Multi-Class Maximal Figure of Merit (MC 
MFoM) learning, the parameter set Λ for each class 

is estimated by optimizing a metric-oriented 
objective function. The continuous and 
differentiable objective function, embedding the 
model parameters, is designed to approximate a 
chosen performance metric (e.g. precision, recall, 
F1). 

To complete the definition of the objective 
function, a one dimensional class misclassification 

function, dj(X,Λ) is defined to have a smoother 
decision rule:  

where g¯j(X,Λ¯) is the global score of the competing 
g-units that is defined as: 

If a sample of the j-th class is presented as input, 
dj(X,Λj) is negative if the correct decision is taken, in 
the other case, the positive value is assumed when a 
wrong decision occurs. Since eq. (8) produces 
results from -∞ to +∞, a class loss function lj is 
defined in eq. (10) having a range running from 0 to 
+1: 

where α is a positive constant that controls the size 
of the learning window and the learning rate, and β 
is a constant measuring the offset of dj(X,Λ) from 0. 
The both values are empirically determined. The 
value of Eq. (10) simulates the error count made by 
the j-the image model for a given sample X.  
With the above definitions, most commonly used 
metrics, e.g. precision, recall and F1, are 
approximated over training set T and can be defined 
in terms of lj function. In the experiments the Det 
Error that is function of both false negative and false 
positive error rates has been considered. It is defined 
as: 

The Det Error is minimized using a generalized 
probabilistic descent algorithm (Gao et al., 2004) 
applied to all the linear discriminant g-units that are 
characterized by a function shown in eq. (12). 

 the Wj and bj parameters form the j-th concept 
model.  
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4 INFORMATION FUSION IN AIA 

The possibility to extract multiple features from 
image data set makes possible building different 
visual dictionaries and uses them to represent image 
content. The integration of the information conveyed 
with different visual terms is not straight, due to the 
heterogeneous nature of the different domains, and 
needs the employment of a strategy.  

 
 
 
 

 
 

 
Figure 3: Information fusion from different feature types. 

Below are presented fusion information strategies to 
overcome this gap. 

For each different visual dictionary, a LDF 
classifier is trained using as input the image set 
coded according to the relative visual terms. When a 
new image is presented to the system each classifier 
produces the N dimensional output whose values are 
the scores produced by the g-units. The input image 
can be therefore represented by P N-dimensional 
vectors, where P is the number of available visual 
dictionaries and N the number of the labels.  

This representation is used as input for the 
information fusion techniques. We have considered 
three techniques able to merge the g-scores 
information and have compared the results achieved 
by them. The techniques are: 

a) C5 Decision Tree 
b) Weighted Sum of g-scores 
c) Higher Level Linear Discriminant 

Function 

C5 Decision Tree 
The set of all the g-units values for the entire 
training set has been used to build a decision tree 
according the ID3 algorithm (Mitchell, 1997). In 
particular, the C5.0/See software has been used 
(Quinlan, 2006). Each node discriminates the input 
values according one attribute of the input (in this 
case the score of a specific g-unit) and redirects the 
elaboration to one or another branch according to the 
score value. The tree is built placing the nodes 
accordingly to information theory criteria such as the 
“information gain” that is strictly related to 

information entropy of the training data. The leaves 
allow to associate a label to the input image. 

Weighted sum of g-scores 
The value of each g-unit, contained in a LDF 
classifier, represents the score of each category 
according to the particular LDF visual feature. 
Considering to have P visual dictionaries, and 
therefore P LDFs, the same number of g-scores for 
each label is available. These values are summed 
together, with a weight, to have a score dealing with 
all the visual dictionaries.  

In the Equation  (13) is shown the generic label 
score achieved with all the P different visual 
dictionaries. The g* scores are used to select the 
output labels with equations analogue to equation (5) 
and equation (6). If the weights φ are set to an equal 
fixed value each feature gives the same contribution 
to the global score.  

Higher level Linear Discriminant Function 
The scores of the g-units, equal in number to the 
number of labels for the number of LDFs for each 
input images, are used to train a higher level LDF 
classifier that summarizes the lower LDF outputs. 

The output of the higher level LDF (HL LDF) 
will be the function of the units trained with this new 
training set. The underlying hypothesis is that the 
representation achieved in the space of the scores 
allows a hyperplane to better discriminate the single 
categories. 

In the case we consider to characterize images 
with two features, for example one for color and the 
other for texture, each image is therefore represented 
as 2*N values, where N is the number of labels. The 
output will be function of the g-units according to 
functions analogue to equation (5) and equation (6). 

5 EXPERIMENTAL RESULTS 

The data set used for the experiments is composed 
by 5000 images in JPEG format divided in 50 
classes. The training set has been formed with 4500 
images while the remaining 500 images have been 
used for the test set.  

Images are partitioned with a grid of blocks 
16x16 pixels. The regular partitioning, although less 
able to adapt to data, allows characterizing visual 
input in a regular way independently by the 
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robustness of the segmentation algorithm. The same 
solution has been adopted by Mori et al. (1999) and 
Jeon et al. (2004). 

The test and training images have been 
characterized with color and texture features. The 
color information is represented evaluating RGB 
histograms of the image blocks. The texture 
information is represented associating to each block 
its Gabor Filter Energy histograms. 

For all the images of the training set the color 
and texture features have been computed. The set of 
the values through the LBG algorithm have been 
used to form the visual dictionary (one for each 
feature). The number of visual terms (equal to the 
size of the codebook) has been fixed to 128. The 
images have been coded considering the statistics, in 
all the blocks, in terms of unigrams and bigrams 
with vectors composed by 16512 elements. For each 
visual dictionary a LDF has been trained setting the 
parameter η in equation (9) equal to 5. 

The experiments have been done considering a 
variable set of classes and in particular with 5, 20 
and 50 classes to test the fusion information 
techniques when input values spreading is increased. 

The g-scores, produced by the trained LDFs (the 
first for the color feature and the second for the 
texture feature), have been used as input for the 
fusion information step. 

The C5 decision tree has been created with the 
See5/C5.0 software (Quinlan, 2006) with all the 
default parameters and setting the pruning parameter 
to the 25%. The performance of the information 
fusion has been evaluated considering a single label 
assigned to the input image in terms of Det Error. 
The results for the decision trees are shown in Table 
1. 

Table 1: Det Error for the training and test error. 

  
  

Train 
Set 

Error 
N=5 

Test 
Set 

Error 
N=5 

Train 
Set 

Error 
N=20 

Test 
Set 

Error 
N=20 

Train 
Set 

Error
N=50 

Test 
Set 

Error 
N=50 

Color 0.63 7,67 8.82 31.17 14.72 36.12 

Texture 0.63 11.77 10.29 35.14 19.39 42.85 

DT (c5) 0.00 7.52 2.26 38.62 9.42 41.94 

Weight
ed Sum 

0.00 3.80 5.87 31.78 11.70 38.26 

HL LDF 0.00 3.80 7.25 33.08 22.70 38.57 

 
Regarding the decision tree, the results in table 

show that in the cases the number of classes is 5, the 
decision trees perform better that the LDFs trained 
with single feature values. When the number of 

classes is increased, the performance tends to be an 
average of the single feature LDFs performance. 
Furthermore a big difference, in terms of Det Error, 
is produced between train and test images set. This 
difference can be attributed to the limited 
generalization capability of the decision tree. 

Table 1 shows also that the other fusion 
techniques perform better than decision trees and 
typically over perform the results achieved by the 
single feature LDFs.  

The results of these fusion methods, as the 
weighted sum of the g-scores and the HL LDF are 
compared, in the above figures, through the 
precision and recall analysis. The variation of the 
threshold in the annotation process (Equation(6)) 
affects the number of retrieved images. With higher 
values of the threshold, fewer labels are retrieved 
and so the recall (that is the number of relevant 
retrieved images above the number of relevant 
images) is low while the precision (the number of 
relevant retrieved images above the number of 
relevant images) is typically high.  

With lower values of the threshold more samples 
are retrieved, the recall is increased but the precision 
is necessarily diminished. This kind of analysis is 
often used in document retrieval but also in image 
retrieval field it has proven useful for performance 
appraisal (Landgrebe et al., 2006). 

The plotting for 5, 20 and 50 classes of precision 
versus recall are shown in the Figure 4, Figure 5 and 
Figure 6. 

Figure 4: Precision versus recall for image data set of 5 
Classes. 

In Figure 4 is shown the plot of the precision 
versus the recall for the described fusion techniques 
compared to the performance achieved by the single 
features (RGB histograms and Gabor energy 
histograms) when the number of classes is set to 5.  

The weighted sum of the single scores produces 
the best performance among the fusion techniques 
and improves the performance of the single feature 
annotation too.  
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Figure 5: Precision versus recall for image data set of 20 
Classes. 

When the number of classes is 20 (Figure 5), the 
fusion technique using the weighted sum of the g-
scores performs better than the other techniques and 
the results of single features are over performed.  

The fusion with the LDF in cascade to the single 
feature LDF (HL LDF) achieves results that are 
intermediate between the performances based on 
single features. The results are, for the same value of 
recall, less precise than in the 5 classes experiments. 

 This behaviour can be attributed to the fact that 
the scores given by the single features LDF produce 
a less evident discrimination among class. 
Notwithstanding, the weighted sum of the scored 
still allows a good discrimination. 

Finally, the performance for 50 classes is shown 
in Figure 6. In this case both the fusion techniques of 
weighted sum and LDF achieve results that are the 
between the performance of the single feature LDFs. 

Figure 6: Precision vs Recall for the fusion techniques 
applied to the Automatic Annotation of 50 Classes. 

The annotation results, achieved with LDF 
trained with color features, for the most of values of 
the recall parameter, produce better results than the 
other fusion techniques. In this case, due to the 
increased scattering of the feature values, the 
representation in the feature space does not allow a 
clear interclass separation and fusion techniques 
cannot exploit the multiple features representation. 

In Table 2 are shown the False Positive Rate and 
False Negative Rate achieved for the input set 
formed by 5, 20 and 50 classes when five labels are 
associated to each image. 

Table 2: False Positive and False Negative rates for the 
fusion techniques when 5 labels are assigned to the input 
images. 

  
  

5 Classes 20 Classes 50 Classes 

 FP FN FP FN FP FN 

Color 0.00 0.00 1.31 22.86 0.65 31.80 

Texture 0.00 0.00 1.87 27.38 1.00 49.04 

Weight. Sum 0.00 0.00 1.38 21.79 0.75 36.60 

HL LDF 0.00 0.00 1.16 22.94 0.82 40.40 

 
Due to the definition for False Positive (number 

of wrongly annotated images above the number of 
negative samples) and False Negative error rates 
(number of wrongly not annotated images above the 
number of positive samples), their value in the 
multi-class case can be very different as the table 
shows. The reason is mainly due to different values 
of the value of negative samples (denominator of 
False Positive Rate) and the number of positive 
samples (denominator of False Negative Rate). For 
example, for 50 classes the number of positive 
sample, in the test set, for each label is 10 set while 
the number of negative samples is 490. The error 
rates are accordingly affected. 

The results in Table 2 confirm the results of the 
precision-recall analysis also when multiple labels 
are associated to the images. The weighted sum of 
the g-scores achieves the best results among the 
fusion techniques, while the number of input classes 
is 20 or less it over performs the results achieved by 
the single feature LDF. When the number of classes 
is increased the color feature LDF achieves better 
results while the fusion techniques produce results 
between the results of the single feature LDFs.  

The values of the errors show that the annotation 
with this technique can be reliably performed when 
the labels are well represented by the LDF scores 
and it typically happens when the spreading of the 
visual terms in the training set is limited. When the 
inter-class value spreading is excessive (increasing 
number of classes) other models should be applied 
for the single feature representation. 

In the below table are compared precision and 
recall of the fusion technique adopting the weighted 
sum of the g-score for the classification of fifty 
classes with the published results of the state of art 
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annotation techniques. The proposed technique show 
a good improvement although must be said that a 
straight comparison is impossible due to the 
different adopted features and the number of classes. 

Table 3: Comparision of proposed technique with state of 
art annotation techniques. 

 
TM CMR

M ME MBRM 
Propo

sed 
Tech. 

Prec 0.06 0.10 0.09 0.24 0.36 
Recall 0.04 0.09 0.12 0.25 0.36 

6 CONCLUSION AND FUTURE 
WORKS 

Image annotation needs to exploit information from 
different orthogonal features to capture the visual 
elements carrying a symbolic meaning matched with 
the text labels. 

The shown techniques use information from 
different features and merge together visual 
information represented in term of scores related to 
different labels. Different information fusion 
techniques have been compared showing that, for 
this application, the weighted sum of g-scores 
produces better results than other fusion techniques.  

The information fusion produced putting a HL 
LDF to summarize the results of the first stage 
LDFs, allows an improvement in performance when 
the characterization of input images, through g-units 
scores, is adherent to their content. Decision trees 
have a reduced utility in this case mainly due to the 
reduced generalization capability. 

Further investigations will be focused on the 
training of the images in terms of more specific 
classes or sub-classes that despite a reduced number 
of samples for each category are more specific as 
content. The application of more complex models 
instead of LDF can also allow capturing the positive 
and negative classes in a more flexible way and 
allow a better performance for fusion algorithms. 
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