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Abstract: We present a novel variational regularization in the space of functions of Bounded Variation (BV) for adaptive
data-driven image restoration. The discontinuities are important features in image processing. The BV space
is well adapted for the measure of gradient and discontinuities. More over, the degradation of images includes
not only random noises but also multiplicative, spatial degradations, i.e., blur. To achieve simultaneous im-
age deblurring and denoising, a variable exponent linear growth functional on the BV space is extended in
Bayesian estimation with respect to deblurring and denoising. The selection of regularization parameters is
self-adjusting based on spatially local variances. Simultaneously, the linear and non-linear smoothing oper-
ators are continuously changed following the strength of discontinuities. The time of stopping the process
is optimally determined by measuring the signal-to-noise ratio. The algorithm is robust in that it can handle
images that are formed with different types of noises and blur. Numerical experiments show that the algorithm
achieves more encouraging perceptual image restoration results.

1 INTRODUCTION along edges. Compared to wavelet based methods in
the frequency domain (Gousseau and Morel, 2001),
the assumption of the functions on the BV space is
still too restrictive to represent tiny detailed textures
and infinite discontinuities (Alvarez and Gousseau,
1999). However, currently, the BV space is still a
much larger space than the Sobolev space for mod-
eling images in the spatial domain.

The primary goal of image restoration is to recover
lost information from a degraded image and obtain
the best estimate to the original image. Its applica-
tions include photography, remote sensing, medical
imaging, and multimedia processing. According to
the image degradation modgl= hf + n, given an
observed image functiog € L%(Q), with Q C R? is Since the seminal work of the ROF model (Rudin
an open bounded domain, the problem is to estimateet al., 1992), the BV space based functionals have
the original imagef with unknown noise) and point  been widely applied to image restoration, super-
spread functiorh. In order to solve this ill-posed in-  resolution approaches, segmentation and related early
verse problem, one of the well-known techniques is vision tasks, e.g., Mumford-Shah functional (Mum-
by energy minimization and regularization. ford and Shah, 1989), modeling of oscillatory com-
In classical Sobolev spaces, we can not make de-ponents (Meyer, 2001), modeling of inpainting and
tailed analysis and reasonable measure of discontinu-super-resolution approaches, (Chan and Shen, 2006).
ities. A simple image including a white disk on a Recently, (Aubert and Vese, 1997), (Vese, 2001)
black background is not in any Sobolev space, but be- propose a convex linear growth functional in the
longs to the BV space. The BV space is the space BV space for deblurring and denoising usifg
of functions for which the sum of the perimeters of convergence approximation. (Chen et al., 2006),
the level sets is finite. Therefore, the BV space is (Chen and Rao, 2003) suggest a more general variable

well adapted for determining discontinuities across or exponent, linear growth functional in the BV space
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for image denoising. However, through the literature Definition 2.1.1 BV(Q) is the subspace of functions
study, we find that only little work is done on how f € L1(Q) where the quantity is finite,
to determine regularization parameters, and diffusion
operators for achieving optimal and high-fidelity im-
age restoration results.

In this paper, we extend the variable exponent, sup{/ f-divodA ; ¢ ecg(Q’RN)}
linear growth functional (Chen et al., 2006), (Chen Q
a}nd Rao, 2093) to double regulariged Bayesian_es-Where dA= dxdy, |$(A)
timation for simultaneously deblurring and denois-
ing. The Bayesian framework provides a structured
way to include prior knowledge concerning the quan-
tities to be estimated (Freeman and Pasztor, 2000).
Different from traditional “passive” edge-preserving While one adopts the TV measure for image regular-
methods (Geman and Reynolds, 1992), our methodization, the posterior energy for Tikhonov Regulariza-
is an “active” data-driven approach which integrates tion then takes the form which is also given in (Rudln
self-adjusting regularization parameters and dynamic €t al., 1992),

computed gradient prior for self-adjusting the fidelity A )

term and multiple image diffusion operators. A new J(f)= E/Q |g—hf] dA+/Q IDf[dA  (2)
scheme is designed to select the regularization pa- ) o y \ )

rameters adaptively on different levels based on the Whereg is the noisy imagef is an ideal image and
measurements of local variances. The chosen diffu-A > 0 iS a scaling regularization parameter. When an
sion operators are automatically adjusted following 'magef is discontinuous, the gradient 6fhas to be
the strengths of edge gradient. The suggested ap_understood as a measure. Tﬁb’(f) functional is
proach has several important effects: firstly, it shows Often denoted by, [Df|dxdy, with the symboD re-

a theoretically and experimentally sound way of how ferrlnlg to the conventional differentiatidn. One use
local diffusion operators are changed automatically f €L (Q) to simplify the numerical computation (see
in the BV space. Secondly, the self-adjusting regu- (Giusti, 1984), for instance), [Df|dA= [, |Df[dA
larization parameters also control the diffusion oper- N order to study more precisely the influence of
ators simultaneously for image restoration. Finally, the smoothing term in the regularization, we need to
this process is relatively simple and can be easily ex- Make an insight observation of a more general total
tended for other regularization or energy optimiza- variation functional which can help us to understand

tion approaches. The experimental results show thatthe convexity criteria in variational regularization. A
the method yields encouraging results under different general bounded total variational functional can be

TV(f):/Q|Df\dA: 1)

o) < 1, CHQ,RN) is
the space of functions inQQ) with compact sup-
port Q. BV(Q) endowed with the norriif ||y (o) =
[ fllL1(q) + TV(f) which is a Banach space.

kinds and amounts of noise and degradation.
The paper is organized as follows. In section 2, we

discuss the concepts of BV space, the total variation 7

(TV) model and its related functionals. In section 3,

we present a Bayesian estimation based adaptive vari

ational regularization with respect to the estimation
of PSFs and images. Numerical approximation and
experimental results are shown in section 4. Conclu-
sions are summarized in section 5.

2 RELATED WORK

2.1 The Bv Space and the Tv Method

Following the total variation (TV) functional (Rudin
etal., 1992), (Chambolle and Lions, 1997), (Weickert
and Schirr, 2001), (Chan et al., 2002), (Aubert and
Vese, 1997), we study the total variation functional in
the bounded total variation (BV) space.

written in the following,

(fm) =5 [ ta-nt7aar [ eor(cy))on

The choice of the functiogis crucial. It determines

the smoothness of the resulting functibim the space

V = {f € L?(Q);0f € LY(Q)} which is not reflexive.

In this variational energy function, the closeness
of the solution to the data is imposed by the penalty
termq(-) in the energy function. If the energy func-
tions are nonconvex, it might become more compli-
cated than the convex functionals. Although some
non-convex@(-) penalty terms can achieve edge-
preserving results, convex penalty terms can help us
to get a global convergence and decrease the complex-
ity of computation. In the following, we study(-) in
amore general forrp(00f) — (D f) in the BV space.

2.2 Convex Linear-Growth Functional

Let Q be an open, bounded, and connected subset
of RN. We use standard notations for the Sobolev



WLP(Q) and Lebesgue spaceg(Q). A variational n, (x)

function can be written in the form, ’
A
7(fign) =5 [ (@=hf)?dA+ [ g(DF(xy))dA
Q Q

B.(x)

where the functiory, (D f)dAis finite on the space
W1 which is a nonreflexive Banach space.

We recall the notation of lower semicontinuity of s,
functionals defined on thBV(Q) space. We denote
by £y the Lebesgudl-dimensional measu®N and Figure 1: Definition off*, f~, and the jump se;.
by #® the a-dimensional Hausdorff measure. We
say thatf € L(Q) is a function of bounded varia- It is then possible to define the convex function of
tion (f € BV(Q)) if its distributed derivativeDf = measurep(| - |) ona (Q), which is forDf,
(D1f,...,DnT) belongs to the weakest topology on ®|Df|) = |Of|) - n + @ (1)|DSF|,  (5)

M (Q). M (Q) is the set of all signed measures on . . .
Qv(vitr>1 bour(1d<)ad total variation. ¢ and the functional following (Goffman and Serrin,

For any functionf  L1(Q), we denote bys; the ~ 1964).

complement of the Lebesgue set fof The setS; is /(P(\Df|)=/ (p(\[]f\)dx+/ & (1)|D%F], (6)
of zero Lebesgue measure and is also callegiimg Q Q Q

set of £ If f € BV(Q), thenf is differentiable al-  where the functionatp(| - |)(Q) is proved in weak
most everywhere o2 \ S. Moreover, the Hausdorff  topology and lower semi-continuous en(Q). That

dimension ofS; is at most(N — 1) and for # N1, is to say thatf, ¢(|Df|) is convex onBV(Q), @ is
x € S itis possible to find uniqué*(x), f ~(x) € R, convex and increasing di".
with f+(x) > f~(x) andv € SV~ of unit sphere in By the decomposition db*f, the properties of,
RN, such that J¢, and the definition of the constanitthe functional
Jo@®(|Df|) can be written as,
im e [ J6(y)~ 1 )idy ;
o e fepth = [ @(ofidx
Q Q
—lim N[y - yldy=0 @
AT Jap [T = T Iy ®)

+ c/ |cf|+c/ (£ — £ )da Nt
where B/ (x) = {y € Bi(X)} : (y—x)-v > 0 and . Q\.Sf St .
BV(x) ={yeB(x)}:(y—x)-v<0. The normal  Based on this equation, the energy functional on the
v means that they points toward the larger value in BV space becomes,
the imagef. We denote by, (x) the ball centered in . A 2
x of radiusr, shown in Fig. 1. fel|3r\]/f(§2)] = E/Q(g—hf) dA+/Q(P(|DfDdA (7

We have the Lebesgue decomposition, _— _
g P Although some characterization of the solution is pos-

Df =0f - Ly +D°f (4) sible in the distributional sense, it remains difficult
wheredf € (LY(Q))N is the Radon-Nikodym deriva- 1O handle numerically. To circumvent the problem,
tive of Df with respect tocy. In other words,Of (Vese, 2001) approximates the BV solution using the

is the density of the absolutely continuous part of notion of I'-convergence which is also an approxi-

have the decomposition fdpSf = Cy + J;, where (Mumford and Shah, 1989). The Mumford-Shah

Jp = (FF — £7)Ny - #N-1 is Hausdorff partor jump functional is a sibling of this functional (Chan and
= s

part andCs is the Cantor partof Df. The measure Shen, 2006). . .

C; is singular with respect toy and it is diffuse, that The target of studying these functionals on the BV

is, Ct (S) = 0 for every setS of Hausdorff dimension space gs. to understand a more gef‘e“?" variable €Xpo-
N— 1. N1 is called the perimeter of related edges nent,LP linear growth functional which is a deduction

IS¢ functional on the BV space.
in Q. Finally, we can writeD f and its total variation
onQ, [Df[(Q), in the following, 2.3 Variable Exponent Linear-Growth
Df =0Of - £y +Cf+(f+—f*)v-y{|§f*1 Functional

- _ While the penalty function ig(|Df|) — @(x,|Df]), it
_ +_ N-1 penalty ®(|IDf|) — o(x,|DF]),
Df| = /Q |Of |dx+ /Q\Sf |Cf‘+/5f(f f )d}[\sf becomes a variable exponent linear growth functional



in the BV space (Chen et al.,
2003),

2006), (Chen and Rao,

2 [ @-nt2aas [ oxpi(cy)da

For the definition of a convex function of measures,
we refer to the works of (Goffman and Serrin, 1964),
(Demengel and Teman 1984). According to their
work, for f € BV(Q), we have,

/(prf )JdA= /

where

I (figh) =

Df)dA+/Q|DSf\dA ®)

|Of|<B
a(x
B0 0f| > B
wheref3 > 0 is fixed, and 1< q(x) < 2. The term

q(x) is chosen ag|(x) = 1+ WM based on

the edge gradientd.(x) is the observed imagg(x),
Go(X) = 2 exp—[x2/(20%)] is a Gaussian filterk >

0, 0 > 0 are fixed parameters. The main benefit of
this equation is that the local image information are
computed as prior information for guiding image dif-
fusion. This functional including two equations are
both convex and semi-continuous. This leads to a
mathematically sound model for ensuring the global

. i|l]f|q
x, 0 ) dA=
o(x,0f) of|

convergence. This equation is extended in a Bayesian

estimation based double variational regularization not
only for image denoising but also for image deblur-
ring.

3 BAYESIAN ESTIMATION
BASED VARIATIONAL IMAGE
RESTORATION

Following a Bayesian paradigm, the ideal imafje
the PSFh and an observed imaggfulfill

P(1.hig) — PR ) ©)

Based on this form, our goal is to find the op-

timal estimated imagef and the optimal blur

kernel h that maximizes the posteriop(f,h|g).

7(flh,g) = —log{p(g|f,h)P(f)} and s(h|f,g) =

—log{p(g|f, h)P(h)} express that the energy cost

is equivalent to the negative log-likelihood of the data.
The resulting method attempts to minimize dou-

O p(glf, hP(f,

ble cost functions subject to constraints such as non-

negativity conditions of the image and energy preser-
vation of PSFs. The objective of the convergence is to
minimize double cost functions by combing the en-
ergy function for the estimation of PSFs and images.

(b)
Figure 2: Homogeneous Neumann Boundary Conditions.

(©)

(@) An original MRI head image. (b)(c) Homogeneous
Neumann boundary condition is implemented by mirroring
boundary pixels.

We propose a Bayesian based functional on the BV
spaces. It is formulated according to

A
é/Q(g_hf)2dA+B/Q(Dh)dA
—i—y/Q(pg(x,Df)dA (10)

The Neumann boundary condition (shown

Fig. 2) %(x,t) =0 onodQ x [0,T] and the initial
conditionf (x,0) = fo(x) = gin Q are used, wherhl

is the direction perpendicular to the boundary.

]E(f7h)

in

3.1 Alternating Minimization

To avoid the scale problem between the minimization
of PSF and image via steepest descent, an AM method
following the idea of coordinate descent is applied
(Zheng and Hellwich, 2006). The AM algorithm de-
creases complexity.

The equations derived from Eq. (10) are using fi-
nite differences which approximate the flow of the
Euler-Lagrange equation associated with it,

% — Mh(—x,—y)  (h+ f — g) — ydiv (@(x, Of))
a € h
G =Py +(1n - oo 55

Neumann boundary conditions are assumed (Acar
and Vogel, 1994). In the alternate minimization,
blur identification including deconvolution, and data-
driven image restoration including denoising are pro-
cessed alternatingly via the estimation of images and
PSFs. The patrtially recovered PSF is the prior for the
next iterative image restoration and vice versa. The
algorithm is described in the following:

Initialization:
9(X) = g(x), ho(x) i s random nunbers
whi | e nmse> threshold
(1).nthit. fa(x) =argmin(fylhn_1,9),
fixhp1(x), f(x) >0
(2). (n+1)thit. hyyp1 =argminhne1|fa,9),
fix fn(x), h(x) >0
end



While h =1 and] is the identity matrix, the al-
ternating minimization of PSFs and images becomes
the estimation of images, e.g., it is corresponding to a
denoising problem. Whila £ | (his generally a con-
volution operator), it corresponds to a deblurring and
denoising problem. The existence and uniqueness of
solution remain true, ih satisfies the following hy-
potheses: (a) is a continuous and linear operator
on L?(Q). (b) h does not annihilate constant func-
tions. (c)his injective. 'I_'hereby, we need to consider sampling windows for the image with size [160, 160]. (b)
the blur ker_nels at the first step. _Fur_ther more, we do Zoom in (a) for showing the distribution of the regulariza-
deconvolution for the blurred noisy image. Then the tion parametera,.
deconvolved image is smoothed by a family of lin-
ear and nonlinear diffusion operators in an alternating noise. We note that the tertf, (g— hf)?dAis the

Figure 3: alb. (a) Computed\ € [0.012,0.032 values in

minimization. power of the residue. Therefore, there exists a re-
lationship among the non-oscillatory sketch “cartoon

3.2 Self-Adjusting Regularization model” (Mumford and Shah, 1989), (Blake and Zis-
Parameters serman, 1987), oscillation model (Meyer, 2001) and

the reduced power of the original image with some

We have classified the regularization paramekeirs proportional measure. We formulate the IOC‘T’" vari-
ancely(x,y) in a given windoww based on an input

three different levels. Here, we present the method for .

the selection of window-based regularization param- mage. L
etersAy, (window w based\,, the 1st level). When . 2

the size of windows is amplified to the size of an in- Lw(Xy) = Q| /Q[fw(x’y) — B(fw)["W(x y)dxdy (12)
put image,A becomes a scale regularization param-
eter for the whole image (the 2nd level). If we fix
A for the whole process, then the selection of regu-
larization parameter is conducted on the level of one
fixed A for the whole process (the 3nd level). We as-
sume that the noise is approximated by additive white
Gaussian noise with standard deviat®to construct

a window-based local variance estimation. Then we
focus on the adjustment of paramekeaind operators

in the smoothing termp. These two computed compo-
nents can be prior knowledge for preserving disconti-
nuities and detailed textures during image restoration. Je(f) =5 Mbw(xy) + Sp(f) (13)
The Eq. 10 can be formulated in the following,

wherew(x,y) is a normalized and symmetric small
window, fy, is the estimated image in a small window
w. E(fy) is the expected value with respect to the
window w(x,y) on the size ofQ x Q estimated im-
agef in each iteration. The local variance in a small
window satisfievar(fy) = Lw(X,y). Thereby, we can
write A for a small windoww according to Euler-
Lagrange equation for the variation with respecfto
Therefore, the regularization equation is with respect
to the window-levels. It becomes

whereAyis aA in a small windoww, Sy(f) is the
smoothing term. Thus, we can easily get magyfor
moving windows which can be adjusted by local vari-
ances, shown in Fig. 3. Thedg, are directly used
as regularization parameters for adjusting the balance
during the energy optimization. They also adjust the
strength of diffusion operators for keeping more fi-
1 _ delity during the diffusion process. The related regu-
A= o] /leV [, Df(xy)(@—hf)dA (11)  |arization paramete® andy incorporate the\, while
the parameteh of the fidelity term needs to be de-
A is a regularization parameter controlling the “bal- fined.
ance” between the fidelity term and the penalty term. During image restoration, the parameketan be
The underlying assumption of this functional satisfies switched among three different levels. The window-
[ fllevi) = [ fllLiq) + TV(f) inthe BV space. The  based parameté¥, and the scale-based (entire im-
distributed derivativgD f| generates an approxima- age) parameter can be adjusted to find the optimal
tion of input “cartoon model"and oscillation model results. Simultaneously thus control the image fi-
(Meyer, 2001). Therefore, this process preserves delity and diffusion strength of each selected operator
discontinuities during the elimination of oscillatory in an optimal manner.

argmin | @(x,Df (x,y))dAsubject to/ (g—hf)2dA
Q o

where the noise is a Gaussian distributed with vari-
ancec?. A can be a Lagrange multiplier in the fol-
lowing form,



linear diffusion operator for piecewise image smooth-
ing is processed during image deconvolution based on
a previously estimated PSF. Finally, coupling estima-
tion of PSF (deconvolution) and estimation of image
(edge-driven piecewise smoothing) are alternately op-
= A—— timized applying a stopping criteria. Hence, over-
@ ® regularization or under-regularization is avoided by

Figure 4: Strength op(x) in the Lena image. (a) Strength  pixels at the boundary of the restored image.
of p(x) between [1,2] in the Lena image. (b) Strength of

p(x) is shown in a cropped image with si0, 50].

4 NUMERICAL EXPERIMENTS

3.3 Data-Driven Image Diffusion _ _ _
Experiments on synthetic and real data are carried out

The numerical implementation is crucial for the algo- 0 demonstrate the effectiveness of this algorithm.

rithm. The data-driven diffusion term dig(a, Of)) Effects of different types and strengths of noise
can be numerically approximated in the following, and blur. Firstly, we test .the suggested methgd in dif-
ferent degraded data. Fig. 6 shows that the image de-
div(g(x,0f)) = |[Of[PX-2[(p(x) — 1)Af noising and deblurring can be successfully achieved
—_—

Coefficient _ IsotropicTerm even on the very strong noise l[e\@NR= 1.5dB. In

. Of this figure, we can observe that the number of itera-

+(2—p(x))|Of |d'V(m) +0p-Oflog|Of]] tion is dependent on the strength of noise. If the noise
HyperbolicTerm is stronger, the number of iteration becomes larger.

. CurvatureTerm Fig. 7 shows that the suggested approach on the BV
with _ 1 space is robust for different types of noise. The impul-

p(X) = { 900 =1+ xmeepe:  |UfI<B sive noise with different strengths can also be success-
1, |of[>B fully eliminated, while structure and main textures are

g still preserved. We have also tested this approach in

We indicate with div the divergence operator, and > i ; X s
different types of noise, speckle, impulsive, Poisson,

with 00 andA respectively the gradient and Laplacian : S . O
operators, with respect to the space variables. Theaussian noise in different levels, shown in Fig. 8.
numerical implementation of the nonlinear diffusion _©omparison with other methods. Secondly, we
operator is based arentral differencefor coefficient ~ Nave compared the TV method with two types of con-
and the isotropic termminmod schemfer the curva- dltl_ons. From visual perception and denoising view-
ture term, andipwind finite difference schenirethe point, our method favorably compares to some state-
seminal work of Osher and Sethian for curve evolu- Of-the-art methods: the TV method (Rudin et al,,
tion (Rudin et al., 1992) of the hyperbolic term based 1992) and a wavelet method (Portilla et al., 2003).
on the hyperbolic conservation laws. We use here the!n Fig- 5, the structure of the restored fingerprint
minmod function, in order to reduce the oscillations

is largely enhanced than the original image in our
and to get the correct values of derivatives in the case Method and more recognizable in comparison with

of local maxima and minima. the restored image using the GSM method (Portilla

The image is restored by denoising in the pro- €tal, 2003).

cess of edge-driven image diffusion as well as deblur-

ring in the process of image deconvolution. Firstly, Table 1: ISNR (dB) Results on Test Data.
the chosen variable exponent jpfx) is based on the SNR [[ TV-fixed A | TV- adaptivex | Our met.
computation of gradient edges in the image, shownin [ 138 15.39 17.85 19.16
Fig. 4. In homogeneous flat regions, the differences 155 14.42 17.12 18.14
of intensity between neighboring pixels are small;, g7 11.58 15.03 16.26
then the gradientlG, become smallerg(x) — 2). 86 11.34 1502 16.09

The isotropic diffusion operator (Laplace) is used in
such regions. In non-homogeneous regions (near a Table 1 shows the different properties of differ-
edge or discontinuity), the anisotropic diffusion filter ent methods. Although our method does not have
is chosen continuously based on the gradient valuessignificant improvement on the value of ISNR (dB)
(1 < p(x) < 2) of edges. The reason is that the dis- in Table 1, the measure of ISNR can not fully mea-
crete chosen anisotropic operators will hamper the re- sure human visual perception. Our method really
covery of edges (Nikolova, 2004). Secondly, the non- achieves high-fidelity and visual smoothness than the
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Figure 7: ‘;‘?l‘;'lﬂ. Restoration of impulsive noise images.
- J j (a) 10% salt-pepper noise image. (b) Restored image, 200

iterations. (c)(d) Zoom in images from (a)(b) respectively.

alblc (e)25% salt-pepper noise image. (f) Restored image, 900

Figure 5: dielt - Comparison of two methods for fingerprint

denoising. (a)(d) Cropped noisy imagi\ R= 8 dB. (b)(e)
GSM method (Portilla et al., 2003) PSNR=27.8. dB. (c)(f)

=

100 Iteration 200 lteration 300 Iteration

B E 3 B &
Figure 8: ZII?EIﬂ' Image denoising using the suggested
method. (a)(b)Speckle noise image and denoising. (c)(d)
¥ Zoom in from (a)(b) respectively, 100 iterations. (e)(f) Pois-

oteratn %0 eraton 580 lteration son noise image and denoising. (g)(h) Zoom in from (e)(f)
R ; 3 .
SRR respectively, 100 iteration.

400 lterati

restoration. It can also be easily extended to other re-
lated early vision problems.

5 CONCLUSION

Noise image, SNR = 1.5dB, sigma 75 Restored Image using the suggested method

The main structure and skeleton of images are well
approximated on the BV space. In order to preserve
textures and detailed structures, more constraints or
generative prior information are investigated. We

- have developed a self-adjusting scheme that controls
TV methods. The TV methods with fix@dand adap- e image restoration based on the edge-driven con-

tive A still have some piecewise constant effects on re- .oy semi-continuous functionals. The performance
stored images. Furthermore, our method keeps high- ¢ image restoration is not only based on the com-
fidelity for restoring stronger or impulsive noisy im-  teq gradient but also based on local variances of
ages, while the TV methods (fixédand adaptive\) the residues. Therefore, linear and nonlinear smooth-
cannot keep high-fidelity for restoring such degraded jng gperators in the smoothing term are continuously
images, €.g., SNR = 1.5dB or some impulsive noisy ge|f.adjusting via the gradient power. The consistency
images, shown in Fig. 6, Fig. 7 and Fig. 8. of self-adjusting local variances and the global con-

More results are shown in Fig. 9 to demonstrate vergence can be achieved in the iterative convex op-
that the suggested method keeps high-fidelity and vi- timization approach. We have shown that this algo-
sual perception image restoration. These experimentsrithm has relatively robust performance for different
show that the suggested method on the BV spacetypes and strengths of noise. The image restoration
has some advantages on image denoising and imagéeeps high fidelity to the original image.

Figure 6: Restored image using the suggested method.
Stronger distributed noise witBNR= 1.5dB. 100 itera-
tions need 600 seconds for the image size of [512,512].
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