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Abstract: Optical flow computation is an important and challenging problem in the motion analysis of images 
sequence. It is a difficult and computationally expensive task and is an ill-posed problem, which expresses 
itself as the aperture problem. However, optical flow vectors or motion can be estimated by differential 
techniques using regularization methods; in which additional constraints functions are introduced. In this 
work we propose to improve differential methods for optical flow estimation by including colour 
information as constraints functions in the optimization process using a simple matrix inversion. The 
proposed technique has shown encouraging results. 

1 INTRODUCTION 

The recent developments in computer vision, 
moving from static images analysis to video 
sequences, have focused the research on the 
understanding of motion analysis and representation. 
A fundamental problem in processing sequences is 
the computation of motion. Optical flow is a 
convenient and useful way for image motion 
representation and 3D interpretation. It often plays a 
key role in varieties of motion estimation techniques 
and has been used in many computer vision 
applications. Optical flow may be used to perform 
motion detection, autonomous navigation, scene 
segmentation, surveillance system (motion can be an 
important source for a surveillance system when 
objects of interest can be detected and tracked using 
the optical flow vector to define the future 
trajectories), motion compensation for encoding 
sequences and stereo disparity measurement (Barron 
1994), (Beauchemin, 1995) and (Weickert, 2001). 
Thus an optical flow algorithm is specified by three 
elements (Barron, 1994): 

* The spatiotemporal operators that are applied 
to the image sequence to extract features and 
improve the signal to noise ratio, 

* How optical flow estimates are produced from 
a gradient search of the extracted feature space, and  

the form of regularization applied to the flow field 
considering confidence measures if they exist. 
Optical flow estimation and computation methods 
can be classified into three main categorie: 
differential approaches, block-matching approaches 
and frequential approaches (Baron, 1994). 

Despite more than two decades of research, the 
proposed methods for optical flow estimation are 
relatively inaccurate and non-robust. Many methods 
for the estimation of optical flow have been 
proposed (Horn and Shunck (Horn, 1981); Lucas 
and Kanade (Lucas, 1981); Markandy and 
Flinchbaugh (Markandy, 1990); Fleet and Jepson 
(Baron, 1994) and (Beauchemin, 1995); Weber and 
Malik (Weber, 1995); Polina and  Golland (Polina, 
1995); Tsai et al. (Tsai, 1999); Ming et al. 
(Ming,2002); Zhang and Lu (Zhang, 2000); Bruno 
and Pellerin (Bruno, 2003); Barron and Klette 
(Barron, 2002),  Arredondo and al. (Arredondo , 
2004), Joachim Weickert and al. (Joachim, 2003), 
(Thomax, 2004) and (André, 2005) and Volker 
Willert and al (Volker, 2005) ) . 

We present in this paper a differential approach 
using colour components as constraints functions for 
the optical flow computation. The rest of this paper 
is organized as follows: section 2 describes the main 
optical flow constraint equation. In section 3 we 
describe how to use colour in the process of optical 

531

Bouden T. and Doghmane N. (2007).
DIFFERENNTIAL TECHNIQUE FOR MOTION COMPUTATION USING COLOUR INFORMATION.
In Proceedings of the Second International Conference on Computer Vision Theory and Applications - IU/MTSV, pages 531-537
Copyright c© SciTePress



flow estimation. In section 4, we present the method 
for the minimization of the function including the 
smoothing term based on colour information. Some 
experimental results are presented in section 5 and at 
the end, we address a conclusion.  

2 OPTICAL FLOW CONSTRAINT 
EQUATION 

Optical flow is the apparent motion of brightness 
patterns in the images sequence. It corresponds to 
the motion field, but not always.  

Optical flow techniques are based on the idea 
that for most points in the image, neighbouring 
points have approximately the same brightness. 
Optical flow can be computed from a sequence by 
using the (Horn, 1981) assumption, known as the 
brightness constancy assumption, is represented by 
the following equation: 

Where: 
Ix, Iy and It are first partial derivatives of I 

respectively with respect to x, y and t and u and v 
are the optical flow components in the x and y 
directions.  

Equation (1) is called optical flow constraint 
equation. It provides only the normal velocity 
component. So we are only able to measure the 
component of optical flow that is in the direction of 
the intensity gradient (aperture problem) and the 
system is undetermined. To overcome this problem, 
it is necessary to add additional constraints.  
Another problem is that are assuming that δt is very 
small. The sampling error in the spatial domain also 
leads to errors in the computation of the Ix and Iy . 

3 USE COLOUR INFORMATION 
AS CONSTRAINT  

The brightness assumption implies that the (R, G, B) 
components of each image remain unchanged during 
the motion undergone within a small temporal 
neighbourhood (Weber, 1995). Therefore, R, G and 
B images can be used in a similar way as the 
luminance function: they have to satisfy the optical 
flow constraint equation. Markandey and 
Flinchbaugh (Markandy, 1990) have proposed a 
multispectral approach for optical flow computation. 
Their two-sensors proposal is based on solving a 
system of two linear equations having both optical 

flow components as unknowns. The equations are 
deduced from the standard optical flow constraint 
(1). In their experiments, they use colour TV camera 
data and a combination of infrared and visible 
images. Finally, they use two channels to resolve the 
ill-posed problem (Barron, 2002). 
 Golland and Bruckstein (Polina, 1995) follow 
the same algebraic method. They compare a 
straightforward 3-channels approach using RGB 
data with two 2-channel methods, the first based on 
normalized RGB values and the second based on a 
special hue-saturation definition.  

The standard optical flow constraint may be 
applied to each one of the RGB quantities, providing 
an over determined system of linear equations 
(Barron, 2002): 

Then the pseudo-inverse computation gives the 
following solution for the system: 

Where:  

This assumes that the matrix (ATA) is non-singular.  
By definition this matrix is singular if its 

columns or lines are linearly dependent, which 
means that the first order spatial derivatives of the 
colour components (R, G, B) are dependent. Since 
the sensitivity functions Dr(λ), Dg(λ) and Db(λ) of 
the light detectors are linearly independent, the first 
derivatives of the R, G, B functions will also be 
independent for images sequence with colour 
changing in two different directions. But if the 
colour is a uniform distribution, the (R, G, B) 
functions are linearly dependent or if the colours of 
the considered region change in one direction only, 
the gradient vectors of (R, G, B) are parallel so that 
the spatial derivatives are dependent and the matrix 
(ATA) is singular. In addition to the estimates of the 
image flow components at a certain pixel of the 
image, we would like to get some measure of 
confidence in the result at this pixel, which would 
tell us to what extent we could trust our estimates. It 
is common to use the so-called condition number of 
the coefficient matrix of a system (ATA) as a 
measure of confidence of this system (Polina, 1995). 
To improve this problem, the idea is the use of two 
independent functions for colour characterization so 
that their gradient directions are not parallel. If the 
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quantities used here are denoted f and ff. The colour 
conservation assumption implies: 

Here the solution is given by simple matrix 
inversion: 

The ideal case is obtained when the gradient 
directions of the two chosen functions are normal. 
One possible solution is the use of two different 
colour systems: the normalized RGB system, 
denoted rgb system and the HSV system (Barron, 
2002), (Markandy, 1990) and (Polina, 1995). 
It is clear that any pair of (r, g, b) forms a system of 
two independent functions. If we are taking the r and 
g components, the optical flow computation system 
to be solved is given by equation (6), where: 

Now we consider the HSV systems. H and S 
describe a vector in polar form, representing the 
angular and magnitude components respectively  
(Robert, 2003). 
The HSV space is computed in the following way: 

The solution is given by equation (6), where:  

4 PROPOSED METHOD 

It was shown that a colour sequence could be 
straightforwardly considered as a set of three 
different sequences produced by three types of light 
sensors with different sensitivity functions in 
response to the same input sequence (Markandy, 
1990) and (Polina, 1995). So we propose to use the 
same formulation as those proposed by Horn and 
Schunck for the luminance function and to apply it 
to the three colour components. 

In the first stage we have to minimize a function 
error containing the three colour components for the 
considered colour space, each component satisfying 
the optical flow constraint equation without any 
smoothness term, for the RGB space we have: 
The problem will be posed as finding (u, v) optical 
flow components minimising F. The solution was 
given by using equation (6); Where: 

The matrix A must be non-singular. The smallest 
eigenvalue of ATA or the condition number of ATA 
can be used to measure numerical stability, i.e. if the 
smallest eigenvalue is below a threshold or the 
condition number is above a threshold, then we set 
the optical flow vector to be undefined at this image 
location.  

So, in the second stage we add a local (on a small 
region around each pixel) smoothness term on the 
magnitude of optical flow vector with a weight α. 
The motion of any object between two successive 
times (t0 and t0+∂t where ∂t 0) is supposed to be 
very small and it can be used as a small 
displacement in any direction. So equation (9) with 
the smoothness term will be: 
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Deriving F over u and v and solving the result 
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method is only based on the function optimisation 
and matrix inversion.  

5 EXPERIMENTAL RESULTS  

This section examines the quantitative performances 
and the implementation of the proposed method. 

5.1 Error Measurement 

In order to quantify the accuracy of the estimated 
range flow, the following errors measures are used. 
Let the correct range flow be denoted as Vc and the 
estimated flow as Ve. The relative error in the 
velocity magnitude (Barron et al., 2004), (Baron and 
Klette, 2002), (Volker et al., 2005): 

[%]100.
c

ec

V
VV
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−

=  
 
(14) 

We use the directional error as a second error 
measure: 
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This quantity gives the angle in 3D between 
the correct velocity vector and the estimated vector 
and thus describes how accurately the correct 
direction has been recovered. We address this table, 
to prove the efficiency of optical flow method for 
studied sequences and for a precise confidence 
measure (Barron, 2002), (Arredondo, 2004), 
(Joachim, 2003), (Thomax, 2004), (André, 2005) 
and (Volker, 2005). 

5.2 Implementations and Results 

In the implementation of all studied methods, the 
images of R, G and B, (r and g) and (H and S) are 
obtained from the brightness function of images 
sequence (R, G, B).  

The first order derivatives of the sequence 
functions are computed by using the (1/12) (-1, 8, 0, 
-8, 1) kernel. We used a 5x5 neighbourhood, where 
each line was a copy of the estimation kernel 
mentioned above. For the computation of temporal 
derivatives, a 3x3x2 spatiotemporal neighbourhood 
was used. 

In our case, we first computed the time taken by 
any studied method addressed in Table 2, using 
Matlab implementation on Toshiba PC Intel® 
pentium®, Microprocessor 1.70GHz and 1Go of  
RAM. We used the ball sequence with different 

sizes and Barron and Klette synthetic panning 
sequence in 2002.  
The first synthetic sequence (figure 2), derived from 
the original sequence (figure 1), contains ball 
moving in the horizontal direction with 4 
pixels/frame and in the vertical direction with 3 
pixels/frames, with variable sizes. The second one is 
generated by Barron and Klette (figure 7) where the 
correct flow is known (Baron and Klette, 2002), 
(Volker et al., 2005). 

Table 1: Time taken for computation by s CPU time. 

 
In the second stage, we used the first synthetic 
colour ball sequence with 64x64 size (figure 2) to 
compare quantitatively the obtained results by each 
studied method (figures 5 to 8). The results are 
reported in table 2. 

Table 2: Results Errors Comparison using synthetic colour 
ball sequence with 64x64 size. 

Proposed Method AME : 
Er±Std(Er) 

AAE : 
Ed±Std(Ed) 

Using  rgb space     RGB 5.50%±2.44% 3.15°±1.39° 
Using  HSV space  RGB 22.2%±25.45% 11.6°±12.14 
Min. RGB space     RGB 10.4%±11.41% 5.83°±6.13° 
Min.(smooth.: α)    RGB 6.16%±4.11% 3.52°±2.33° 

In the last stage, we used the synthetic panning 
sequence (figure 7) to compare quantitatively the 
obtained results (figures 8 to 15). In table 4, we 
added from the fourth line our results to the results 
presented in (Baron and Klette, 2002), (Volker et al., 
2005). 

Table 3: Comparison between the results (Figures: 10 to 
16) using synthetic panning sequence. 

Method AME : 
Er±Std(Er) 

AAE : 
Ed±Std(Ed) 

Horn-Schunck        RGB 17.44%±17.77% 2.64°±4.08° 
Goland-Bruckstein RGB 11.38%±17.36% 5.04°±11.80° 
Baron-Klette           RGB 16.14%±17.57% 0.16° 
Using  rgb space     RGB 3.04%±0.72% 1.74°±0.40° 
Using  HSV space  RGB 9.66%±19.14% 5.04°±8.63° 
Min. RGB space     RGB 6.06%±6.96% 3.43°±3.79° 
Min. RGB space     RGB 
with smoothing term 

3.52%±2.04% 2.01°±1.16° 

 

Method 64x64 128x128 240X320 Panning
Using rgb  2.125 7.079 103.704 56.422 
Using  HSV 2.047 8.266 114.797 73.031 
Using Min RGB 2.984 10.219 144.953 78.578 
Using Smooth. α 3.062 10.625 146.719 83.781 
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Figure 1: Original Image, of colour ball sequence with 
240X320 size.  

     
(a)      (b) 

Figure 2: (a) First image (b) Second image, of synthetic 
colour ball sequence size 64X64. 

 
Figure 3: Proposed method using rgb space. 

 
Figure 4: Proposed method using HSV space. 

 
Figure 5: Proposed method using RGB space. 

 
Figure 6: Proposed method using RGB space with 
smoothing term equal 3.  

 
 (a)      

 
(b) 

Figure 7: Images of Panning colour sequence (Real colour 
sequence). 

           
Figure 8: Horn-SchuncK flow for the Y component 
(Y=0.299R+0.587G+0.114B) with α=3 and 100 iterations. 

           
Figure 9: Golland-Bruckstein flow (RGB). 

           
Figure 10: Baron-Klett flow (RGB). 
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Figure 11: Proposed method using rgb space. 

 
Figure 12: Proposed method using HSV space. 

 
Figure 13: Proposed method using RGB space without 
smoothing term. 

 
Figure 14: Proposed method using RGB space with 
smoothing term (α=100). 

 
Figure 15: Proposed method using RGB space with 
smoothing term (α=3).  

6 CONCLUSION  

When we propose a new method, its drawbacks 
should also be discussed and compared with the 
other methods in the same environment. It has 
proved encouraging results. 

Colour optical flow computed via the three 
colour components seems better than grey value 
optical flow. The proposed method using normalized 
rgb colour space gives good results followed by that 
using RGB space with smoothing term after that we 
found the proposed method using RGB space 
without smoothing term and finally that using the 
HSV space. In our case we used a 100% density of 
dense optical flow computation.  

This proposed method requires the presence of 
significant gradients of the functions it is based on. 
If the gradient magnitude of these functions is small 
enough (≈0), any gradient based method would fail 
to give reliable results. This implies that all these 
methods should not be used when a scene contains 
objects with uniform colour.  

The proposed method used the least squares 
techniques to minimize the combination of optical 
flow colour constraint equation using the matrix 
inversion to compute the dense flow optic. We have 
used the brightness constancy assumption, the colour 
information as constraint function and the same 
smoothness function as that proposed by Horn and 
Shunck.  

We can extend the proposed smoothness function 
with other forms (as the combination of the local and 
global constraints) and we can use a bidirectional 
multigrid method for variational optical flow 
computation to resolve the real-time computation 
problem and the solving of the linear system of 
equations that results from the discretisation of the 
Euler-Lagrange equations.  

We plan to investigate all these to find a robust 
and sufficiently method for optical flow computation 
for any given sequences in some specific 
applications. 
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