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Abstract: This paper presents an approach that incorporates canonical correlation analysis for monocular 3D face track-
ing as a rigid object. It also provides the comparison between the linear and the non linear version (kernel) of
the CCA. The 3D pose of the face is estimated from observed raw brightness shape-free 2D image patches. A
parameterized geometric face model is adopted to crop out and to normalize the shape of patches of interest
from video frames. Starting from a face model fitted to an observed human face, the relation between a set
of perturbed pose parameters of the face model and the associated image patches is learned using CCA or
KCCA. This knowledge is then used to estimate the correction to be added to the pose of the face from an
observed patch in the current frame. Experimental results on tracking faces in long video sequences show the
effectiveness of the two proposed methods.

1 INTRODUCTION

Nowadays video object tracking presents a challeng-
ing problem for video applications such as face-based
biometric person authentication, human computer
interaction, video games, teleconferencing, surveil-
lance, etc. To deal with this problem, vision re-
search groups have proposed several approaches that
can be classified in two main groups: model-based
and learning-based approaches. In the first cate-
gory, tracking algorithms rely on a parametric model
of the object to be tracked. In the second cate-
gory, algorithms assume the availability of a train-
ing set of object examples, and use pattern recog-
nition/classification techniques. When working with
video images, we can obtain different features, such
as edges, interest points, grey level intensities or color
histograms, etc. The choice of these features will
depend on the tracked object’s characteristics. The
tracker is traditionally composed of two components:
a representation component to cope with changes in
the target appearance, (caused by a variation in illumi-
nation, an occlusion, a change in orientation or scale,
a facial expression, etc.), and a filtering component
(it adds temporal continuity constraints across frames

and deals with dynamics of the tracked object).
In this paper, we propose a deterministic approach

based on Canonical Correlation Analysis (CCA).
CCA has already been considered for the task of es-
timating an object’s pose from rawbrightness still im-
ages, for example in (Melzer et al., 2003).In our case,
using the work realized in (Davoine and Dornaika,
2005; La Cascia et al., 2000),we combine CCA with
a 3D generic face model to track people’s 3D head
pose as a rigid object. This document is structured
as follows: Section 2 introduces the 3D face model
and how we use it to compute shape-free 2D image
patches. Then, in section 3 we give a description of
Canonical Correlation Analysis (CCA) algorithm in
the linear and non linear form. After that, we present
how we link these concepts to track a face in a video
sequence. Section 4 presents the experimental results
obtained from long video sequences. Finally we give
our conclusions in section 5.

2 FACE REPRESENTATION

The use of a 3D geometric generic model for track-
ing purpose has been widely explored in the computer
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vision community. It allows to acquire the 3D face
characteristics of a given person and the correspond-
ing texture map to this person’s face. In this section
we present the 3D geometric model used and the way
we employed it to obtain a normalized raw brightness
facial patch.

2.1 3d Geometric Model

In our work, we use theCandide-3wireframe model,
proposed by (Ahlberg, 2001). It consists of a group
of n 3D interconnected vertices to describe a face by
means of a small number of triangles, enough to reach
an acceptable realism to represent a face both stati-
cally and dynamically by means of shape and anima-
tion units.

The 3n-vectorc consists of the concatenation of
all the vertices, and can be written in terms of the
modifications that it can be subject to, as:

c = cs+Aτττa (1)

whereAτττa stands for the dynamic part of the model,
being the columns ofA the Animation Units andτττa
the animation control vector. The vectorcs = c+Sτττs
corresponds to the static characteristics of a given per-
son (like the nose size, eye separation distance, etc.),
beingc the standard shape of theCandidemodel, the
columns ofS are the Shape Units, andτττs is the shape
control vector (Ahlberg, 2001). The vectorsτττs andτττa
are initialized manually, by fitting theCandideshape
over the face in the first video frame. Figure 1 shows
the initialization as well as the 3D model with the tex-
ture warped on it in a frontal view and in three ro-
tated views. These views are useful to adjust thez-
component parameters ofτττs andτττa during the model
initialization step. The vectorτττa is supposed to be
constant: the face is seen as a rigid object during the
tracking process, with a fixed expression.

Figure 1:Candide.model placed over the target face in the
first video frame with frontal and three rotated views.

When placing theCandidemodel over the first

frame, we obtain the 3D pose parameters, that we put
in our state vectorb, given by:

b = [θx,θy,θz, tx, ty, tz] (2)

where theθ elements stand for the rotations and the
t elements stand for the translations that we want to
track. When we place the model over the first video
frame, we crop the texture that lies under it and warp
it to the 3D model surface for tracking purposes, as
described below.

2.2 Normalization of the Raw
Brightness Facial Patch

When tracking a moving face in a 3D environment,
we face the problem that its size and geometry are not
constant, making difficult the direct construction of
a facial appearance model. To cope with this prob-
lem, we build a stabilized 2D shape free image patch
(a texture map) to code the facial appearance of the
person facing the camera. This patch is obtained by
warping the rawbrightness image vector lying under
the initialized modelc(b) at time t = 0 into a fixed
size (in our cased = 96×72 pixels) 2D projection of
the reference Candide model without any expression,
i.e. τττa set to zero. The patch is finally augmented
with the two semi-profile views of the face, as shown
in Figure 2.

We can express this mathematically as it was done
in (Davoine and Dornaika, 2005) as a transforma-
tion W of the texture observed at each frameYt .
For a given state vectorb, the observation vector
xt = W (b,Yt) consists of the columns of the stabi-
lized face image stacked one after the other and nor-

malized such that
√

∑d
i=1x2

i = 1.
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Figure 2: Expression-free patch, used to represent the target
face.

3 TRACKING PROPOSITION

The main idea of our algorithm is to estimate the rela-
tion that exists between the variation of the state vec-
tor and the difference between the current observation
vector and the reference vector. To perform this, we
consider two approaches to learn a relation between
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a set of perturbed state parameters and the associated
image patches. One is based on Canonical Correla-
tion Analysis, and the other one on kernel CCA to
search for the relationships in the higher dimensional
space. In this section we will briefly introduce CCA
and KCCA, as well as the way we use them to find
the model that establishes the relation we are looking
for.

3.1 Canonical Correlation Analysis

Canonical correlation analysis is a way of identifying
and quantifying the linear relationship between two
data sets of random variables. CCA can be seen as the
problem of finding basis vectors for two sets of vari-
ables, one forQ1 and the other forQ2, such that the
correlation between the projections of the variables
onto these basis vectors are mutually maximized.

Let A1 and A2 be the centered data sets corre-
sponding to theQ1 data matrix of dimensionm× n
andQ2 the data matrix of dimensionm× p respec-
tively. The maximum number of correlations that can
be found is equal to the minimum of the data sets’
column dimensionmin(n, p). If we map our data to
the directionsw1 andw2 we obtain, for each pair of
directions, two new vectors defined as:

z1 = A1w1 and z2 = A2w2 (3)

These vectors are called thescores(Borga et al.,
1997; Dehon et al., 2000; Weenink, 2003), and we
are interested in finding the correlation between them,
which is defined as:

ρ =
zT

2 z1√
zT

2 z2

√
zT

1 z1

(4)

Our problem is to find the vectorsw1 andw2 that
maximize (4) subject to the constraintszT

1 z1 = 1 and
zT

2 z2 = 1. In order to do that, we formulate our prob-
lem in a Lagrangian form.

As we have the data matricesA1 andA2 we can
use the method proposed in (Weenink, 2003), to re-
duce the number of matrix operations, where they per-
form the singular value decomposition of the data ma-
trices A1 = U1D1VT

1 and A2 = U2D2VT
2 , then they

introduce the singular value decomposition:UT
1 U2 =

UDVT , to finally get:

W1 = V1D−1
1 U and W2 = V2D−1

2 V (5)

where we denoteW1 andW2 as the matrices contain-
ing respectively thecanonical correlation basis vec-
torsw1 andw2.

The main advantage of this procedure is that it
avoids the estimation of the covariance matrices and
the calculation of the corresponding inverses, and in-
stead, we need to perform three singular value decom-
positions, which are numerically more robust.

3.2 Tracking Implementation Using the
Cca

Once we have shown the CCA, we can proceed to
describe our tracking algorithm. It consists of three
steps: Initialization, Training process, and Tracking
process.

Initialization. During the initialization we place the
Candidemodel over the first video frameY0, and ad-
just it to the person’s characteristics as previously de-
scribed, obtaining the state vectorb0, and the refer-
ence vector at timet = 0 as:

x(re f)
0 =W (b0,Y0) (6)

Training process. It consists of obtaining a linear
model containing the relation between the variation in
the state vector∆bt and the vector resulting from the
difference of the observation vector and the reference
vectorxt −x(re f)

t .
To obtain this relationship, we need to define the

data matricesA1 andA2. The matrixA1 contains the
difference between them training observation vectors

xTraining = W (bTraining,Y0) and the referencex(re f)
0 ,

and the matrixA2 contains the corresponding vari-
ation in the state vector obtained from the relation
∆bTraining = bTraining−b0. Them training points were
chosen empirically from a non-regular grid around the
vector state obtained at initialization. From these ma-
trices we can obtain thecanonical correlation basis
vectorsas described before. Once we have obtained
this basis, the general solution consist in doing a lin-
ear regression betweenz1 andz2. However, if we de-
velop 4 for each pair of directions with the assump-
tions made above, we arrive at‖A1w1−A2w2‖2 =
2(1−ρ) similarly as in (Hardoon et al., 2004). In our
case, we haveρ≈ 1 (from experimental data), so, we
have the following relation:

A1w1 = A2w2 (7)

that simplifies the obtention of our model by avoiding
the linear regression needed whenρ 6= 1.

We suppose that the learned relations from the ma-
trices A1 and A2 are valid for the current∆bt and
(xt −x(re f)

t ) in (7), then we can then write:
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∆btw2 = (xt −x(re f)
t )w1 (8)

If we write the result for all the pair of directions in
a matrix form, we can replace equations (5) in the last
equation, and after some mathematical manipulation,
we arrive at:

∆bt = (xt −x(re f)
t )G (9)

where theG matrix, that encodes the linear model
used by our tracker, is given by:

G = V1D−1
1 UVTD2VT

2 (10)

It is important to notice that the matrixG is only
valid for a certain rotation interval and it is very de-
pendent on the training points used and on the initial-
ization of theCandidemodel.

Tracking process. The tracking process estimates
the state vector variation∆bt from the difference be-
tween the current observation vector and the reference
vector by means of theG matrix built during the train-
ing process. To perform this estimation, we obtain the
current observation vector, which depends on the cur-
rent video frameYt and the state vector at the preced-
ing instantbt−1 as:

xt =W (bt−1,Yt) (11)

and then, we obtain the difference between the obser-
vation vector and the the reference vectorx(re f)

t . Then
we use this difference vector and theG matrix to up-
date the state vector as:

b̂t = bt−1 +(xt −x(re f)
t )G (12)

With b̂t , we get a new observation vectorx̂t =

W (b̂t ,Yt) and we compare it with the referencex(re f)
t

to compute the error measure:

e(bt) =
d

∑
i=1

(
x̂i,t −x(re f)

i,t

σ(re f)
i,t

)2

(13)

whereσ2
t is the variance of the reference vector. If

e(bt) is bigger than a certain threshold, we use the
state vector estimated̂bt in (12) and obtain again an
error measure. We iterate a fixed number of times (5,
in practice). Once the iterations are done, and in order
to increase the robustness of the tracker to weak illu-
mination changes, we proceed to update the reference
vector and its variance according to:

x(re f)
t+1 = αx(re f)

t +(1−α)x̂t (14)

σ2
t+1 = ασ2

t +(1−α)(x̂t −x(re f)
t )2 (15)

beingα = 0.99 obtained empirically.
This approach is useful when we work with data

that has a linear behavior. In our case this linear ap-
proach showed a good performance, but for compari-
son reason, we studied also the use of the kernel CCA,
to find out if an approach that can cope with non linear
relations, can outperform the linear approach previ-
ously described. In the following part, we will present
the Kernel Canonical Correlation Analysis and the al-
gorithm used for tracking purposes.

3.3 Kernel Canonical Correlation
Analysis

The main idea behind kernel methods is that we can
still apply a linear method to analyse a given data set,
but first we need to map this data into a high dimen-
sional feature space. Thus, using kernel-functions we
can formulate our problem as a non-linear version of
the original one with the advantage that the complex-
ity of the transformed problem is not linked to the
feature space dimension, but to the training data set
dimension, which means that we can use kernel trans-
formations to feature spaces of high dimensionality.

If we defineA1 and A2 as the centred data sets
of dimensionm×n and of dimensionm× p respec-
tively, we can apply the CCA to the vectorsφ(A1) =

(φ(a(1)
1 )...φ(a(1)

m )) and θ(A2) = (θ(a(2)
1 )...θ(a(2)

m )),
according to the kernel trick (see (Melzer et al.,
2003)), which are two non linear mappings.

Then we define the kernel matricesK ,L by K i j =

φ(a(1)
i )φ(a(1)

j )T andL i j = θ(a(2)
i )θ(a(2)

j )T , with fφ and
gθ which can be seen as the coefficients of the linear
expansion of the principal vectorswφ andwθ in terms
of the transformed data, i.e.,wφ = φ(A1)

T fφ andwθ =

θ(A2)
Tgθ.

We can then define as for the CCA the correlation
between the transformed data as:

ρ =
gT

θ LTKf φ√
gT

θ L2gθ

√
fT
φ K2fφ

(16)

which we maximize in the same way as for the CCA.
The problem that arises from KCCA is that we

work with a finite number of points in a high dimen-
sional feature space, which can lead us to useless re-
sults. To force useful solutions we introduce a pe-
nalizing factor in the norms of the associated weights
which leads us to the eigenvalue equations (for more
details see (Hardoon et al., 2004)):

(K +κI)−1L(L +κI)−1Kf φ = ρ2fφ (17)
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(L +κI)−1K(K +κI)−1Lgθ = ρ2gθ (18)
We can then obtain the vectorsfφ and gθ as the

eigenvectors of this equations.

3.4 Algorithm Implementation Using
the Kcca

As for the CCA, we can divide the algorithm in three
parts, the initialization being exactly the same as in
the case of the CCA. For the training process, we need
to obtain vectorsfφ and gθ as described in the last
section, using the same data matrices as the ones de-
scribed for the CCA approach. It is important to point
out that in the case of the variation vectors, we did not
use any kernel. Once this is done, the starting point
for the tracking is equation (7) that can be developed
according to the KCCA as:

Kf φ ≈ A2AT
2 gθ (19)

If we develop as above, we can assume that the
tracking data satisfies also this equation and after
some mathematical manipulation we arrive at:

∆bt = K t fφ(AT
2 gθ)

−1 (20)
Here we can see that theK t corresponds to the

kernel matrix at timet obtained between the training

vectorsx(i)
−1 =W (b(i)

−1,Y0), i = 1. . .m and the actual
patchxt =W (bt−1,Yt). However, for the algorithm
implementation, we compute a linear regression be-
tween the result of the product of the matrix kernel
Kf φ and the variation vectorQ2, so that we have the
actualization equation:

∆bt = K t fφG (21)
being the matrixG obtained from the training kernel
matrix K . We use in our case the Gaussian RBF ker-
nel function:

K(xi ,x j) = exp(−‖xi −x j‖2

2σ2 ) (22)

In our experiments, the two parametersσ and κ
are set respectively to 0.009 and 0.003. They were
obtained empirically from simulations using training
sequences, and based on the method used in (Melzer
et al., 2003) to estimate a starting point.

4 RESULTS

In order to evaluate our proposals, we implemented
our algorithm on a PC with a 3.0 GHz Intel Pen-
tium IV processor and a NVIDIA Quadro NVS 285

graphics card. The non optimized implementation
uses OpenGL for the texture mapping and OpenCV
for the video capture. We have used the video se-
quences used by (La Cascia et al., 2000)1, the an-
notated talking face video2, as well as some video
sequences made with a Winnov analog video camera
XC77B/320.

Figure 3 shows the results obtained from the CCA
algorithm. It depicts the state vector estimated com-
pared to the ground truth provided by (La Cascia
et al., 2000). We see that the performance of our
tracker is close to the ground truth. However, the co-
ordinate system used by our system is not the same as
that of the data given, specially for the translationand
hence compare them we had normalized both data.
There is also a issue with the rotation axes, which are
not located at the same point in our system (where
the three axes cross close to the nose, due to theCan-
dide model’s specification), and in the ground truth
data provided (where the 3D magnetic tracker was at-
tached on the subjects head). This discrepancy caused
principally the difference in the translation parame-
ters, because what in one system represents a rotation,
in the other system represents a rotation and a trans-
lation.
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Figure 3: Ground truth compared with the CCA algorithm’s
results.

Figure 4 depicts some video frames taken from
two tracked videos from (La Cascia et al., 2000) and

1htt p : //www.cs.bu.edu/groups/ivc/HeadTracking/
2htt p: //www−prima.inrialpes. f r/FGnet/data/01−

TalkingFace/talking f ace.html
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a webcam video. The CCA and the KCCA algorithm
performance did not present any problem when track-
ing the head in these video sequences, especially be-
cause there are not facial gesture involved. In the case
of the webcam video, we succeeded in tracking cor-
rectly rotations in they plane going as far as±35◦.
However, when trying to go further, the algorithm
could not estimate the correct variation of the angle
and got lost.

Another test has been performed using a part of
the talking face video. This video presents slight head
pose changes compared with the previous employed
videos, but it presents more significant movements
due to facial gesture. This video shows a person en-
gaged in conversation in front of a camera. It comes
with ground truth data that consist of characteristic
face points annotated semi-automatically. From the
68 annotated points, we chose the 52 points that were
closer to the correspondingCandidemodel’s points.
Because these points were not exactly the same as the
ones given in the ground truth database, there existed
an initial distance between the points. In order to mea-
sure the behavior of our algorithm, we calculated the
standard deviation of this distance, as shown in Figure
5. We can see that the points that presented the higher
variance were those in the head’s contour.

In Figure 6 we can see the result of tracking the
talking face over 1720 frames. The importance of this
figure is that we can see the evolution of the error dur-
ing the video. We have seen that the peaks appearing
in this figure represent the moments when there was
a facial gesture or a important rotation. However, as
seen in the frames displayed, we can cosider that these
peaks does not represent a significant error between
the state vector estimated and the real head pose.

The time required per frame processing depends
on the video size, as can be seen in the table 1. In that
table we show also the comparison between the CCA
and the KCCA implementation.

Table 1: Comparation of time per frame.

Video’s size [pixels] time per frame [ms]
CCA 640×480 147.6
CCA 720×576 179.5

KCCA 320×240 2486.7

5 CONCLUSIONS

We have seen that the pose tracking is well performed
with the two trackers implemented. They managed to
follow the head movements in long video sequences
of more than 1700 frames. The main advantage of this

algorithm is that it is simple and proved to be robust
to facial gesture. However, we observed from simu-
lations that the effectiveness of this kind of tracker is
dependant on the mask initialization, i.e., the 3D mask
must be correctly initialized, in pose and in facial fea-
tures at the first frame, otherwise, the tracker can get
lost because the model affects directly the texture ex-
traction and consequently the state vector predictor.

The results obtained by means of the CCA and the
KCCA did not present a significant difference. How-
ever, if we consider the computation time required for
the KCCA algorithm, which was 10 times slower than
the CCA algorithm, we can conclude that for the type
of data we use, it is better to use the linear approach.

In our future work we will add the gesture track-
ing, based on the CCA approach, principally for
tracking the mouth and eyebrows, and based on the
work of (La Cascia et al., 2000), we will include a
robust measure to the tracking algorithm.

REFERENCES

Ahlberg, J. (2001). Candide-3 – an updated parameterized
face. Technical Report LiTH-ISY-R-2326, Linkoping
University, Sweden.

Borga, M., Landelius, T., and Knutsson, H. (1997). A uni-
fied approach to PCA, PLS, MLR and CCA. Report
LiTH-ISY-R-1992, ISY, SE-581 83 Link̈oping, Swe-
den.

Davoine, F. and Dornaika, F. (2005).Real-Time Vision for
Human Computer Interaction, chapter Head and Fa-
cial Animation Tracking using Appearance-Adaptive
Models and Particle Filters. Springer Verlag.

Dehon, C., Filzmoser, P., and Croux, C. (2000). Robust
methods for canonical correlation analysis. In Kiers,
H., Rasson, J., Groenen, P., and Schrader, M., editors,
Data Analysis, Classification, and Related Methods,
pages 321–326. Springer-Verlag.

Hardoon, D., Szedmak, S., and Shawe-Taylor, J. (2004).
Canonical correlation analysis; an overview with ap-
plication to learning methods.Neural Computation,
16:2639–2664.

La Cascia, M., Sclaroff, S., and Athitsos, V. (2000). Fast,
reliable head tracking under varying illumination: an
approach based on registration of texture-mapped 3D
models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(2):322–336.

Melzer, T., Reiter, M., and Bischof., H. (2003). Appearance
models based on kernel canonical correlation analysis.
Pattern Recognition, 36(9):1961–1973.

Weenink, D. (2003). Canonical correlation analysis. In
Proceedings of the Institute of Phonetic Sciences of
the University of Amsterdam, Netherlands, volume 25,
pages 81–99.

FACE TRACKING USING CANONICAL CORRELATION ANALYSIS

401



Figure 4: Results from tracking three video sequences using
the CCA algorithm in the first five images, and the KCCA
algorithm in the last one.
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Figure 5: Standard deviation of the points provided for the
talking face video sequence.
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