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Abstract: Geometric deformable models (GDM) using the level sets method provide a very efficient framework for im-
age segmentation. However, the segmentation results provided by these models are dependent on the contour
initialization. Moreover, sometimes it is necessary to prevent the contours from splitting and merging in order
to preserve topology. In this work, we propose a new method that can detect the correct boundary information
of segmented objects while preserving topology when needed. We adapt the stoping function g in a way that
allows us to control the contours’ topology. By analyzing the region where the edges of the contours are close
we decide if the contours should merge, split or remain the way they are. This new formulation maintains the
advantages of standard (GDM). Moreover,the topology-preserving constraint is enforced efficiently therefore,
the new algorithm is only slightly computationally slower over standard (GDM).

1 INTRODUCTION

The class of geometric deformable models(GDM) in-
troduced in (Caselles et al., 1993; Caselles et al.,
1997; Malladi et al., 1995) are deforming contours
(curves and surfaces) represented implicitly as level
sets of some higher dimensional scalar function.
This level sets representation allows these models
to have numerous advantages such as providing effi-
cient computational schemes, automatically handling
topology changes of the evolving contours and sim-
ple implementation. These numerous advantages can
be used profitably to provide a very efficient frame-
work for image segmentation, edge detection, shape
modeling, and visual tracking. (GDM) level sets for-
mulation can automatically handle topology changes
and usually it is a desired property. However, topolog-
ical flexibility is not always desired especially, when
a particular object is sought and its number of compo-
nents and the homology of each component is known.
In past, there have been several postprocessing meth-
ods reported to correct the topology of a cortical seg-
mentation that has the wrong topology (Shattuck and
Leahy, 2000; B. Fischl and Dale, 2001; X. Han and
Prince, 2001; X. Han and Prince, 2003; Alexandrov

and Santosa, 2005). In this and similar applications
the topology flexibility of geometric deformable mod-
els is considered to be a liability rather than an advan-
tage (X. Han and Prince, 2001). Although ”snakes”
introduced by (M. Kass and Terzopoulos, 1987) do
preserve topology they do not give us the flexibility to
change the topology if needed.
In this paper, we develop an intelligent topology-
preserving GDM (TPGDM) that can guarantee that
the final contour has exactly the same topology as the
initial one but also it can let the contours merge or
split when judged appropriate.
This paper is organized as follows. In Section 2, we
briefly introduce the geometric deformable models.
In Section 4, we explain the algorithm for contour ini-
tialization. In Section 5 we explain the new TPLSM.
An experimental result is also presented. A brief con-
clusion is given in Section 7.

2 GEOMETRIC DEFORMABLE
MODELS

Geometric models for active contours have brought
tremendous impact to classical problems in imagery
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∂t
=| ∇u | (div(g(I)

∇u
| ∇u | )) (1)

u(x,0) = u0(x) (2)

where u0 is the initialized curve. A similar formula-
tion called the geodesic model gives:

∂u
∂t

= g(I)(c+ k) | ∇u |+∇g ·∇u (3)

where g(I) is the stopping function,

g(I) =
1

1+ | ∇Î |2

which will stop the propagation when the evolving
front reaches the desired position, the boundary de-
tected. Î is a convolved image that ensures the mo-
tion of C is less affected by the noise in the image.
k is the mean curvature. For the added constant term
c, we can think cg(I) | ∇u | as an extra speed in the
geodesic problem to increase the speed of the conver-
gence. The gradient term |∇u | controls what happens
at the interior and exterior of the interface. ∇g ·∇u
denotes the projection of an attractive force vector on
the normal to the moving interface. This term allows
to accurately track boundaries with high variation in
their gradient, including boundaries with small gaps.
There are many algorithms for numerical implemen-
tation of GDM using level sets. Narrow band method
and fast marching method are two simple, computa-
tionally fast and widely used algorithms. Instead of
computing the evolution of all the level sets, which

means all the grid points, narrow band method just
updates a small set of points in the neighborhood of
the zero level set for each iteration.
However, the results of this model depend on the po-
sition of the initialized curve/surface. Different initial
positions may lead to totally different result contours.
We will discuss in detail and show some examples in
section 6.

3 THE AVERAGE SQUARED
GRADIENT

One of the measures for locally characterizing the im-
age used in (Förstner, 1994) is the average squared
gradient defined as follows: with the gradient ∇g =
(gx,gy)T we obtain the squared gradient Γg as dyadic
product

Γg = ∇g∇gT
[

g2
x gxgy

gygx g2
y

]
(4)

The Gaussian function with standard deviation σ is
denoted by Gσ(x,y) = Gσ(x)∗Gσ(y). This yields the
average squared gradient image

Γσg(x,y) = Gσ ∗Γg =
Z Z

Γg(u,v)Gσ(x−u,y− v)dxdy.

(5)

The three elements of Γσg(x,y) can be derived by
three convolutions.

Γσg(x,y) =
[

Gσ ∗gxx Gσ ∗gxy
Gσ ∗gyx Gσ ∗gyy

]

Γσg(x,y) can be diagonalised by rotation of the coor-
dinate axes and it gives Γσg = T ΛgT T = λ1(g)t1tT

1 +
λ2(g)t2tT

2 .

First, the trace h = trΓσg = λ1(g)+λ2(g) = ‖∇g‖2 =
σ2

gx +σ2
gy gives the total energy of the image function

or edge busyness at (x,y). We can use h = trΓσg for
measuring the homogeneity of segment-type features.
Second, the ration v = λ1

λ2
of the eigenvalues gives

us the information about the orientation or isotropy.
For example, if λ2 = 0, we have anisotropic texture
of straight general edges with arbitrary cross-section.
Third, the largest eigenvalue can give us an estimate
for the local gradient of the texture or the edge. Due
to the squaring, the phase information is lost (Kass
and Witkin, 1987) but, the variance of the orientation
is proportional to λ2

(λ1−λ2) , giving us an additional in-
terpretation and showing that if λ1 ≈ λ2 then the vari-
ance of orientation is large.
Therefore, if λ1 and λ2 are eigenvalues of Γg and λ1 ≥
λ2 then: (1) if λ1 is large compared to λ2 , the local
neighborhood possesses a dominant orientation, (2) if
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Figure 1: Dependence of Initialization.

the eigenvalues λ1 and λ2 are comparable, there is no
preferred orientation and (3) if both eigenvalues are
negligible, the local neighborhood is approximately
constant.

4 FINDING ALL EDGES USING
GDM

With different initial positions geometric deformable
models using the level sets method may lead to totally
different segmentation results, and can not guarantee
to find the correct and complete boundaries. For ex-
ample, figure 1 shows some screw nuts shaped object
in the image. If we initialize a curve inside the one
of nuts, as shown in row (a), the final result is only
the boundary of that nut and we know nothing be-
yond this object. If we initialize the curve between
the two boundaries of another nut, as shown in row
(b), then we will get the outside and the inside bound-
aries of the nut as the final result, again we know noth-
ing beyond the outside boundary and inside the inner
boundary. Even if we initialize the contour outside
of all the objects, as shown in case (c), we only get
outside boundaries of the objects. Thus, it is not guar-
anteed that you can find all the objects in the scene. In
the case of tracking an objects with known topology,
one way that can guarantee the right result is to ini-
tialize seeds in every small enough area in the image
to avoid missing any desired object boundaries. This
is very computationally expensive and slow.
To solve this problem, Dedić et al. in (Dedić and
Allili, 2006) proposed a way that can select the right
initial interfaces position so that the complete bound-
ary of all object is detected. There are mainly two
steps: first, we use the information from the evolv-

Figure 2: An example of keeping track of used pixels (con-
tour 1).

ing hypersurface to determine where the contour have
passed so far to acquire the view of the object’s inte-
rior; we find the correct initial position of the curve
by analyzing the gradient distribution inside the test
region containing the initial contour.

In the approach presented in (Dedić and Allili,
2006), we keep track of pixels passed over by a con-
tour and mark them as used and then initialize new
contour at the first available unused pixel that can ac-
commodate this new contour. The reason why it is im-
portant to keep track of pixels that were passed over
(pixels inside a contour, since we work with expend-
ing contours) is because we do not want to initialize
the next contour at the region that was already de-
tected (Dedić and Allili, 2006).
In order to keep track of used and unused pixels we
create a temporary binary image. Once a contour is
stabilized we mark as used all points in temporary
image that have the same coordinates as points that
lie inside the stabilized contour in the image that we
are segmenting. An example of this idea is shown in
figs.2 and 3.
To set the initialization position for the evolving
curve, the idea is to choose a point that is lying in the
region of interest and that was not considered before
(unused), then we analyze the test region around the
point to make sure that all the points inside the test
region are inside a region without any edges, which
means that the initialization is totally inside only one
region. We analyze the average squared gradient in-
side the test region in order to decern if the region of
interest lies inside one or more regions.
Let λ1 and λ2 be eigenvalues of Γg and λ1 ≥ λ2 then:
(1) if λ1 is large compared to λ2 , the local neigh-
borhood possesses a dominant orientation, (2) if the
eigenvalues λ1 and λ2 are comparable, there is no
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Figure 3: An example of keeping track of used pixels (con-
tour 2).

preferred orientation and (3) if both eigenvalues are
negligible, the local neighborhood is approximately
constant(Förstner, 1994). Therefore, we will initial-
ize a contour if, in a small neighborhood around the
initialization point, both eigenvalues are negligible.

5 PRESERVING THE TOPOLOGY

We will restrict our attention to 2-D problems, even
though the same ideas could work in higher dimen-
sions. Now suppose for simplicity that D is a bounded
and connected set in R2 with a set of holes inside of it,
which are connected components of R2 \D (Alexan-
drov and Santosa, 2005). If d > 0 and l > 0 are real
numbers, denote

Id = {x+d∇u(x) : x ∈ ∂D}
and
El = {x− l∇u(x) : x ∈ ∂D}
(see Fig.4)

Id and El are composed of all points at distance d and
l respectively from ∂D. Moreover, for d = l, Id ∪El
is exactly the set of all points at distance from ∂D.
This implies that any two components of R2 \D are at
distance more than d from each other if and only if Id
is entirely inside of D, that is, u(x) > 0 on Id . Also, the
gaps in D are neither “smaller” nor “thinner” than l if
and only if El is a subset of R2 \D, that is, u(x) < 0
on El (Alexandrov and Santosa, 2005). This can be
summerized in the following conditions:

u(x+d∇u(x) : x ∈ ∂D) > 0 and
u(x− l∇u(x) : x ∈ ∂D) < 0 for x ∈ ∂D.
To incorporate these constraints in the GDM we mod-
ify the stoping function g(I) = 1

1+|∇I|2 to :

Figure 4: The set Id (dashed curves) and El (dotted curves).

g(I,u) =
1

1+ |∇I|2 + 1
(x+d∇u(x))+(x−l∇u(x))

(6)

≡ 1

1+ |∇I|2 + f (u)
(7)

Now, the function g is no longer dependent only
on the image content but it depends on the con-
tours’ topology. When two contours approach each
other u(x+d∇u(x)) approaches 0 making g(I,u)
very small making the contours slow down and stop.
Similarly if a contour gets close to breaking up
u(x− l∇u(x)) would get close to 0 and would make
g(I,u) very small making the contours slow down and
stop. On the other hand, if the edges of the contours
are not close to each other f (u) will only depend on
d and l. In this case for the given d and l the function
f (u) will be a relatively small constant and will not
influence g(I,u) significantly.
In order to automatize the segmentation process it
could be useful to have a method that decides if topol-
ogy constraint should be imposed or not. To do this
we analyze the neighborhood of a region where the
contours’ topology change is attempted. We do so
using the average squared gradient. If the test re-
gion turns out to be uniform we proceed with merg-
ing or splitting otherwise the topology is preserved.
To know if the topology is about to change we mon-
itor the value of f (u). If it gets too big it means the
topology is about to change.

6 EXPERIMENTAL RESULTS

In this section, we present few results that were ob-
tained by applying the methodology presented above.
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Figure 5: Topology Preserving Demonstration a).

Figure 6: Topology Preserving Demonstration b).

In the first image of figure 5 we show an initialized
contour. In the following images we show its evolu-
tion after some iteration.
In figure 6 we show the final iteration of the contour
initialized in figure 5. Each image was produced with
a different value of d. The value of d allows us to con-
trol the distance of the edges that are trying to split or
merge. The value of d and l will differ from applica-
tion to application.
The following example is an image of a hand where
two middle fingers are very close, even touching. Fig-
ure 7 shows that if using classic GDM the topology
of the contour and therefore the topology of the hand
will not be preserved. By analyzing the topological
properties of the detected object would not help us to
identify it as a hand.
On the other hand figure 8 shows the result that would
be obtained using TPGDM. We see that the bound-

Figure 7: Hand Detection Without Topology preserving
Methodology.

Figure 8: Hand Detection With Topology preserving
Methodology.

aries of the two middle fingers do not merge. More-
over the distance between them can be controlled by
varying d.
Usually it is difficult even impossible to find the initial
position of a contour so that the complete boundary
of an object is detected. To ensure that all boundaries
are detected we use the technique developed in (Dedić
and Allili, 2006). The results of classic GDM and
TPGDM are shown in figure 10.
Now, we will summarize the procedure leading to the
result in the first image of figure 10. The largest uni-
form region turns out to be inside the hand and that is
where we initialize the first contour as shown in fig-
ure 8. As the contour evolves its edges get close to
merging where two middle fingers touch (see figure
9). Using the average squared gradient we determine
that the neighboring region is not uniform therefore,
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Figure 9: Closeup of Hand Detection With and Without
Topology preserving Methodology.

Figure 10: Result of Topology Preserving Total Boundary
Detection.

the topology constraint is activated. Once the con-
tour stabilizes and stops the algorithm looks for next
largest region to start the second contour. The initial-
ization and evolution of the second contour is shown
in figure 11. The two contours combined give the re-
sult image shown in figure 10.

7 SUMMARY AND
CONCLUSIONS

In this paper we have presented a new topology pre-
serving geometric deformable model. Together with

Figure 11: The Initialization and Evolution of the Second
Contour.

the simple and efficient idea to select the initial posi-
tion of the evolving curve we were able to automatize
the intelligent topology preserving image segmenta-
tion. Using the idea form (Dedić and Allili, 2006)
we detect all boundaries in the image. Analyzing the
regions where there is a possibility of merging and
splitting of the contours we determine if the topology
constraint should be turned on or not. By modify-
ing the stoping function g we imposed the topology
preserving constraint. An example was presented to
show the success of the new method and illustrate its
potential applications.
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