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Abstract: The estimation of camera parameters is a fundamental step for many image guided applications in the industrial
and medical field, especially when the extraction of 3d information from 2d intensity images is in the focus
of a particular application. Usually, the estimation process is called camera calibration and it is performed
by taking images of a special calibration object. From these shots the image coordinates of the projected
calibration marks are extracted and the mapping from the 3d world coordinates to the 2d image coordinates is
calculated. To attain a well-suited mapping, the calibration images must suffice certain constraints in order to
ensure that the underlying mathmatical algorithms are well-posed. Thus, the quality of the estimation severly
depends on the choice of the input images. In this paper we propose a generic calibration framework that is
robust against ill-posed images as it determines the subset of images yielding the optimal model fit error with
respect to a certain quality measure.

1 INTRODUCTION

Camera calibration is an indispensable step for aug-
mented reality or image guided applications where
quantitative information should be derived from im-
ages. Usually, a camera calibration is obtained by
taking images of a special calibration object and ex-
tracting the image coordinates of projected calibration
marks enabling the calculation of the projection from
the 3d world coordinates to the 2d image coordinates.
To attain this, the calibration images must suffice cer-
tain constraints in order to ensure that the underly-
ing mathmatical algorithms are well-posed. In the lit-
erature, ill-posed setups are often referred to as sin-
gularities or degenerated configurations (Sturm and
Maybank, 1999; Zhang, 2000). Unfortunately, in ev-
eryday calibration work, some of the acquired images
yield significant calibration errors or even originate
from such ill-posed configurations and their determi-
nation is rarely obvious. Hence, a mechanism that
automatically identifies such images is desirable or at
least a calibration method that is robust with respect
to these configurations.

In our contribution, we address this problem and
propose a generic calibration framework, that is ro-

bust against ill-posed configurations because it auto-
matically chooses images that result in low calibra-
tion errors. The framework is generic in the sense
that it is independent of a certain calibration technique
since it is parameterized by the applied calibration al-
gorithm.

2 RELATED WORK AND
CONTRIBUTION

Camera calibration has been studied intensively in the
past years, starting in the photogrammetry commu-
nity (McGlone and Mikhail, 1940) and more recently
in computer vision (Tsai, 1987; Sturm and Maybank,
1999; Zhang, 2000; Heikkilä and Silvén, 2000). Ac-
cording to Heikkilä and Silvén (Heikkilä and Silvén,
1997), there are four main problems when designing a
calibration procedure: control point localization in the
images, camera model fitting, image correction for ra-
dial and tangential distortion and estimating the errors
originated in these stages. Most of the research has
been devoted to model fitting and only few works can
be found in literature about the other stages of the pro-
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and model a certain subset by the coordinate vector
x = (x1 . . . xn)T ,x j ∈ [0,1], for example

x = (01 . . . 0 . . . 1)T = 0e0 +1e1 + . . .+0ek . . .+1en.
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Algorithm 1 Generic robust camera calibration
Require: I ,α,φ,ω ∈O LS,ωinit,τ

x = ωinit()
xmax = x
while !τ do

y = ω(x), y : y ∈ N (x)∧P
if neighbour y exists then

x = y
if φ(α(x)) is better than φ(α(xmax)) then

xmax = x
end if

end if
end while
return xmax

A generic algorithm in pseudo code is depicted in
Alg. 1. Due to the limitation on heuristic algortihms
the framework features an additional parameter, that
is responsible for finding a suitable start solution ωinit
(initialization). Typically, the termination criterion τ
is given by the maximum number of iterations kmax,
a convergence term measuring the relative improve-
ment or a combination of both.

Before entering the optimization loop, the initial-
ization strategy ωinit is applied in order to find a fea-
sible solutions that acts as the start solution and that
is made the current (sub)optimal solution xmax. Then,
the loop is entered and repeated until the termination
criterion is met. For the current solution x, an improv-
ing, feasible solution y from within the current solu-
tion’s neighbourhood N (x) is identified by the local
search method ω. If such a solution exists, the visual
system’s parameters are estimated with the calibration
algorithm α and the images represented by y. Subse-
quently, the calibration result is compared with the
current optimal solution using the quality measure φ.

4 APPLICATION

In the following we demonstrate the use of the frame-
work with common choices for the camera calibration
algorithm α, the objective function φ and exemplarily
a variant of the standard downhill search method ωSD.
The described configurations serve simultaneously as
setups for the subsequent experiment and result sec-
tion.

4.1 Initialization

As mentioned above (Sec. 3), heuristic optimization
starts from a given intial solution x0. Due to the
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Algorithm 2 Monte Carlo based initialization
Require: I ,α,φ,r,nmin,nmax
Ensure: 0 < nmin ≤ nmax ≤ |I |

D = /0 // already drawn solutions
x0 = (00 . . . 00)T

εbest = NaN
while r ≤ |D | do

choose x such that x /∈D and nmin ≤ ||x||22 ≤ nmax
D = D ∪{x}
Cx =α(x)
ε = φ(Cx)
if ε is better than εbest then

εbest = ε
x0 = x

end if
end while
return x0

huge discrete search space we apply a genetic algo-
rithm ωinit,GA as well as a stochastic selection scheme
ωinit,MCM for getting proper intial solutions.

4.1.1 Monte Carlo Method (MCM)

The stochastic initialization method ωinit,MCM is in-
spired by the well known Random Sampling Consen-
sus (Fischler and Bolles, 1981) and thus make use of
random selections (see Alg. 2). The key idea is to
randomly choose combinations of the input images
and keep the combination that features the best qual-
ity with respect to all the input images ιi ∈ I .

In more detail, r unique subsets xl , l = 1..r, are
randomly choosen from the search space X . In order
to completely cover the search space and enlarge the
convergence range, the size kl = ||xl ||22 of individual
subsets xl is also randomly choosen from the closed
interval [nmin,nmax].

For each of the subsets xi the visual system’s map-
ping Cxi is determined by the calibration method α.
Once this transformation has been determined, the
quality measure ε is calculated by an evaluation of φ
for all the images in the input image set I . Finally, the
subset xmax that yields the best quality measure εbest
is choosen as the initial solution x0.

4.1.2 Genetic Algorithm (GA)

Genetic Algorithms are search algorithms that mimic
the evolutionary ideas of natural selection and ge-
netic. They maintain N potentially optimal solutions
in the form of a population. During alternation of
generations k → k + 1, solutions are randomly cho-
sen from the population of the k-th generation and are
then mated with a certain probability P(χ) to form

a new solution using the genetic crossover operator
χ : X ×X → X . This operator recombines parts of
the parents’ solutions to a new solution (child). Ad-
ditionally, the child may be further modified by the
mutation operator µ : X → X , which replaces a child
solution by a neighbouring solution with the probabil-
ity P(µ). Finally, each individual is evaluated accord-
ing to the scalar fitness function φ BPE and the best are
selected to form the population of the next genera-
tion k +1. For the identification of an initial solution,
r generations are considered with a fixed population
size and the best individual after r alternations is cho-
sen to be the start solution x0.

4.2 Calibration

For the calibration of the visual system we use the
Zhang method (Zhang, 2000). Zhang’s approach
makes use of the pinhole model and describes the
relationship between the 2d pixel coordinates and
3d world coordinates by a projection matrix P, which
maps points from the projection space P 3 to the pro-
jective plane P 2.

The Zhang method requires at least 2 images in
order to work properly. Each of the n ≥ 2 observa-
tions contains an image of the calibration pattern that
features m calibration marks. Each mark represents
a mapping from the 3d world frame to the 2d image
frame and yields an equation in a linear equation sys-
tem that is solved for the components of P. These
camera model’s parameters are then adjusted within
a non-linear optimization procedure incorporating a
correction of radial and tangential lens distortion.

In order to ensure that only image subsets with
a cardinality of two or greater are considered, the
solution space is constraint with a predicate P (see
Sec. 3.1):

P : 2 ≤ ||x||22 .

4.3 The Objective Function

The mapping φ : X → R represents the quality mea-
sure (or in terms of optimization the objective func-
tion) and is used to assess a calibration from the im-
ages determined by x.

A common choice for such a measure is the (2d )
back projection error φ BPE. It is defined by the mean
of all projection errors εi j with respect to a given pro-
jection matrix Cx = P that has been obtained by cali-
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The projection error of a single calibration feature εi j
is given by the Euclidean distance between its ini-
tially extracted image coordinates (ui j,vi j)′ and the
corresponding 3d world coordinates (Xi j,Yi j,Zi j)′ be-
ing projected to the image plane with the projection
matrix P acquired by the calibration procedure.

In order to improve the calibration process, we
propose to combine the previous error measure
φ BPE2d with a term that assesses the spatial error when
reconstructing 3d points from 2d image point corre-
spondences by means of the calibrated projection ma-
trix P. For this, we incorporate the regression error
εPlaneFitError with respect to a plane that has been fitted
into the intersection points of back projected rays by
means of the projection matrix P:

φ BPE := φ BPE2d + εPlaneFitError (2)

Due to the fact that this error function φ BPE calcu-
lates the projection errors as well as the out-of-plane
errors for all the images of the initial calibration im-
age set I , it can be used as an indicator for singu-
larities. The smaller the value of φ BPE is, the better
the calibrated parameters fit the model. Thus, the op-
timization persues minimization of φ BPE : {0,1}n →
R+

0 in order to identify the best image subset, whereas
a huge value of φ BPE indicates the containdeness of a
singularities within the image subset.

4.4 Optimization Strategy

As a representant of the vast number of local search
algorithms, we exemplarily consider a variant of the
simple and common downhill heuristic. Both algo-
rithms make use of a conceptual skier that constantly
moves downhill in the value landscape. For this, the
basic version just seeks for a neighbour with an equal
or better solution. Thus, it chooses a deterministically
or stochastically determined neighbour xk+1 ∈N (xk)
that yields a smaller back-projection error than the
current solution xk:

φ BPE(xk) < φ BPE(xk+1)

The steepest descent local search method ωSD acts as
a stronger formulation as it always consideres the best
solution within the neighbourhood. Thus, the algo-
rithm replaces the current feasible solution xk with a

Table 1: Comparison of human-made selections with the
global optimum xopt, the selection of all images and the pro-
posed methods. The mean projection error is given in pixel
and calculated with respect to the whole input image set.
The bold values determine the best result within a group.

Method Average # Img. Std.Dev.
Expert 1 0.179088 8 ./.
Expert 2 0.180657 6 ./.
Expert 3 0.178398 10 ./.
Expert 4 0.178818 18 ./.
Expert 5 0.182151 4 ./.
Expert 6 0.178776 11 ./.
Expert 7 0.178678 7 ./.
Expert 8 0.178643 9 ./.

All 28.2622 20 ./.
ωinit,MCM 0.178386 ./. 1.10e-5

ωinit,MCM +ωSD 0.178376 ./. 1.64e-5
ωinit,GA 0.178410 ./. 2.72e-5

ωinit,GA +ωSD 0.178379 ./. 2.44e-5
xopt 0.178320 11 ./.

new solution xk+1 according to:

xk+1 = argmax
xk+1∈N (xk)

φ BPE(xk)

with φ BPE(xk) < φ BPE(xk+1).

5 EXPERIMENTS AND RESULTS

For an evaluation of our approach, we asked differ-
ent persons with a background in computer vision to
calibrate cameras and compared their calibration re-
sults with those that have been obtained with the pro-
posed methods. The experts calibrated several cam-
eras of different resolution and manufacturers, each
from n = 20 images of a 14-by-10 checkerboard (with
m = 117 calibration marks) whereas some of them
originated from ill-posed configurations. In order to
compare the expert’s over-all performance, the glob-
ally optimal solution for all image subsets was de-
termined too. For this, an exhaustive search of the
search space has been performed and the minimum
projection errors for the configurations that comprise
of two images, three images and so on up to 20 im-
ages have been identified. Starting with configura-
tions of only two images is due to the Zhang method
that requires at least two different views of the cal-
ibration pattern (see Sec. 4.2). In contrast to taking
the minimum number of images, considering all im-
ages corresponds to the procedure typically persued
in everday calibration work. The exhaustive search
procedure has found the global optimum of 0.178320
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Figure 1: The performance of the simple genetic initialization algorithm in dependence on the number of individuals in
the population (a), the computation time (b) for different fixed numbers of evaluations and the results of different genetic
algorithm schemes with respect to the percentage of individuals that is replaced when alternation of generations (c) as well as
with respect to different numbers of evaluations.

pixel after N = (2n−1)−n = 2n−(n+1) = 1048555
evaluations and took several hours on state-of-the-art
workstation.

In addition to the expert experiments, we applied
the proposed method to the same images in order to
compare the method’s performance with that of the
experts. The genetic algorithm used in our experi-
ments uses non-overlapping populations (Simple) as
described in (Goldberg, 1989), but features elitism,
that means that the best individual from each gen-
eration is carried over to the next generation. Since
the behaviour of a genetic algorithm depends on the
choices for its parameters, the algorithm’s perfor-
mance has been tested with varying population size,
a cross over probability of P(χ) = 0.5 and a muta-
tion probability of P(µ) = 1

2n . The averaged results
of 100 tests are depicted in Fig. 1 showing the back-
projection error for different numbers of evaluations
(Fig. 1(a)) and the elapsed time (Fig. 1(b)). The num-
ber of generations r have been derived from the con-
dition NEval. = NPop.Size ·NGen. in order to get com-

parable results. Apparently there is a trade-off be-
tween processing time, the population size and the
solution’s quality. We considered a population size
of 100 as a suitable compromise and used this in the
following experiments whenever a genetic algorithm
was involved.

Additionally, we tested several Genetic Algorithm
schemes: Fig. 1(c) reveals that replacing of 30% to
45% of a generation’s population by new individu-
als when changing generations seems to be a good
uniform choice for the different algorithms whereas
Fig. 1(d) shows that they perform equally well with
slighty better results for the parallel, overlapping pop-
ulation scheme (Deme). However, for our experi-
ments we resorted to the simple Genetic Algorithm
scheme due to its simplicity and we applied the ini-
tialization algorithms ωinit,GA and ωinit,MCM with and
without heuristic optimization to the image set. In
order to get statistically representative results, the ex-
periments with r = 100 . . .2000 evaluations have been
repeated 100 times and the averaged projection errors
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Figure 2: Performance comparison of the Genetic Algorithm and the Monte Carlo approach for initialization of the local
search along with the optimization strategy ωSD with respect to the backprojection error (a,c) and the computation time (b,d).

were take for consideration.

Fig. 2 shows the results of the initialization strate-
gies and the subsequent optimizations with the Steep-
est Descent ωSD heuristic. The top of the figure
exhibits, that the Monte Carlo initialization method
ωinit,MCM performs slightly better than the genetic al-
gorithm ωinit,GA at the expense of longer responses.
In any case, the Monte Carlo initialization is espe-
cially usefull when only a few samples are drawn
(r ≤ 500), because of its fast convergence and the
neglible additional time in comparison with the Ge-
netic Algorithm initialization. In contrast, using many
evaluations (r > 500) the processing time outweights
the better performance, so that the Genetic Algorithm
might be the better choice. Similarly, the heuristic
optimization results in lower backprojection errors, if
stochastic initialization has been chosen. However,
the Genetic Algorithm features shorter response times
with only marginal worse calibration errors.

Regardless of which initialization method is used
and no matter if it is followed by a heuristic opti-
mization, the automatic approach yields better results

than calibrations from image subsets that have been
selected by human-made decision. Following an in-
tuitive approach - that is choosing all the acquired
images - will likely results in large projection errors
(cf. Tab. 1). Likewise, considering only the minimum
number of images will not yield optimal solutions.

6 DISCUSSION AND
CONCLUSION

In this paper, we addressed the problem to automat-
ically determine the optimal subset of the pool of
aquired calibration images yielding the best calibra-
tion result. We presented a generic, optimization
based framework for the identification of combina-
tions of input images that yield a small projection er-
ror. Due to the problem’s structure, we resorted to
heuristic optimization and proposed a Genetic Algo-
rithm scheme that generate an appropriate start solu-
tion for these iterative local search methods. Exper-
iments comparing the algorithms’ performance with
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