
STREAMING CLUSTERING ALGORITHMS FOR FOREGROUND
DETECTION IN COLOR VIDEOS

Zoran Duric, Wallace E. Lawson and Dana Richards
Department of Computer Science, George Mason University, Fairfax, Virginia, USA

Keywords: Streaming algorithms, clustering, backgroundmaintenance, video surveillance.

Abstract: A new method is given for locating foreground objects in color videos.This is an essential task in many appli-
cations such as surveillance. The algorithm uses clustering techniques to permit flexibility and adaptability in
the description of the background. The approach is an example of the streaming data paradigm of algorithms
design, which only permits limited information to be retained about previous video frames. Experimental
results show that it is an effective and robust technique.

1 INTRODUCTION

Many authors have developed methods of detect-
ing people in images (Haritaoglu et al., 1998; Wren
et al., 1997); a comprehensive survey (Moeslund and
Granum, 2001) reviews most of the relevant refer-
ences. Most of this work has been based on back-
ground subtraction using color or luminance informa-
tion. Recently, edge information has been used for
background subtraction (Jabri et al., 2000; McKenna
et al., 2000) These methods usually use a number of
frames to ”learn” a model of the background scene
which is later used to classify pixels in new images as
either a background or a foreground. These methods
assume that the camera does not move from frame to
frame since any movement of the camera or the back-
ground objects could cause static parts of the scene to
be classified as a moving foreground. The results fre-
quently suffer from false positives/negatives and re-
quire additional post-processing to remove false ob-
jects and/or holes. In this paper, we present a novel
moving object detection and tracking method.

In this paper we explore another technique for rep-
resenting the background image and we use it suc-
cessfully to do foreground detection. A primary mot-
vation for our technique is that representing the back-
ground by the mean image is not effective in many
applications. A fixed camera will typically experi-
ence vibrations. The background, even if “fixed”, will

move sightly: leaves will flutter, waves will shimmer,
and distant objects will move a little. Another motiva-
tion is that a fixed camera, such as is used by surveil-
lence, will over time see a change in the “fixed” back-
ground; lights will go on and off, the sun’s shadows
will move, and the color palette will drift.

To address these concerns in a natural way has led
us to use clustering methods. The general idea is to
represent each small patch of the frame by a small
set of exemplars, which are regarded as the centers of
clusters. Each disjoint cluster represents an equiva-
lence class of very similar patches; small variations
will be recognized as members of the same equiva-
lence class. Two disjoint clusters can represent dif-
ferent states of the same background; a flag may furl
and unfurl. And, gradual changes can be addressed
by permitting the location of the cluster centers to be
self-adjusting.

2 BACKGROUND

This algorithm brings together two ideas, not previ-
ously used for foreground detection. The first is the
use of clustering techniques. Clustering is a well-
studied problem with an enormous literature (see, for
example, (Duda et al., 2000)). Clustering can be re-
garded as a paradigm for unsupervised learning; the

486

Duric Z., E. Lawson W. and Richards D. (2007).
STREAMING CLUSTERING ALGORITHMS FOR FOREGROUND DETECTION IN COLOR VIDEOS.
In Proceedings of the Second International Conference on Computer Vision Theory and Applications - IU/MTSV, pages 486-491
Copyright c© SciTePress



classification of a data set by clumping data together
based solely on a measure of similarity. Clustering al-
gorithms are sensitive to the quality of the similarity
measure, the number of clusters requested, and other
factors. The algorithms are often very effective, but
can be fooled with unanticipated data distributions.
We will make some use of the well-known k-Means
Algorithm.

The second idea is the “streaming model” of al-
gorithm design, that was introduced in 1998 (Hen-
zinger et al., 1998) but was anticipated by others. A
data stream is a long sequence of data points, and
the data is scanned in a linear fashion, from begin-
ning to end. More than one pass is unlikely and many
passes would be intractable. Further the size the data
stream is such that saving the history is impossible
and only small summary can be retained of the previ-
ously scanned items. The summary must be sublinear
in size and is ideally of constant size. (This is related
to the on-line algorithm paradigm, which computes a
summary of the history on the fly, but has access to
the total history of scanned items.)

Some results have appeared for clustering data
streams (e.g., (Guha et al., 2003; Charikar et al.,
2003)). However these results have emphasized the
theoretical aspects, proving asymptotic run-times and
performance guarantees. However the algorithms
may not be fast practically and they use an amount of
memory that is at least logarithmic in the amount of
history. Further, their theorems do not address the is-
sue of self-adjustment. Our algorithm is a streaming
algorithm for clustering that uses a constant amount
of space and a constant amount of time to process
each data point.

3 METHODOLOGY

The goal of this method is to identify regions of a
color video frame that contain moving objects. Ini-
tially, a background model is built using a sequence
of frames that contains a typical background. After
the initial phase, as new frames are encountered they
are compared with the background model. The areas
in which the difference between foreground and back-
ground is large are marked as foreground.

We construct our scene models by overlaying a
grid (see Figure 1) on top of each frame. In our
examples the size of the cells in the grid is 4× 4.
Fig. 1 illustrates the overlapping grid structure used in
our method. This structure allows for the possibility
of detecting and tracking parts of foreground objects
when they appear in the corner of a cell.

We cluster color values in each cell and use use a

Figure 1: Grid structure used in our algorithm. Each interior
cell has twelve neighbors; it shares a corner or an edge with
eight cells that belong to the same half-grid and it overlaps
four cells belonging to the other half-grid.

Input: color values (c1,c2, . . . ,cn), k0, Tmax
Output: k ≤ k0 color clusters with the means c̄ j

1. c̄ = 1
n ∑n

1 ci, dmax = maxn
i=1{‖ci− c̄‖}

2. if dmax < Tmax return (c̄,s(c̄) = n)
3. 2-Means to obtain c̄1, s(c̄1), c̄2, s(c̄2)
4. dmax = max2

j=1{maxn
i=1{‖ci− c̄ j‖}}

5. if dmax < Tmax return (c̄1,s(c̄1)),(c̄2,s(c̄2))
6. 3-Means to obtain c̄1, s(c̄1), c̄2, s(c̄2), c̄3, s(c̄3)
7. return (c̄1,s(c̄1)),(c̄2,s(c̄2)),(c̄3,s(c̄3))

Figure 2: Computing the initial seeds. s(c̄) represents the
support for the center c̄.

k cluster centers to represent the colors in each cell.
The color video frames used as input in our method
are 24-bit RGB color. Each 4× 4 cell is represented
by 16 r, g, and b values of the pixels in that cell.
All triples (r,g,b) are regarded as points in three di-
mensional space and are to be clustered with the Eu-
clidean distance as the similarity measure. We use a
constant, kmax, as the maximum number of clusters
that we maintain for each cell; this is an application-
dependent choice and can be varied. In addition, we
set a value Tmax as a threshold that is used to deter-
mine if additional clusters should be created.

Our algorithm start by collecting n color values
from several frames for each cell; a typical value used
in our method is 64. We then create a single cluster for
each cell and if the distance of the mean and any out-
lier is greater than Tmax we use the k-Means Algorithm
with k = 2 to cluster the color values. If there are any
outliers with the distance greater than Tmax from these
centers we try three centers, otherwise we return the

STREAMING CLUSTERING ALGORITHMS FOR FOREGROUND DETECTION IN COLOR VIDEOS

487



results. For each center we compute the mean and
the number of color values ”supporting” it. The al-
gorithm is shown in Fig. 2. We have implemented a
standard k-Means algorithm from (Duda et al., 2000).
Thereafter each new frame is processed in this way.
For each color value in each cell its nearest cluster
center is determined. If it is sufficiently close, below
a given threshold (Tmax), it is judged to be the same
as the prior background. Otherwise it is flagged as
potentially part of the foreground; however it is also
introduced as a new cluster center (since it might be
the beginning of new equivalence class of background
in that cell).

There are three important algorithmic details.
First, each new data point that is judged to belong to
an existing cluster is said to be part of the “support”
for that cluster. Because of the nature of streaming al-
gorithms we can only maintain a summary of the sup-
port for a cluster; we keep the number of supporting
data points and their average value. Note that we use
the average value as the center of the cluster. There-
fore the center of cluster will automatically drift in re-
sponse a gradual shift in the pixels of the background.

The second detail is how we maintain a number
of clusters that is bounded by a constant. Recall that
data points that do not support a current cluster will
create a new cluster center. If kmax clusters already
exist then the algorithm will choose to first merge two
current clusters. The clusters chosen are the two that
have the most similar centers. To avoid crowding old
clusters new clusters are give a “probationary period”
to accumulate enough support. The parameters we
used, were that a cluster must have 128 supporting
data points within first N frames; we have used N ∈
[100,1000].

The third detail is that a cluster had strong sup-
port in the past should not be lost. For example, if a
light is turned off and later it is turned back on, the
old background should not need to be relearned. This
is accomplished by simply establishing a goal of 512
supporting data points, if the cluster maintains reason-
able support that long it will persist. In general, these
last two details are handled by specifying a schedule
for how much support a cluster needs to survive, as a
function of time.

4 EXPERIMENTAL RESULTS

We demonstrate streaming clustering using four dif-
ferent examples. The first example is an indoor sce-
nario demonstraing performance with varying light.
The remaining examples are outdoor scenarios show-
ing performance with a moving background, “typical”

surveillance, and finally performance in poor weather.
The indoor scenario demonstrates a performance

with varying lighting. In the distance there is a room
where a light is turned on and off several times. An
avatar is superimposed onto the sequence, in order
to simulate the foreground. Several original images
from the sequence are shown in Fig. 3. The lights
take a few seconds to fully turn on, so in addition to
the room being fully lit and dark, there are partially
lit images. In Fig. 3, the room is totally dark, the
second image shows the room fully lit, and the bot-
tom two show the room partially lit. In addition to
lighting variability, the original images have JPEG ar-
tifacts most noticeable around the picture frame and
door handle.

We learn the background by creating a maximum
of 8 clusters using the first 200 images. In these im-
ages the light is initially off, then turned on. We test
using the rest of the images in the sequence. Our
tests produce no false positives due to lighting, with
some occasional boundary problems due to JPEG ar-
tifacts. Foreground detected images are shown in Fig.
4. Elements in the foreground are outlined, with white
points showing approximated polygonal boundary.

Our outdoor examples begin with a moving back-
ground, a problem that is common in visual surveil-
lance. In this scene, the wind blows is blowing
branches on the trees and bushes around. Like the
previous sequence, an avatar is superimposed to sim-
ulate foreground. As with the previous sequence, we
create a maximum of 8 clusters using the first 200 im-
ages. The remaining images are used for test. Several
results are shown in Fig. 5. While the wind causes
most of the branches to move, the bush closest to the
camera has the most significant movement. The top
image shows an example where the branch has been
mistaken for a part of the foreground. The next im-
age shows an example where the branch has moved
slightly, causing part of the branch to be mistaken as
foreground. The bottom image shows the branch in
its original position.

The third example is a typical surveillance scene,
but demonstrates some practical problems which may
be encountered. One such problem is chromatic ab-
beration, which causes the pixel color to fluctuate
wildly. Fig. 6 shows images with the foreground la-
beled. The top and bottom image show typical detec-
tions, while the middle image shows a problem with a
chromatic aberration. In this case, the aberration has
been mistaken for foreground.

Our final example shows performance when the
weather is poor. In this case, we both poor lighting
and rain. To compound the problem, we have JPEG
artifacts along many of the edges in the image. De-

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

488



Figure 3: Original office surveillance images.
Figure 4: Office surveillance images with foreground de-
tected.

STREAMING CLUSTERING ALGORITHMS FOR FOREGROUND DETECTION IN COLOR VIDEOS

489



Figure 5: Outdoor surveillance images with foreground de-
tected.

spite these problems, our algorithm performs well, us-
ing a maximum of 8 clusters and 200 frames to learn
the background. Examples from this scene are shown
in Fig. 7. The top image shows the background, the
middle image shows a detected vehicle and the bot-
tom image shows a false positive due to a JPEG arti-
fact.

5 CONCLUSIONS

We presented a clustering-based streaming algorithm
for foreground detection. The algorithm has been
shown to be fast and effective.

There are many avenues for future work. There
could be mechanisms for allowing clusters to split
(as well as merging and drifting). Edge data can be
used in addition to the color data. The contiguity
of the cells can be used as additional evidence for

the strength of clusters; clusters in neighboring cells
can encourage or discourage changes in the choice of
cluster centers.

ACKNOWLEDGEMENTS

We acknowledge the support of the National Science
Foundation, through grant CCF-0540906.

REFERENCES

Charikar, M., O’Callaghan, L., and Panigrahy, R. (2003).
Better streaming algorithms for clustering problems.
In STOC ’03: Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 30–
39, New York, NY, USA. ACM Press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern
Classification (2nd Edition). Wiley-Interscience.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., and
O’Callaghan, L. (2003). Clustering data streams: The-
ory and practice. IEEE Transactions on Knowledge
and Data Engineering, 15(3):515–528.

Haritaoglu, I., Harwood, D., and Davis, L. S. (1998). W4s:
A real-time system detecting and tracking people in 2
1/2d. In ECCV ’98: Proceedings of the 5th European
Conference on Computer Vision-Volume I, pages 877–
892, London, UK. Springer-Verlag.

Henzinger, M., Raghavan, P., and Rajagopalan, S. (1998).
Computing on data streams. Technical Report SRC-
TN-1998-011, Hewlett Packard Laboratories.

Jabri, S., Duric, Z., Wechsler, H., and Rosenfeld, A. (2000).
Detection and location of people in video images us-
ing adaptive fusion of color and edge information.
icpr, 04:4627.

McKenna, S. J., Jabri, S., Duric, Z., Rosenfeld, A., and
Wechsler, H. (2000). Tracking groups of people.
Computer Vision and Image Understanding: CVIU,
80(1):42–56.

Moeslund, T. B. and Granum, E. (2001). A survey of com-
puter vision-based human motion capture. Computer
Vision and Image Understanding, 81(3):231–268.

Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland,
A. P. (1997). Pfinder: Real-time tracking of the hu-
man body. IEEE Trans. Pattern Anal. Mach. Intell.,
19(7):780–785.

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

490



Figure 6: Suburban street surveillance images with fore-
ground detected.

Figure 7: Examples of foreground detection in rainy
weather.

STREAMING CLUSTERING ALGORITHMS FOR FOREGROUND DETECTION IN COLOR VIDEOS

491


