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Abstract: For most traditional active 3D surface reconstruction methods, a common feature is that the object surface is 
scanned uniformly, so that the final 3D model contains a very large number of points, which requires huge 
storage space, and makes the transmission and visualization time-consuming. A post-process then is 
necessary to reduce the data by decimation. In this paper, we present a newly active stereoscopic system 
based on iterative spot pattern projection. The 3D surface reconstruction process begins with a regular spot 
pattern, and then the pattern is modified progressively according to the object’s surface geometry. The 
adaptation is controlled by the estimation of the local surface curvature of the actual reconstructed 3D 
surface. The reconstructed 3D model is optimized: it retains all the morphological information about the 
object with a minimal number of points. Therefore, it requires little storage space, and no further mesh 
simplification is needed.  

1 INTRODUCTION 

In the field of 3D surface reconstruction and 
metrology, including industrial applications, 
stereoscopic systems are becoming increasingly 
important. They can be divided into two categories: 
passive or active (Battle et al., 1998; Horaud et al., 
1995).  

In passive stereoscopic systems, cameras are 
observing the object as it is without generating 
optical information. Such systems use multiple 
camera views to acquire the 3D object surface 
information. In case of single camera systems, the 
camera has to be moved to at least two known 
positions around the object and takes images 
sequentially at each position; in other cases, two or 
more cameras being fixed in different positions take 
images at the same time (Battle et al., 1998). 

In active stereoscopic systems, a light projection 
device is added to produce individual signals, 
generate texture or code uniquely each surface 
element (Battle et al., 1998). Individual signals 
might be produced by a moving laser beam being 
observed in a sequence of images; a certain texture 
can be generated by projecting full-field light pattern 
onto the object surface, so that each camera only 
needs to take one image; for coded light approaches, 
a projection sequence is necessary if the coding is 
temporal, it is more sensitive to object appearance 
and external light conditions (Krattenthaler et al., 
1994). 

If we define respectively coordinate references 
for the object (called “world reference”) and each 
camera (called “camera reference”), the geometrical 
relationship between the world reference and the 
camera references can be described by extrinsic 
parameters of the cameras, whereas the 
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mathematical behavior of a camera is given by 
intrinsic parameters. The intrinsic and extrinsic 
parameters (that will be called “calibration 
parameters” for simplification in the rest of the 
paper) can be obtained respectively by camera 
calibration and orientation process. Different 
approaches were proposed (Faugeras et al., 1986; 
Grün et al., 1992; Legarda-Saenz et al., 2004; 
Marzani et al., 2002), and Garcia et al. (2000) made 
a comparison of some approaches. 

To determine the surface geometry of an object, 
the 2D coordinates of a surface element in the 
images are extracted respectively. If the calibration 
parameters are known, the 3D coordinates of this 
point in world reference can be calculated by 
triangulation using all image rays to the object point.  

In case of passive stereoscopic systems, image 
rays are identified by using available texture on the 
surface. For objects with low texture information, 
the identification of the image rays becomes very 
difficult; whereas in active systems, the projector 
creates a synthetic texture on the surface of the 
object, which simplifies the identification of image 
rays, thus the rate of detected object points can be 
highly increased.  

For most of the previous pattern projection 
methods, their common characteristic is the use of 
pattern with a uniform resolution for the whole 
object without considering the geometrical structure 
of the surface. Such methods are necessary if the 
object has complex surface geometry. However, for 
those with relatively simple surface geometry, the 
reconstructed 3D model can contain large number of 
useless data which describes a plane area, and it can 
easily reach to a size of gigabytes. The sheer amount 
of data not only exhausts the main memory 
resources of common desktop PCs, but also exceeds 
the 4 gigabyte address space of 32-bit machines 
(Isenburg et al., 2003); it makes the subsequent 
processing difficult (ex., save, transmission, 
rendering, etc.). Therefore, the further mesh 
simplification is often necessary. However, it is 
difficult to obtain an optimized model which retains 
all morphological information about the object with 
a minimum of points. 

In this paper, we present a newly active 
stereoscopic system based on an iterative projection 
concept. The reconstruction process begins with a 
regular spot pattern. After each iteration, the local 
surface curvature of the actual reconstructed 3D 
surface is estimated, and the density and distribution 
of pattern spots are then modified for the next 
iteration, thus the reconstructed 3D surface is refined 
progressively. The final reconstructed 3D model was 
proved to be optimized and needs much less storage 

space compared to that obtained by traditional 
solutions. This concept has been validated in 
simulation working mode (Li et al., 2006). In this 
paper, we focus on reality working mode.  

The article is organized as follows: first, we 
briefly present the 3D surface reconstruction system; 
then we describe the following steps: system 
calibration, initial pattern projection and iterative 
process; finally, some reconstruction results are 
given before we conclude and show perspectives.   

2 SYSTEM DESCRIPTION 

As shown in figure 1, the system consists of two 
CCD cameras (Oscar F-510C, resolution: 
2588x1958) and one LCD projector (Panasonic PT-
LB10E, resolution: 1024x768). A computer is 
connected to them as the central control unit. It is 
based on an iterative scheme (see figure 2), and is 
controlled by a program developed in Matlab 
language. A graphical interface is provided to user.  

Figure 1: System setup. 

Before the 3D reconstruction process begins, the 
two cameras and the video projector should be 
calibrated to obtain the calibration parameters. The 
projector then projects initially a regular spot matrix 
pattern onto the object. Each camera acquires an 
image of the illuminated object. We extract the 2D 
spot coordinates in the two images and then match 
them. With the known calibration parameters, we 
calculate the corresponding 3D object point 
coordinates. A 3D surface mesh will then be 
generated from the reconstructed 3D point cloud. 
For each vertex of the 3D mesh, we estimate its 
Gaussian curvature to decide if new spots should be 
projected around it at next iteration. Finally, we 
verify if the “condition of stop” is satisfied. If it is 
the case, the process stops and the final 
reconstructed 3D surface is obtained; otherwise, a 
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new pattern is generated, and the process goes back 
to the image acquisition step and continues. 

Figure 2: Iterative scheme. 

In the following paragraphs, we describe how 
the process works at each step. To simplify the 
description, we suppose that P (u, v) is a pattern spot 
and that V (x, y, z) is its representation on the object. 
V can also be a vertex of current 3D triangular mesh 
which approximates the object surface.  

3 SYSTEM CALIBRATION 

The calibration of the two cameras and the video 
projector is indispensable. Actually, in our system, 
the calculation of 3D point coordinates is based on 
the images acquired by the two cameras. Therefore 
we need to know the calibration parameters of the 
two cameras; those of the projector have also to be 
known for new pattern generation (see 5.6).  
 CCD camera and LCD projector can both be 
described by a geometrical model called “pinhole” 
(Lathuilière et al., 2003). In such a model, the 
extrinsic parameters are the rotation matrix R and 
the translation matrix T; these two matrices describe 
the geometrical relationship between the world 
reference and the camera/projector reference (Tsai, 
1986). The intrinsic parameters are:  

 f :  the focal length; 
 O (u0, v0) : the intersection point between the 

image plan and the optical axis of the camera; 
 ku : the vertical scale factor (pixels/mm) in 

image plan; 
 kv : the horizontal scale factor. 
 
To get all these parameters, the system is 

calibrated in two steps by applying Faugeras-
Toscani approach (Faugeras et al., 1986). At the first 
step, a calibration target is used to obtain the 
calibration parameters of the two cameras without 
using the video projector. At the second step, the 
projector projects a certain spot pattern onto the 
object. Each camera then acquires an image of the 
object. By using the calibration parameters of the 
two cameras obtained at the first step, we can 
calculate the 3D coordinates of the object points 
from the image points, so that the calibration 
parameters of the video projector can be obtained 
from the projected 2D pattern points and the 
reconstructed 3D object points.  

4 INITIAL PATTERN 

The initial pattern is defined by 4 values (in pixels): 
 (u1, v1): upper left point coordinates; 
 (u2, v2): down right point coordinates; 
 s: spot size; 
 d0: distance between two adjacent spots. 

   
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

 
 

Figure 3: Definition of the initial pattern. 
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 Figure 3 illustrates how the initial pattern is 
defined by these values. The definition of initial 
pattern is quite important. If the object has some 
small surface variations, the spots should be dense 
enough to cover all these small areas. Otherwise, the 
reconstructed initial 3D surface might be flat in 
these areas. In consequence, at the next iteration, no 
pattern spot would be projected around these areas 
since its local surface curvature is not strong enough. 
As a result, the final reconstructed 3D model might 
lose partially geometrical information.  

5 ITERATIVE PROCESS 

5.1 Image Acquisition 

Once the pattern is projected, each camera takes an 
image of the illuminated object. These two images 
are saved in the memory for 3D point cloud 
reconstruction.  

5.2 3D Point Cloud Reconstruction 

The process of 3D point cloud reconstruction can be 
divided into 3 steps:  

 2D image point detection;  
 2D image point matching; 
 3D object point coordinates calculation. 

 
 To detect image points, we first apply several 
image processing techniques, such as filtering, 
thresholding, and contour recognition, to get the 
boundary of the spot. Then, all pixels within the 
boundary are considered for a weighted calculation 
of the center of gravity, which gives the center of the 
image ray. 
 The correspondence problem then should be 
resolved, i.e., to identify, for a given point in one 
image, its correspondence in the other one (see 
figure 4). Since the images are calibrated and 
oriented in space, we can simplify the 
correspondence problem by applying some 
geometrical constraints. The most important one is 
based on the fact that corresponding points are 
imaged on epipolar lines. Some other constraints 
come from the relative position of two adjacent 
object points, or the probability of having major 
changes in the distance from the image to object 
(Böhler et al., 2006).  
 Finally, for each pair of matched image points, 
by using the calibration parameters for each camera, 
we calculate, by ray intersection, the 3D coordinates 
of the corresponding object point. 

 

        (a)                                               (b) 
Figure 4: An example of acquired images, (a) Image 
acquired by left camera, (b) Image acquired by right 
camera. 

5.3 Mesh Generation 

Once the 3D point cloud is obtained, we generate a 
3D surface mesh by Delaunay triangulation. The 
Delaunay triangulation is generally unique. It has the 
property that the outcircle of every triangle does not 
contain any other point. The Delaunay triangulation 
is the dual structure of the Voronoi diagram 
(Kanaganathan et al., 1991). 

5.4 Surface Curvature Estimation 

From a theoretical point of view, triangular meshes 
do not have any curvature at all, since all faces are 
flat and the curvature is not properly defined along 
edges and at vertices because the surface is not C2-
differentiable. However, thinking of a triangular 
mesh as a piecewise linear approximation of an 
unknown smooth surface, the curvature of that 
unknown surface might be calculated using the 
information given by the triangular mesh itself (Dyn 
et al., 2001). A normal curvature is the 
generalization of surface curvatures. Given a point P 
on the surface S and a direction   lying in the 
tangent plane of the surface S at P, the normal 
curvature is calculated by intersecting S with the 
plane spanned by P, the normal to S at P, and . The 
normal curvature is the signed curvature of this 
curve at P. If we compute the normal curvature for 
all values of   in the tangent plane at P, we will get 
a maximum value k1 and a minimum value k2 in two 
orthogonal directions. k1 and k2 are called principal 
curvatures. 

The Gaussian curvature K (also called total 
curvature) and mean curvature H are differential 
invariant properties which depend only upon the 
surface’s intrinsic geometry, and play a very 

Same object point 
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important role in the theory of surfaces. They are 
defined as follow: 

 
 K = k1 × k2 ,  (1)

H = (k1 + k2) / 2. (2)
 
In our work, we chose the Gaussian curvature to 

evaluate the local surface curvature, since for a 
minimal surface, the mean curvature is zero 
everywhere, whereas Gaussian curvature may vary 
in different zones; besides, the sign of Gaussian 
curvature gives extra information about the type of 
the local piecewise surface. A positive Gaussian 
curvature value means the surface is locally either a 
peak or a valley. A negative value means the surface 
locally has a saddle. And a zero value means the 
surface is flat in at least one direction (i.e., both a 
plane and a cylinder have zero Gaussian curvature) 
(Alboul et al., 2005). 

As we can see, the Gaussian curvature and mean 
curvature are defined only for twice differentiable 
(C2) surfaces. To get 3D surface curvature 
information, different approaches have been 
proposed to estimate Gaussian and mean curvature 
(Alboul et al., 2005; Surazhsky et al., 2003; Peng et 
al., 2003). Surazhsky et al. (2003) compared five 
curvature estimation algorithms, and drew a 
conclusion that the Gauss-Bonnet scheme is the best 
algorithm for the estimation of Gaussian curvature. 
We therefore estimate the curvature as follows: 

Vertex Vi is considered as a neighbor of vertex V 
if the edge  belongs to the mesh. Denote the set 
of neighbors of V by {Vi | i =1, 2,  ..., n}, the set of 
triangles containing V by {Ti = Δ (Vi, V, V(i+1) mod n) | 
i =1, 2, ..., n},  and the set of angles between V and 
its two successive neighbors by {  =  (Vi, V, V(i+1) 
mod n) | i =1, 2, ..., n} (see figure 5-(a)). According to 
the Gauss-Bonnet scheme (Surazhsky et al., 2003), 
the Gaussian curvature K at vertex V is estimated as 

 
 
 
 

(3)

            where A is the 
sum of the areas of triangles Ti around the vertex V. 

This estimation method works well when vertex 
V is close enough to its neighbors. Obviously, it is 
not our case, since we start from a rough 3D surface 
mesh and refine it progressively. In (Alboul et al., 
2005), Alboul et al. indicated that we can ignore A 
and simply estimate the Gaussian curvature K at 
vertex V as in (4): 

5.5 “Condition of Stop” Verification 

At the end of each iteration, the condition of stop is 
verified by the following algorithm: 
 

Target = {}; 
For each vertex V of current mesh 

K = Gaussian curvature of V 
If K < tc1 

      Delete V from the mesh; 
Else if K > tc2 

 d = average distance between V  
        and all its neighbors; 

     If d > td 
    Target = Target + {V}; 

    End 
End 

End 
If Target == {} 
 Process stops; 
Else 
 Generate new pattern; 
End 

       
where tc1  is the pre-defined threshold for “weak 
curvature”; tc2  is the threshold for “strong curvature”; 
and td is the threshold for “minimal average distance 
to neighbors”. Actually, in some cases, even after a 
great number of iterations, the local surface 
curvature K of V is always much higher than tc2. 
Therefore, to avoid infinite iteration, we introduced 
the threshold td.  

5.6 New Pattern Generation 

To generate the new pattern, firstly, for each target 
vertex V obtained at previous step, if it has “closed” 
neighborhood (see figure 5), we calculate the 2D 
coordinates of its corresponding pattern spot P by 
using the calibration parameters of the video 
projector. Then eight new spots are added around it 
in the new pattern. A single value d is enough to 
specify their positions (see figure 6).  
 

 
  (a)     (b) 

Figure 5: Different types of vertex neighborhood in 3D 
triangular mesh:  (a) “closed” neighborhood, (b) not 
“closed” neighborhood. 

(4)
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Figure 6: New pattern generation from a target pattern 
spot. 

 Since the density of the 3D triangular mesh 
increases after each iteration, the value of d has to be 
adapted to the current 3D mesh. We therefore set the 
value of d according to the average distance D 
between the vertex V and all its neighbors in the 
current 3D mesh as: d = r×D, where r is a ratio pre-
configured by user, it can be ½, ¼, or 1/9, etc. 
  “Old” pattern spots will not be added into new 
patterns because their reconstruction has already be 
done. However, we keep the 3D point cloud 
obtained at each iteration, so that they can be used 
for 3D mesh generation at next iteration, thus the 3D 
model is refined progressively. 
 Finally, we optimize the generated new pattern by 
deleting those spots which are too close to each 
other, so that at the next iteration, the 2D image 
point detection and the 2D point matching will be 
simplified.  

6 RESULTS 

We tested our system on several real objects. In this 
paper, we show the reconstruction results of a mask, 
since it has partial complex surface curvature. The 
size of the mask is 150 mm (l) × 200 mm (h) ×130 
mm (w). Figure 7 shows an example of 
reconstruction results for the mask. In this example, 
tc1 = 0.001, tc2 = 0.04, td = 5 mm, r = 1/3. The initial 
pattern was defined as follows: 

 (u1, v1) = (100,100); 
 (u2, v2) = (700,760); 
 s = 3 pixels; 
 d0 = 25 pixels. 

 
To evaluate the quality of the reconstructed 3D 

surface by our system, we scanned the mask by 
using a traditional method, i.e. by projecting a 
vertical stripe and shifting it from left to right, pixel 
by pixel, the 3D surface obtained contains 10177 
points. We then compared it to the one obtained by 
our system by calculating the distance error, it 
showed that the error in distance is very slight: The 
average error is only 0.19 mm; and the maximal 
error is 0.32mm (see figure 8). Besides, we can see 
that the 3D surface obtained by traditional method 

contains 10177 points, whereas the one obtained by 
our system contains only 770 points, which means 
that the number of points of the 3D surface was 
reduced more than 90%.   

 
 

 

 

 

 

 

  (a)                                          (b) 

Figure 7: Reconstructed 3D surface of the mask, (a) initial 
3D surface - 152 points, (b) Final 3D surface - 770 points. 

 

 

 

 

 

 

               (a)                                                       (b) 

Figure 8: (a) 3D surface obtained by traditional method - 
10177 points, (b) distance error between the 3D surface 
reconstructed by using our approach and the one issued 
from traditional method. 

7 CONCLUSIONS  

We presented an adapted 3D surface reconstruction 
approach based on active vision system. The concept 
is to restrict data capture to characteristic surface 
parts during the image acquisition process, thus the 
reconstructed 3D model will be ensured to be fitted 
to the morphology of an object. The system projects 
iteratively spot patterns adapted to the object surface 
geometry. At each iteration, we calculate the local 
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surface curvature for each vertex of the actual 3D 
mesh and decide where to project more points.  
    This approach was proved to be very efficient, 
because the reconstructed 3D surface needs much 
less storage space compared to that obtained by 
traditional method and does not need a post-process 
for decimation. The quality of reconstructed 3D 
surface is very satisfactory: compared to the one 
issued from traditional method, the 3D surface of the 
mask obtained by applying our approach has an 
average distance error of less than 0.2 mm. The 
whole reconstruction process takes only several 
minutes. Compared to the traditional method, our 
system is not faster. However, the later time-
consuming mesh simplification procedure can be 
avoided since the 3D model obtained is optimized.  

Our future work will focus on the improvement 
of the system. Special efforts will be made on image 
processing, surface curvature estimation and the 
generation of new patterns. Once the system 
becomes robust, we hope to apply this 3D 
reconstruction approach to industrial application, 
such as quality control, etc.  

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the support of 
European Social Funds (France), University of 
Applied Sciences in Mainz (Germany), and Regional 
Council of Burgundy (France). 

REFERENCES 

Alboul, L., Echeverria G., Rodrigues, M., 2005. Discrete 
curvatures and gauss maps for polyhedral surfaces, in 
European Workshop on Computational Geometry 
(EWCG), Eindhoven, the Netherlands, pp. 69–72. 

Battle, J., Mouaddib, E., Salvi, J., 1998. Recent progress 
in coded structured light as a technique to solve the 
correspondence Problem: a Survey, Pattern 
Recognition, 31(7), pp. 963-982. 

Böhler, M., Boochs, F., 2006. Getting 3D shapes by means 
of projection and photogrammetry, Inspect, GIT-
Verlag, Darmstadt. 

Dyn, N., Hormann, K., Kim S. J., Levin, D., 2001. 
Optimizing 3D triangulations using discrete curvature 
analysis, Mathematical Methods for Curves and 
Surfaces, Oslo 2000, Nashville, TN, pp.135-146. 

Faugeras, O. D., Toscani, G., 1986. The calibration 
problem for stereo, in Proc. Computer Vision and 
Pattern Recognition, Miami Beach, Florida, USA, 
pp.15-20. 

Garcia, D., Orteu, J.J., Devy, M., 2000. Accurate 
Calibration of a Stereovision Sensor: Comparison of 

Different Approaches, 5th Workshop on Vision 
Modeling and Visualization (VMV'2000), Saarbrücken, 
Germany, pp.25-32.  

Grün, A., Beyer, H., 1992. System calibration through 
self-calibration, Workshop on Calibration and 
Orientation of Cameras in Computer Vision, 
Washington D.C.. 

Horaud, R., Monga, O., 1995. Vision par ordinateur: 
outils fondamentaux, Hermès, 2nd edition. 

Isenburg, M., Lindstrom, P., Gumhold, S., Snoeyink, J., 
2003. Large mesh simplification using processing 
sequences, in Proc. Visualization'03, pp. 465-472. 

Kanaganathan, S., Goldstein, N.B., 1991. Comparison of 
four point adding algorithms for Delaunay type three 
dimensional mesh generators, IEEE Transactions on 
magnetics, 27(3). 

Krattenthaler, W., Mayer, K.J., Duwe, H.P., 1994. 3D-
surface measurement with coded light approach, In 
Proc. of the 17th meeting of the Austrian Association 
for Pattern Recognition on Image Analysis and 
Synthesis, pp. 103-114.  

Lathuilière, A., Marzani, F., Voisin, Y., 2003. Calibration 
of a LCD projector with pinhole model in active 
stereovision applications. Conference SPIE :Two- and 
Three-Dimensional Vision Systems for Inspection, 
Control, and Metrology, Rhode Island, USA, 5265, 
pp. 199-204. 

Legarda-Saenz, R., Bothe, T., Jüptner, W.P., 2004. 
Accurate Procedure for the Calibration of a Structured 
Light System, Optical Engineering, 43(2), pp.464-
471. 

Li, W., Boochs, F., Marzani, F., Voisin, Y., 2006.  
Iterative 3D surface reconstruction with adaptive 
Pattern projection, in Proc. of the Sixth IASTED 
 International Conference on Visulatization, Imaging 
and Image Processing (VIIP), Palma De 
Mallorca, Spain, pp.336-341. 

Marzani, F., Voisin, Y., Diou,  A., Lew Yan Voon, L.F.C., 
2002. Calibration of a 3D reconstruction system using 
a structured light source, Journal of Optical 
Engineering, 41 (2), pp. 484-492. 

Peng, J., Li, Q., Jay kuo C.C., Zhou, M., 2003. Estimating 
Gaussian Curvatures from 3D meshes. SPIE 
Electronic Image, vol.5007, pp. 270-280. 

Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E., 
2003. A comparison of gaussian and mean curvatures 
estimation methods on triangular meshes, in IEEE 
International Conference on Robotics & Automation. 

Tsai, R.Y., 1986. An efficient and accurate camera 
calibration technique for 3D machine vision, IEEE 
Computer Vision and Pattern Recognition, Miami 
Beach Florida, pp.364-374. 

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

84


