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Abstract: Following the Bayesian framework we propose a method to reconstruct emission tomography images which
uses gamma mixture prior and variational methods to approximate the posterior distribution of the unknown
parameters and image instead of estimating them by using the Evidence Analysis or alternating between the
estimation of parameters and image (Iterated Conditional Mode (ICM)) approach. By analyzing the posterior
distribution approximation we can examine the quality of the proposed estimates. The method is tested on real
Single Positron Emission Tomography (SPECT) images.

1 INTRODUCTION

SPECT (Single Photon Emission Computed Tomog-
raphy) and PET (Positron Emission Tomography) are
non invasive techniques which are used in Nuclear
Medicine to take views of a isotope distribution in
an patient. Since SPECT and PET obtain images
via emission mode, both techniques are referred to as
emission tomography.

In this paper, we address the problem of the re-
construction of emission tomography images. We
propose the use of the hierarchical Bayesian frame-
work to incorporate knowledge on the expected char-
acteristics of the original image in the form of a mix-
ture of gamma distributions, to model the observa-
tion process, and also to include information on the
unknown parameters in the model in the form of hy-
perprior distributions. Then, by applying variational
methods to approximate probability distributions we
estimate the unknown parameters and the underlying
original image.

The paper is organized as follows. In section 2
the Bayesian modeling and inference for our problem
is presented. The used probability distributions for
emission tomography images are formulated in sec-
tion 3. The Bayesian analysis and posterior proba-

bility approximation to obtain the parameters and the
original image is performed in section 4. The applica-
tion of this method to a real SPECT study is described
in section 5 and, finally, section 6 concludes the paper.

2 BAYESIAN FORMULATION

Let the object to be estimated be represented by a
vector x of N lexicographically ordered voxelsx =
{x1, . . . ,xN}. The observed, noisy data from whichx
is to be estimated is given by the vectory, comprising
lexicographically ordered elementsy = {y1, . . . ,yM},
whereM is the number of detectors in the tomography
system.

The Bayesian formulation of the Nuclear Medi-
cine image reconstruction problem requires the def-
inition of the joint distribution p(Ω,x,y) of the ob-
servationy, the unknown original imagex, and the
hyperparametersΩ, describing their distributions.

To model the joint distribution we utilize the
hierarchical Bayesian paradigm (see, for example
(Molina et al., 1999; Galatsanos et al., 2002)). In
the hierarchical approach we have two stages. In the
first stage, knowledge about the structural form of the
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observation noise and the structural behavior of the
underlying image is used in forming p(y | x,Ω) and
p(x | Ω), respectively. In the second stage a hyper-
prior on the hyperparameters is defined, thus allowing
the incorporation of information about these hyperpa-
rameters into the process.

Then the following joint distribution is defined for
Ω, x, andy,

p(Ω,x,y) = p(Ω)p(x | Ω)p(y | x,Ω), (1)

and inference is based on p(Ω,x | y) (see
(Mohammad-Djafari, 1995), (Mohammad-Djafari,
1996)).

We can alternate the maximization of p(Ω,x | y)
with respect toΩ andx (the ICM approach), (Hsiao
et al., 2002). However, this alternative maximization
does not take into account the uncertainty in the orig-
inal image when estimating the unknown parameters
of the model and the consequential effect on the esti-
mation of these parameters. An alternative methodol-
ogy consists of estimating the hyperparameters inΩ
by using

Ω̂ = argmax
Ω

p(Ω | y) = argmax
Ω

Z
x
p(Ω,x,y)dx, (2)

and then estimating the original image by solving

x̂ = argmax
x

p(x | Ω̂,y). (3)

This inference procedure (called Evidence Analysis)
aims at optimizing a given function and not at obtain-
ing a posterior distribution that can be simulated to
obtain additional information on the quality of the es-
timates.

The calculation of p(Ω,x | y), however, may not
be possible, in which case we have to decide how to
approximate it. The Laplace approximation of distrib-
utions has been used, for instance, in blind deconvolu-
tion problems when the blur is partially known (Galat-
sanos et al., 2002; Galatsanos et al., 2000). An alter-
native method is provided by variational distribution
approximation. This approximation can be thought
of as being between the Laplace approximation and
sampling methods (Andrieu et al., 2003). The basic
underlying idea is to approximate p(Ω,x | y) with a
simpler distribution, usually one which assumes that
x and the hyperparameters are independent given the
data (see chapter II in (Beal, 2003) for an excellent
introduction to variational methods and their relation-
ships to other inference approaches).

The last few years have seen a growing inter-
est in the application of variational methods (Likas
and Galatsanos, 2004; Miskin, 2000; Molina et al.,
2006) to inference problems. These methods attempt
to approximate posterior distributions with the use of

the Kullback-Leibler cross-entropy (Kullback, 1959).
Application of variational methods to Bayesian infer-
ence problems include graphical models and neuronal
networks (Jordan et al., 1998), independent compo-
nent analysis (Miskin, 2000), mixture of factor ana-
lyzers, linear dynamic systems, hidden Markov mod-
els (Beal, 2003), support vector machines (Bishop
and Tipping, 2000) and blind deconvolution problems
(Miskin and MacKay, 2000; Likas and Galatsanos,
2004; Molina et al., 2006).

3 HYPERPRIORS, PRIORS AND
OBSERVATION MODELS

For emission tomography the conditional distribution
of the observed datay givenx has the form

p(y | x) ∝
M

∏
i=1

exp{−
N

∑
j=1

Ai, jx j}(
N

∑
j=1

Ai, jx j)
yi , (4)

whereAi, j is the contribution of thejth element ofx
to the ith element ofy. The system matrixA, with
elementsAi, j , i = 1, . . . ,M, j = 1, . . . ,N depends on
the geometry of the gamma camera and effects, such
as, the photon attenuation and the scatter contribution.
This model together with the image model constitute
the first stage of the hierarchical Bayesian modeling.

For the image to be estimated we use as prior
model

p(x | π,β,α) =
N

∏
j=1

(

C

∑
c=1

πcpG(x j | βc,αc)

)

, (5)

where, for a given number of classesC, π denotes the
C-dimensional vectorπ = (π1, . . . ,πC) consisting ofC
mixing proportions (weights) which are positive and
satisfy the normalization constraint

C

∑
c=1

πc = 1, (6)

andα andβ denote, respectively, theC-dimensional
vectorsα = (α1, . . . ,αC), β = (β1, . . . ,βC) satisfying
αc > 1 andβc > 0, ∀c. Each pair(αc,βc) defines for
x > 0 the gamma probability distribution

pG(x | βc,αc) =

(

αc

βc

)αc 1
Γ(αc)

xαc−1e−(αc/βc)x. (7)

The mean, variance, and mode of this gamma dis-
tribution are given by

E[x] = βc Var[x] = β2
c/αc Mode[x] = βc(1−1/αc).

(8)
The parameterβc plays the role of the mean of

clusterc while the pairβc, αc controls the variance of
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the prior distribution. There are then two nice inter-
pretations of the parameterαc it controls the smooth-
ness of the reconstruction in classc and also mea-
sures the confidence on the prior mean. This second
interpretation resembles the confidence values on the
hyperprior parameters in image restoration problems
(see, for instance, (Molina et al., 1999; Galatsanos
et al., 2000; Galatsanos et al., 2002)). In this pa-
per, following the approach in (Hsiao et al., 2002) we
will not attempt to estimateαc and leave it as an user-
specified parameter.

The use of gamma priors in medical images was
introduced in (Lange et al., 1987). To our knowledge
the use of mixtures of gamma priors in medical imag-
ing was first proposed in (Hsiao et al., 1998) for trans-
mission tomography.

We now proceed to introduce the prior distribution
(hyperprior) on the unknown parameters. We note
that the set of unknown parameters is given by

Ω =
{

ω = (π,β) = (π1, . . . ,πC,β1, . . . ,βC) |

πc ≥ 0 ∀c with ∑
c

πc = 1, andβc > 0,∀c
}

. (9)

Following the Bayesian paradigm we have to de-
fine now the hyperprior distribution onΩ. We can use
the following distribution on the unknown hyperpara-
metersω ∈ Ω,

p(ω) = p(π)p(β), (10)

where p(π) and p(β) are flat (assigning the same prob-
ability to all elements) distributions. We can, how-
ever, include additional information on the mixing
weights by using as p(π) theC-variate Dirichlet dis-
tribution defined by

p(π) = p(π1, . . . ,πC)

=
Γ(a1 + · · ·+aC)

Γ(a1) · · ·Γ(aC)
πa1−1

1 · · ·πaC−1
C , (11)

over πc ≥ 0 ∀c, with ∑c πc = 1 and zero outside,
where theac’s are all real and positive. We will re-
fer to a distribution having the density function given
in equation (11) as theC-variate Dirichlet distribu-
tion D(a1, . . . ,aC). A D(a1, . . . ,aC) distribution has
the following marginal means and variances,

E[πc] =
ac

a1 + · · ·+aC

Var[πc] =
ac(a1 + · · ·+aC−ac)

(a1 + · · ·+aC)2(a1 + · · ·+aC +1)
,

c = 1, . . . ,C, (12)

(see (Wilks, 1962)). Note that ifac = ρlc, where
lc > 0, ∀c andρ > 0, the mean ofπc does not depend

on ρ, while ρ can be used to increase or decrease the
variance ofπc.

We will assume thatβc, c = 1, . . . ,C has as hyper-
prior distributionp(βc), the inverse gamma distribu-
tion defined by

pIG(βc | m0
c,n

0
c) =

((m0
c −1)n0

c)
m0

c

Γ(m0
c)

×

β−m0
c−1

c e−(m0
c−1)n0

c/βc. (13)

wherem0
c > 1 andn0

c > 0,∀c, and the mean, variance,
and mode of this inverse gamma distribution are given
by

E[βc] = n0
c, Var[βc] = (n0

c)
2/(m0

c −2),

Mode[βc] = (m0
c −1)n0

c/(m0
c +1). (14)

We now have a probability distribution defined
over(π,β,x,y) which has the form

p(π,β,x,y) = p(π)p(β)p(x | π,β)p(y | x) (15)

4 BAYESIAN INFERENCE AND
VARIATIONAL
APPROXIMATION

In order to perform inference we need to either
calculate or approximate the posterior distribution
p(π,β,x | y). Since this posterior distribution can not
be found in closed form, we will apply variational
methods to approximate this distribution by the dis-
tribution q(π,β,x).

The variational criterion used to find q(π,β,x)
is the minimization of the Kullback-Leibler diver-
gence, given by (Kullback and Leibler, 1951; Kull-
back, 1959)

CKL(q(π,β,x) ‖ p(π,β,x | y)) =

=

Z
π,β,x

q(π,β,x) log

(

q(π,β,x)

p(π,β,x | y)

)

dπdβdx

=
Z

π,β,x
q(π,β,x) log

(

q(π,β,x)

p(π,β,x,y)

)

dπdβdx

+ logp(y), (16)

which is always non negative and equal to zero only
when q(π,β,x) = p(π,β,x | y).

We choose to approximate the posterior distribu-
tion p(π,β,x | y) by the distribution

q(π,β,x) = q(π)q(β)q(x), (17)

where q(π), q(β) and q(x) denote distributions onπ,
β andx respectively. In the following we provide the
derivation of two approximations of the posterior dis-
tribution as well as their algorithmic descriptions.
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4.1 General Case

We now proceed to find the best of these distributions
in the divergence sense.

Let

Φ = {π,β,x}. (18)

For θ ∈ Φ let us denote byΦθ the subset ofΦ with
θ removed; for instance, ifθ = x, Φx = (π,β). Then,
Eq. (16) can be written as

CKL(q(π,β,x) ‖ p(π,β,x | y))

= CKL(q(θ)q(Φθ) ‖ p(π,β,x | y))

=

Z
θ
q(θ)

(Z
Φθ

q(Φθ)log

(

q(θ)q(Φθ)

p(π,β,x,y)

)

dΦθ

)

dθ

+const. (19)

Now, given q(Φθ) = ∏ρ 6=θ q(ρ), (if, for instance,
θ = x then q(Φx) = q(π)q(β)), an estimate of q(θ) is
obtained as

q̂(θ)=argmin
q(θ)

CKL (q(θ)q(Φθ)) ‖ p(π,β,x | y)) .

(20)
Thus, we have the following iterative procedure

to find q(π,β,x).

Algorithm 1 General case. Iterative estimation of
q(π,β,x) = q(π)q(β)q(x).

Given q1(β), and q1(x), the initial estimates of the
distributionsq(β), andq(x),
For k = 1,2, . . . until a stopping criterion is met:

1. Find

qk(π) =

argmin
q(π)

CKL(q(π)qk(β)qk(x) ‖ p(π,β,x | y)), (21)

2. Find

qk+1(β) =

argmin
q(β)

CKL(qk(π)q(β)qk(x) ‖ p(π,β,x | y)), (22)

3. Find

qk+1(x) =

argmin
q(x)

CKL(qk(π)qk+1(β)q(x)‖p(π,β,x |y))(23)

Set

q(π)= lim
k→∞

qk(π), q(β)= lim
k→∞

qk(β), q(x)= lim
k→∞

qk(x).

(24)

4.2 Degenerate Case

In the previous algorithm we have performed the
search of the distributions q(π), q(β), and q(x) in
an unrestricted manner. However, we can reduce the
space of search to the set of degenerate distributions.
This approach, to be developed now, will not provide
information on the quality of the estimates but we use
it to justify some of the estimation procedures pro-
posed in the literature as the solution of the variational
approach to posterior distributions when a particular
distribution approximation is used.

Let

A =

{

π=(π1, . . . ,πC) | πc ≥ 0 ∀c with ∑
c

πc=1

}

.

(25)
and

B = {β = (β1, . . . ,βC) | βc > 0 ∀c } . (26)

Instead of using an unrestricted search for the distrib-
ution of q(π), q(β), and q(x) we will here restrict our
search to the following sets of distributions

D(A) = {q(π) | q(π) is a degenerate

distribution on an element of A} (27)

D(B) = {q(β) | q(β) is a degenerate

distribution on an element of B} (28)

D((R+
0 )N) = {q(x) | q(x) is a degenerate

distribution on an element of(R+
0 )N},(29)

where a degenerate distribution takes one value with
probability one, that is,

q(θ) =

{

1 if θ = θ
0 otherwise (30)

When qk(π), qk(β), and qk(x) are degenerate dis-
tributions, we will denote byπk, βk, andxk respec-
tively the values these distributions take with proba-
bility one. We will also use the subscriptD on the
distributions q(·) to denote the degenerate approxi-
mations qD(·). Then, the variational approach when
using degenerate distributions becomes:

Algorithm 2 Degenerate case. Iterative estimation
of qD(π,β,x) = qD(π)qD(β)qD(x)
Givenβ1 ∈ B, andx1, the initial estimates ofβ andx,
respectively, for k= 1,2, . . . until a stopping criterion
is met:

1. Find

πk = argmin
π∈A

{

− logp(π,βk,xk,y)
}

, (31)

2. Find

βk+1 = argmin
β∈B

{

− logp(πk,β,xk,y)
}

, (32)
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3. Find

xk+1 = arg min
x∈(R+

0 )N

{

− logp(πk,βk+1,x,y)
}

(33)

Set

qD(π,β,x) =







1 if π= limk→∞ πk,β= limk→∞ βk,
x = limk→∞ xk

0 elsewhere
(34)

Interestingly, this is the formulation used in (Hsiao
et al., 2002) to estimate the hyperparameters and the
image when flat distributions onπ andβ are used.

4.3 Implementation

In order to find the distributions solutions of algo-
rithms 1 and 2, we define two sets of positive weights

Λ = {λ = (λ1, ...,λN) | λ j = (λ j ,1, ...,λ j ,C) satis-
fies∑C

c=1λ j ,c = 1, λ j ,c ≥ 0, c = 1, ...,C}
and

ϒ = {µ = (µ1; j = 1...,N) | µ j = (µ j ,1, ...,µ j ,M)

with ∑N
j=1µ j ,i = 1,∀i µ j ,i ≥ 0,∀i, j}

Then forλ ∈ Λ andµ ∈ ϒ we have

logp(π,β,x,y) = logp(π)+ logp(β)

+ ∑
j

log

(

C

∑
c=1

πcpc(x j | βc,αc)

)

−
M

∑
i=1

N

∑
j=1

Ai, jx j

+
M

∑
i=1

y(i) log

(

N

∑
j=1

Ai, jx j

)

≥ logp(π)+ logp(β)

+ ∑
j

C

∑
c=1

λ j ,c log

(

πc

λ j ,c
pc(x j | βc,αc)

)

−
M

∑
i=1

N

∑
j=1

Ai, jx j +
M

∑
i=1

y(i)
N

∑
j=1

µ j ,i log

(

Ai, j

µ j ,i
x j

)

= L(π,β,x,λ,µ) (35)

In consequence, forλ ∈ Λ andµ ∈ ϒ we have

− logp(π,β,x,y)≤−L(π,β,x,λ,µ) (36)

andZ
π

Z
β

Z
x
q(π,β,x) log

(

q(π,β,x)

p(π,β,x,y)

)

dπdβdx ≤Z
π

Z
β

Z
x
q(π,β,x) log

(

q(π,β,x)

exp[L(π,β,x,λ,µ)]

)

dπdβdx

This leads to the following procedure to find the
distributions q(π,β,x) or qD(π,β,x). Note that we
are summarizing the non-degenerate and degenerate
cases in one algorithm.

Algorithm 3 Iterative estimation ofq(π), q(β) and
q(x) or qD(π), qD(β) andqD(x).
Givenq1(β), q1(x), or β1 andx1 andλ1 ∈Λ andµ1∈
ϒ
For k = 1,2, . . . until a stopping criterion is met:

1. Find the solution of

qk(π) = argmin
q(π)

(

Z
π

Z
β

Z
x
q(π)qk(β)qk(x)

log

(

q(π)qk(β)qk(x)

exp[L(π,β,x,λk,µk)]

)

dxdβdπ
)

, (37)

which is given by

qk(π) = pD(π | a1 +
N

∑
j=1

λk
1,c, . . . ,aC +

N

∑
j=1

λk
1,C),

(38)
or find the solution of

πk = argmin
π

{

−L(π,βk,xk,λk,µk)
}

(39)

which is given by

πk
c =

∑N
j=1 λk

j ,c +ac−1

∑C
c′=1 ∑ j λk

j ,c′ + ∑C
c′=1 (ac′ −1)

c = 1, . . . ,C

(40)

2. Find the solution of

qk+1(β) = argmin
q(β)

(

Z
β

Z
π

Z
x
qk(π)q(β)qk(x)

log

(

qk(π)q(β)qk(x)

exp[L(π,β,x,λk,µk)]

)

dxdπdβ
)

, (41)

which is given by

qk+1(β) =
C

∏
c=1

qk+1(βc) (42)

where

qk+1(βc) = pIG

(

βc | m0
c + αc∑ j λk

j ,c,

(m0
c + αc∑ j λk

j ,c−1)
αc∑ j λk

j,cE[xj ]qk(x)
+(m0

c−1)n0
c

m0
c+αc∑ j λk

j,c−1

)

.

(43)

or find the solution of

βk+1 = argmin
β

{

−L(πk,β,xk,λk,µk)
}

(44)

which is given by

βk+1
c =

αc ∑ j λk
j ,cx

k
j +(m0

c −1)n0
c

m0
c + αc∑ j λk

j ,c

c = 1, . . . ,C

(45)
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3. Find the solution of

qk+1(x) = argmin
q(x)

(

Z
x

Z
β

Z
π

qk(π)qk+1(β)q(x)

log

(

qk(π)qk+1(β)q(x)

exp[L(π,β,x,λk,µk)]

)

dπdβdx
)

, (46)

which is given by

qk+1(x) = ∏
j

qk+1(x j) (47)

where

qk+1(x j) = pG(x j | uk+1
j ,vk+1

j ) (48)

and

uk+1
j = ∑

c
λk

j ,cαc +∑
i

y(i)µk
j (49)

vk+1
j = uk+1

j /

(

∑
c

λk
j ,cαcE

[

1
βc

]

qk+1(β)

+∑
i

Ai, j

)

(50)

or find the solution of

xk+1 = argmin
x

{

−L(πk,βk+1,x,λk,µk)
}

(51)

which is given by

xk+1
j = (uk+1

j −1)/

(

∑
c

λk
j ,c

αc

βk+1
c

+∑
i

Ai, j

)

(52)
4. Find the solution of

λk+1,µk+1 =

arg min
λ∈Λ,µ∈ϒ

(

Z
π

Z
β

Z
x
qk(π)qk+1(β)qk+1(x)

log

(

qk(π)qk+1(β)qk+1(x)

exp[L(π,β,x,λ,µ)]

)

dπdβdx
)

, (53)

which is given by

λk+1
j ,c =expE [log(πcpG(x j |βc,αc))]qk+1(x)qk+1(β)qk(π)/

C

∑
c′=1

expE [log(πc′pG(x j | βc′ ,αc′))]qk+1(x)qk+1(β)qk(π)

c = 1, . . . ,C (54)

and

µk+1
j ,i =

expE [logAi, jx j ]qk+1(x)

∑M
j ′=1expE

[

logAi, j ′x j ′
]

qk(x)

j = 1, . . . ,N

(55)
or find the solution of

λk+1,µk+1 = arg min
λ∈Λ,µ∈ϒ

{

−L(πk,βk+1,xk+1,λ,µ)
}

(56)

which is given by

λk+1
j ,c =

πk
cpG(xk+1

j | βk+1
c ,αc)

∑C
c′=1πk

c′pG(xk+1
j | βk+1

c′ ,αc′)
c= 1, . . . ,C

(57)
and

µk+1
j ,i =

Ai, jx
k+1
j

∑M
j ′=1Ai, j ′x

k+1
j ′

j = 1, . . . ,N (58)

For the non-degenerate case set

q(π) = lim
k→∞

qk(π), q(β) = lim
k→∞

qk(β),

q(x) = lim
k→∞

qk(x) (59)

while for the degenerate case set

qD(π,β,x)=







1 if π= limk→∞ πk,β= limk→∞ βk

x = limk→∞ xk

0 elsewhere
(60)

E[x j ]qk(x), E[log(πcpG(x j | βc,αc))]qk+1(x),qk+1(β),qk(π),
E[1/βc]qk+1(β) and E[logAi, jx j ]qk+1(x) are calculated
in the Appendix.

5 EXPERIMENTAL RESULTS

In order to evaluate the proposed method we have per-
formed a set of tests over a real thoracic SPECT study.
Emission images of a thorax present abrupt edges in
the transition between tissues, therefore the gamma
mixture prior is well adapted to the characteristics of
these images.

The detector system used is a Siemens Orbiter
6601. The detector described a circular orbit clock-
wise, at 5.625 steps (there are 64 angles, 64 bins, and
64 slices). The data given by the detector system were
corrected for the attenuation effect.

We have centered our attention in a cross sectional
slice of the heart which presents a significant struc-
ture. This cut corresponds to the inferior part of the
left ventricle of the heart and the superior area of the
liver.

In the experiments we use three classes (back-
ground, liver and ventricle). Very similar results
are obtained by the degenerate and non-degenerate
posterior distribution approximations. However, the
non-degenerate reconstructions are sharper and less
noisy. Thus, we only present the non-degenerate re-
sults here.

The initial valuesq1(β), q1(x), λ, andµ were esti-
mated from aC-mean clustering of the Filtered Back-
projection (FBP) reconstruction. The parametersα1,
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(a) α1 = 60,α2 = 10,α3 = 10 (b) α1 = α2 = α3 = 10

(c) α1 = α2 = α3 = 90 (d) CAR prior

(e) GGMRF prior (f) CGMRF prior

Figure 1: Results with SPECT image.

α2, andα3 were selected experimentally to obtain an
acceptable visual tradeoff between detail and noise re-
duction. These parameters were equal to 60, 50, and
32, respectively. Figure 1(a) shows the reconstruction
obtained by the proposed method. The ventricle is
clear in the image and we can observe a small black
area in the left region of the image (possible tumor).
The patient presented a symptomatology compatible
with a hepatic tumor. Small values ofαc produce very
noisy reconstructions (see Fig. 1(b)), while large val-
ues ofαc cluster in excess the pixels of the recon-
structed image (see Fig. 1(c), where part of the my-
ocardial wall is not distinguishable).

The variances of the gamma distributions q(x j) =
q(x j | u j ,v j) provide information about the influence
of the αc’s on the reconstruction. These variances
are given byvar[x j ]q(xj |u j ,vj ) = v2

j /u j . For our experi-
ment, Fig. 2 shows the dependence of the mean of the
above variances onα1, α2, andα3 (we plot the curves
that correspond to eachαc parameter with fixed val-
ues for the other two parameters). We can observe

that the value ofα1 (background and tumor) is not es-
pecially critical for the reconstruction while we need
a more careful selection of the parametersα2 (liver)
andα3 (ventricle).

For visual comparison, since the original image is
obviously not available, we show the obtained recon-
struction using several image priors: conditional au-
torregresive (CAR), generalized Gauss Markov ran-
dom fields (GGMRF) and compound Gauss Markov
random field (CGMRF) (see Figs. 1(d), 1(e) and
1(f)), respectively). These reconstructions were ob-
tained with the proposed methods in (López et al.,
2004; López et al., 2002) The area of the tumor is
clearer in the image provided by the reconstruction
using a gamma mixture prior. For example, the lesion
zone does not appear in the obtained reconstruction
with the CGMRF prior (see Fig. 1(f)). We note that in
the proposed method the isotope activity is homoge-
neous in the left ventricle, but it is not homogeneous
in the reconstruction obtained by using the other pri-
ors.
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Figure 2: Mean ofvar[x] with respect toαc.

6 CONCLUSION

We present a reconstruction method for emission
computed tomography which uses a gamma mixture
as prior distribution to reconstruct Nuclear Medicine
images that present abrupt changes of activity be-
tween contiguous tissues, since spatially independent
priors, as the gamma mixture, are more adapted to this
type of images. We use variational methods to obtain
the original image and parameters estimation within
an unified framework. Satisfactory experimental re-
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sults are obtained with real clinical images.
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APPENDIX

In algorithm 3 we need to calculate the quantities
E[x j ]qk(x), E[log(πcpG(x j | βc,αc))]qk+1(x),qk+1(β),qk(π),
E[1/βc]qk+1(β) andE[logAi, jx j ]qk+1(x).

To calculateE[x j ]qk(x) we note that (see Eq. 8)

E[x j ]pG(xj |u j ,vj ) = v j (61)

To calculateE[1/βc]qk+1(β) we observe with the use of
Eq. 13 that

E

[

1
βc

]

q(βc|rc,sc)

=

=
Z

βc

((rc−1)sc)
rc

Γ(rc)
β−(rc+1)−1

c e−(rc−1)sc/βcdβc

=
((rc−1)sc)

rc

Γ(rc)

Γ(rc +1)

((rc−1)sc)rc+1 =
rc

(rc−1)sc
(62)
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We can easily calculateE[logAi, jx j ]qk+1(x), since

E[logx j ]pG(xj |u j ,vj ) = − log
u j

v j
+

∂ logΓ(u)

∂u
|u=u j

(63)
where

Γ(u) =

Z ∞

0
τu−1e−τdτ. (64)

(see (Miskin, 2000)).∂ logΓ(u)/∂u is the so calledψ
or digamma function.

To calculate the expectationE[log(πcpG(x j |
βc,αc))]qk+1(x),qk+1(β),qk(π) we note that

E[log(πcpG(x j | βc,αc))]qk+1(x),qk+1(β),qk(π) =

= E[logπc]qk(π) + αc logαc−αcE[logβc]qk+1(β)

− logΓ(αc)+ (αc−1)E[log(x)]qk+1(x)

−αcE[
1
βc

]qk+1(β)E[x j ]qk+1(x) (65)

whereE[logπc]qk(π) can be calculated taking into ac-
count that

E[logπc]pD(πc|ω,...,ωc) =
∂ logΓ(ω)

∂ω
|ω=ωc

−
∂ logΓ(ω)

∂ω
|ω=∑C

c′=1
ωc′

(66)

andE[logβc]qk+1(βc)
can be calculated observing that

βc follows a distribution pG(ρc | mc,1/nc) and since

E[logβc]pIG(βc|mc,nc) = −E[logρc]pG(ρc|mc,1/nc) (67)

which can be calculated using Eq. 63.
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