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Abstract: One of the most difficult steps of intramedullary nailing of femoral shaft fractures is distal locking – the 
insertion of distal transverse interlocking screws, for which it is necessary to know the position and 
orientation of the distal locking holes of the intramedullary nail. This paper presents a precise approach for 
solving this problem using single calibrated X-ray image via parameter decomposition. The problem is 
formulated as a model-based optimal fitting process, where the to-be-optimized parameters are decomposed 
into two sets: (a) the angle between the nail axis and its projection on the imaging plane, and (b) the 
translation and rotation of the geometrical models of the distal locking holes around the nail axis. By using a 
hybrid optimization technique coupling an evolutionary strategy and a local search algorithm to find the 
optimal values of the latter set of parameters for any given value of the former one, we reduce the multiple-
dimensional model-based optimal fitting problem to a one-dimensional search along a finite interval. We 
report the results of our in vitro experiments, which demonstrate that the accuracy of our approach is 
adequate for successful distal locking of intramedullary nails. 

1 INTRODUCTION 

It has been recognized that one of the most difficult 
steps of intramedullary nailing of femoral shaft 
fractures is distal locking – the insertion of distal 
interlocking screws, for which it is necessary to 
know the positions and orientations of the distal 
locking holes (DLHs) of the intramedullary nail 
(IMN). Complicating the process of locating and 
inserting the distal interlocking screw is the nail 
deformation with insertion. It has been reported that 
deformation occurs in several planes due to medial-
lateral (ML) and anterior-posterior (AP) flexion of 
the distal nail after it has been inserted. Using a 
magnetic tracking system in a cadaveric study, 
Krettek et al. (1998) reported following deformation 
measurement results for small-diameter nails and 
large-diameter nails, respectively: lateral translations 
of 18.1 ±  10.0 mm and 21.5 ±  7.9 mm, dorsal 
translations of -3.1 ±  4.3 mm and 0.4 ±  9.8 mm, 
and rotation about the longitudinal axes of -0.1 ±  
0.2 degrees and 10.0 ±  3.1 degrees. The reason for 
the wide variations of the insertion-related femoral 

nail deformation is due to the fact that the nail has to 
deform to the shape of the medullary canal upon 
insertion. The shape of the canal varies widely from 
person to person. It is not possible to predict how the 
nail will deform accordingly. Therefore, it is very 
difficult, to determine what the resultant locations 
and orientations of the DLHs will be relative to their 
initial position before it is deformed. The surgeon 
depends heavily on intra-operative X-ray means in a 
conventional surgical procedure for providing 
precise locations and orientations of the DLHs. It 
requires positioning the axis of the fluoroscope 
perpendicular to the locking holes so that these holes 
appear perfectly circular in the images. This is 
achieved through a trial-and-error method and 
requires long time X-ray exposure for both the 
surgeon and patient. It has been reported that the 
surgeon’s direct exposure to radiation for each 
conventional surgical procedure was 3 – 30 min, of 
which 31% - 51% was used for distal locking 
(Sajeldal and Backe 1987). 

The desire to target accurately with as little as 
possible X-ray exposure has led to various attempts 
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to develop image-based methods for recovering the 
positions and orientations of DLHs (Zhu et al. 2002, 
Leloup et al. 2004, Yaniv and Joskowicz 2005). 
These methods require either multiple calibrated 
images or single image but with perfectly circular 
holes in the image, which normally requires the X-
ray technician to use a try-and-move method several 
times to achieve. 

This paper presents a precise approach for 
solving this problem using single calibrated 
fluoroscopic image via parameter decomposition. 
We do not ask for an image with perfectly circular 
holes but we do put a constraint on its acquisition, 
i.e., the reduced patient shaft should be roughly 
parallel to the image intensifier (II) of the 
fluoroscopy machine, which is much easier to be 
achieved intraoperatively. We then formulate the 
pose recovery of the DLHs as a model-based fitting 
problem and decompose the to-be-optimized 
parameters into two sets: (a) the angle between the 
nail axis and its projection on the imaging plane, and 
(b) the translation and rotation of the geometrical 
models of the DLHs around the nail axis. By using a 
hybrid optimization technique (Zheng et al. 2006) 
coupling an evolutionary strategy and a local search 
algorithm to find the optimal values of the latter set 
of parameters for each give value of the former one, 
we reduce the multiple-dimensional optimal fitting 
problem to a one-dimensional search along a finite 
interval.  

The paper is organized as follows. Section 2 
describes image calibration, geometrical models, and 
preprocessing. In Section 3, we describe the 
proposed approach in details. Section 4 presents our 
in-vitro experimental results, followed by 
conclusions in Section 5. 

2 IMAGE CALIBRATION, 
GEOMETRICAL MODEL AND 
PREPROCESSING 

2.1 Image Calibration 

 
Figure 1: Weak-perspective pin-hole camera model. 

In reality, the proximal fragment, the distal 
fragment, and the nail may be treated as three rigid 
bodies and registered independently. The rigid 
transformations between these three rigid bodies can 
be trivially obtained from a navigator such as an 
optoelectronic tracker, a magnetic tracker, or even a 
medical robot (Langlotz and Nolte 2004). As this is 
not our focus in this paper, here we assume that the 
fractured femur has already been reduced and the 
proximal fragment and distal fragment are kept fixed 
relative to each other at the time of image 
acquisition. We also assume that the nail has been 
inserted till the distal end of the femur and has been 
locked proximally by screw so that the complete 
femur and the nail can be treated as one rigid body. 
A local coordinate system (COS) is established on 
this rigid body through a so-called dynamic 
reference base (DRB) technique (Nolte et al. 1995). 
In the following description, let’s denote this patient 
COS as COSA − . All computations are done in this 
reference COS. 

To relate a pixel in the two-dimensional (2D) 
projection image to COSA − , the acquired image 
has to be calibrated for physical projection 
properties and be corrected for various types of 
distortion. We have chosen a weak-perspective pin-
hole camera model as shown in Figure 1 for 
modeling the C-arm projection (Gremban et al. 
1988). Using such a camera model, a 2D pixel VI is 
related to a three-dimensional (3D) point VA by 
following equations: 
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where |||| ⋅  means to calculate the length of a vector 
and the vectors fA, rA, cA and pI represent the 
position of focal point, the vector along image row 
increasing direction, the vector along image column 
increasing direction, and the 2D position of piercing 
point, respectively. They are projection parameters 
used to describe the projection properties of the C-
arm and need to be calibrated preoperatively 

Eq. (1) can be used for both forward and 
backward projections. For example, if we want to 
calculate the direction AS  of the forward projection 
ray of an image point VI, an additional constraint 

1A =||S||  can be used together with Eq. (1) to solve 
for it. The forward projection ray of point VI is 
defined by the focal point and the direction. 
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The position of the imaging plane in COSA −  
and the focal length in our camera model is 
implicitly determined using the calibrated focal 
point fA and the vectors rA and cA. Any 2D image 
point VI corresponds to a 3D spatial point IA in this 
imaging plane, which is the intersection between its 
forward projection ray and this plane. 

2.2 Geometrical Models 

The distal part of IMN containing the two DLHs, 
which is what we are interested in, is modeled as a 
cylinder (Figure 2, left). The distance L between the 
centers of the two DLHs can be accurately extracted 
from its product information. The geometrical model 
of each DLH is represented by two circles as shown 
by Figure 2, right, and is used later to simulate X-ray 
projection of the DLH model. 

To obtain the coordinates of those points 
(visualized as red dots in Figure 2, right) used to 
describe the model of the DLH, a local COS uvwC'  
is established by taking the intersection point C (it is 
also called the center of the DLH) between the axis 
of the DLH and the axis of the IMN as the origin, 
the axis of the IMN as the u  axis, and the axis of the 
DLH as the v  axis (see Figure 2 for details).  

 
Figure 2: The geometrical model of the distal part of the 
IMN (left) and the geometrical model of the DLH (right). 

 
Figure 3: Feature point detection. The detected projection 
points (red dots) of the centers of both DLHs are displayed 
together with the edge pixels of the DLHs (yellow). 

The coordinates of those points expressed in this 
local COS can be directly measured from the nail 
using a caliber, thanks to the symmetrical property 
of the DLH; or extracted from the engineering 
drawings of the nail, if they are available. 

2.3 Preprocessing 

The task of the preprocessing is to determine the 
projection points of the centers of the DLHs. To 
extract these feature points from the image, Hough 
transform (Jain and Schunk 1995) is used to find the 
two mostly parallel edge lines of the projection of 
the distal part of the IMN after applying a Canny 
edge detector to the image. The projection of the 
axis of the distal part of the IMN is considered as the 
middle line between these two mostly parallel edge 
lines. To determine those edge pixels belonging to 
DLHs, the method reported in (Yaniv and Joskowicz 
2005) is modified for our purpose. A parallelpiped 
window, whose sizes are equal to the distance 
between the detected edge lines, is swept along the 
middle line to find two locations which contain the 
maximum number of edge pixels and whose distance 
is greater than a pre-selected distance threshold T 
(e.g. the width of the window). The centroids of the 
detected edge pixels in both locations are then 
calculated. The projection of the center of each DLH 
is then determined by finding the closest point on the 
middle line to the associated centroid. An example 
of feature point detection is shown in Figure 3. 

3 THE PROPOSED APPROACH 

3.1 Model-based Fitting for Pose 
Recovery 

Using above detected feature points, we can find 
their corresponding spatial points on the imaging 
plane. Let’s denote them as d1 corresponding to the 
projection point of the center C1 of the distal DLH 
(the DLH that is closer to the nail tip), and d2 
corresponding to the projection point of the center 
C2 of the proximal DLH, respectively, as shown in 
Figure 4. These two points define a line in A-COS. 
This line together with the focal point f defines a 
plane where the axis of the distal part of the nail 
should fall in. As we know the coordinates for point 
f, d1, and d2, we can calculate three internal angles 
ω1, ω2, and ω3 of triangle fd1d2. Assume the angle 
between the nail axis and its projection in the 
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imaging plane is α, then the coordinates of the 
centers of both DLHs are calculated as following: 
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where L is the distance between the centers of two 
DLHs. It can be measured or extracted from the 
product information. 

According to equation (2), the coordinates of 
both centers only depends on the parameter α, so as 
the direction of the nail axis (nx, ny, nz). 

Assuming that the coordinates of the center C of 
one of the DLHs is denoted as [Cx, Cy, Cz]T, the 
problem to estimate the pose of the DLH in A-COS 
is now changed to find the rotation angle α, rotation 
angle θ, and translation distance δ of the geometrical 
model of the DLH along the nail axis [nx, ny, nz]T so 
that the simulated X-ray projection of the DLH can 
be fitted to its real X-ray projection (see Figure 4 for 
details). This constrained transformation around the 
parameterized nail axis could be described by a 
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and a translational vector trans(α, θ, δ) = [tx, ty, tz]T: 
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The pose recovery problem can then be 

formulated as an optimal model-based fitting: 
2||)),,(),,((||min )(

}*,*,*{
δθαδθα

δθα
∑ +⋅−=
i

iiCPj transmrotPe (5) 

where {ej} are the detected edge pixels of the DLHs; 
{mi} are the points used to describe the geometrical 
models the DLHs; P(.) denotes the projection 
operator; CP(.) denotes the action of finding the 
closest edge pixel of the simulated projection point 
into the image of a model point. 

 
Figure 4: Schematic view of model-based fitting. 

3.2 Parameter Estimation 

Various techniques have been proposed for 
estimating parameters for model-based fitting. Lowe 
(1991) suggests to minimize the non-linear error 
function on image domain, where the perpendicular 
distance between projected model line and extracted 
edge point will be minimized. The correspondence 
between the model projection to image edge is found 
by selecting the one who has the shortest 
perpendicular distance. This strategy can lead to 
some ambiguity in fitting process when part of the 
model line has been occluded by structure of the 
model itself. This problem was solved by Fua (1996) 
through applying hidden algorithm to avoid this 
pitfall. All these algorithms suffer from the facts that 
they are easily to be trapped by a local minimum and 
that the interpretation and initialization of model 
parameter values have to be done by the operator, 
which is not desirable for an intra-operative 
application in a sterilized environment. 

Parameter decomposition approach is a powerful 
optimization method that tries to decompose a high-
dimensional problem into small, low-dimensional 
components and estimate the parameters for each 
component separately, thus reducing the 
computational complexity. The general idea of 
model decomposition for parameter estimation has 
bee successfully applied in many domains, e.g., 
geometrical curve fitting (Jiang and Cheng 2005) 
and Bayesian model learning (Neapolitan 2003). 

According to our observation that the size of the 
geometrical models of the DLHs (around 10 mm in 
each dimension) is relatively small compared to the 
focal length of the X-ray image (around 1000mm), 
we decompose the control parameters in Eq. (5) into 
two sets: (a) the angle α between the nail axis and its 
projection in the imaging plane; and (b) the rotation 
and translation distance of the geometrical models of 
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the DLHs along the nail axis (θ, δ). Now the original 
optimization problem can be re-formulated as: 

)]||)),,(),,((||min(min[ )(
}*,*{*

2δθαδθα
δθα
∑ +⋅−=
i

iiCPj transmrotPe  (6) 

Where the term in the square brackets simply means 
the minimum sum of distance for a fixed α and all 
possibilities of (θ, δ). The advantage of such 
decomposition lies in the fact that the latter set of 
variables can be calculated by using a hybrid 
optimization technique coupling an evolutionary 
strategy and an iterative closest projection point 
algorithm (ICPP) as proposed in our previous work 
(Zheng et al. 2006), which then reduces the original 
multiple-dimensional optimization problem to a one-
dimensional search in a finite interval. 

3.2.1 Initialization 

Given a fixed α, we can estimate the positions of 
both centers of DLHs and the orientation of the nail 
axis. Then, the initial transformation between the 
local COS of the geometrical model of the DLHs 
and A-COS can be obtained by taking the estimated 
center as the origin, the estimated nail axis as the u 
axis, and the normal of the imaging plane as the v 
axis. All points defined in the local COS of the 
geometrical model of the DLH can then be 
transformed to A-COS using this transformation. The 
optimal values of the rotation θ and the translation δ 
of the models along the nail axis can be optimally 
estimated by fitting the geometrical models of the 
DLHs to the image as by a hybrid optimization 
technique as described below 

3.2.2 The Iterative Closest Projection Point 
(ICPP) Algorithm 

Let’s denote E be a set of NE detected 2D edge 
pixels },...,,{

EN
eee 21  of the DLH projection. Further 

denote Mt-1 be a set of NM model 
point },...,,{ 11

1
1

0
−−− t
MN

tt mmm  at iteration step t-1. Now 
in the iteration step t, we perform following steps: 

Simulating X-ray projection: In this step, we 
simulate the X-ray projection of the geometrical 
models of the DLHs to remove invisible points. Let 

1−tP  be a set of PN  2D projection points 
},,,{ 11

2
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1
−−− t
PN

tt ppp L  obtained by simulating X-ray 
projection of 3D model into the image. Normally 

MP NN << . Thus, for each 2D projection point 1−t
ip , 

we know its associated 3D model point 1−t
im . 

Find closest projection point: In this step, we try 
to find the closest neighbor edge pixel ie  of each 2D 
model projection point 1−t

ip . 
Establishing 3D-2D correspondence: For each 

2D matched pairs ),( 1−t
ii pe , calculate the forward 

projection ray iBP  of the 2D edge pixel ie . Then for 
the ray iBP , calculate a 3D point pair 
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ibe  is a point on the 
line iBP  that is closest to the 3D model point 1−t

im of 
the model projection point 1−t

ip . 
Estimating pose: For all calculated 3D point 
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t PPPPS , find an optimal local 
solution of all pose parameters by minimizing 
following disparity function ),( )()( 11 −− ttS δθ : 
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where we drop the symbol α from the expressions, 
as its value is fixed. 

These steps are repeated until all pose 
parameters are converged. 

3.2.3 The Evolutionary Strategy 

The ICPP algorithm can be regarded as a local 
minimum search algorithm but we are trying to find 
the global minimum of the disparity function that 
may be well hidden among many poorer local 
minima. In our approach, this is handled by 
combining a conventional genetic algorithm 
(Goldberg 1989) with the ICPP algorithm. The 
genetic algorithm acts as a random generator for 
possible parameter sets that solve the minimization 
problem. All generated individual parameter set is 
then fed through the ICPP algorithm before being 
rated using the disparity function. Five best ones 
become the parents of next generation. The 
algorithm stops when the differences of the disparity 
function values of all five best ones are smaller than 
a pre-selected threshold. 
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Figure 5: Optimization space of the nail tilt angle α. 

3.2.4 Optimization of Parameter α 

We now convert a multiple-dimensional 
optimization problem to a one-dimensional one, 
where the parameter α can be optimized by a search 
along a finite interval [-30o, +30o] (due to the 
acquisition constraint that we put). A typical 
optimization space of this parameter is shown in 
Figure 5. It has a symmetrical shape and a clear 
global optimum around the ground truth α=10.4o. 
We could separate the optimization space into two 
sub-intervals, i.e. [-30o, 0) and [0, 30o]. In each sub-
interval, the optimum of that sub-interval could be 
easily found by a local search algorithm starting 
from any initialization value. Actually, in all 
experiments, we have simply initialized α by the 
middle value of each sub-interval. The global 
minimum is then found by taking the better one of 
the two optima. 

4 EXPERIMENTAL RESULTS 

We designed and conducted two experiments to 
analyze the accuracy and robustness of the proposed 
approach. A SYNTHES® (STRATEC Medical, 
Oberdorf, Switzerland) 9 mm solid titanium femoral 
nail was used in our study. A Siemens ISO-C3D C-
arm (Siemens AG, Erlangen, Germany) was used to 
acquire fluoroscopic images for our experiments.  

In the first experiment, the nail was inserted into 
a cadaveric human femur and was locked 
proximally. The ground truth of the positions of the 
DLHs was obtained after image acquisition by 
inserting a custom-made steel rod through the hole 
and then digitizing both top and bottom centers of 
the rod using an optically trackable sharp pointer 
(OPTOTRAK 3020, Northern Digital Inc, Waterloo, 
Canada). 

Three images acquired from different view 
directions were used in our experiments, as shown in 
Figure 6. For each image, we applied the proposed 
approach ten times to estimate the poses of the 
DLHs. The estimated results were compared to the 
ground truth to compute the errors for each DLH, 
which were defined as the angular difference 
between the estimated hole axis and the one 
obtained through pointer-based digitization, and the 
positional difference of the entry point and its 
ground truth along the plane perpendicular to the 
hole axis (obtained by projecting the difference 
vector into the plane perpendicular to the hole axis), 
because the positional deviation along the hole axis 
is not important for the task of insertion of distal 
locking screw 

In all studies, the poses of DLHs could be 
automatically recovered. The angular and positional 
errors are shown in Table I. Compared to ground 
truths, the average angular error was found to be 1.0o 
(std=0.4o) and the average positional error along the 
plane perpendicular to the hole axis was found to be 
0.6 mm (std=0.4 mm). 

In the second experiment, a test bench was 
designed and implemented, which allowed rotation 
and tilt of the test subject, as shown in Figure 7. The 
nail was inserted tightly into the plastic bone and 
was locked proximally. The plastic bone together 
with the nail was then fixed to the test bench. A 
dynamic reference base was fixed to the bone to 
establish a local coordinate system. The ground 
truths of the direction of the nail axis as well as the 
positions of the centers of the DLHs and the 
directions of the axes of the DLHs were obtained 
from a registration-free 3D-navigation system [4] 
using the SIREMOBIL ISO-C3D Carm. 

The reference position (rotation = 0o, tilt = 0o) 
was obtained using a try-and-move method until the 
projections of both holes appeared perfectly circular. 
We then tilted the test subject with an interval of 5o 
until 25o. At each tilted position, we rotated the test 
subject with an interval of 5o until 25o, which results 
in totally 6x6 = 36 configurations. For each 
configuration (tilt, rotation), a lateral-medial image 
was acquired. 

We applied the present approach to these 36 
images. For each image, we compared the estimated 
results to the ground truths. We computed the 
angular error of the estimated nail axis and the 
angular errors of the estimated axes of the DLHs. 
And to get a clear idea how the positional errors 
were distributed, we decomposed the positional 
errors along the three orthogonal directions, i.e., the 
nail axis direction, the distal locking hole axis 
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direction, and the cross product of the former two 
directions. 

It was found that angular errors in all 
configurations except for two configurations (25o, 
20o) and (25o, 25o) were smaller than 1.8o. The 
positional errors along the distal locking hole axis 
were bigger than those errors along other two 
directions. When the tilt was smaller than 25o and 
when the rotation was smaller than 25o, the average 
angular error in estimating the nail axis was found to 
be 0.5o (std=0.2o, max=1.2 o), the average angular 
error in estimating the axes of the DLHs was found 
to be 0.7o (std=0.3o, max=1.5 o), the average 
positional error along the nail axis direction was 
found to be 0.3 mm (std=0.4 mm, max=1.4 mm), the 
average positional error along the distal locking hole 
axis direction was found to be 1.3 mm (std=1.7 mm, 
max=7.9 mm), and the average positional error 
along the cross product direction was found to be 0.4 
mm (std=0.5 mm, max=2.5 mm). 

5 CONCLUSIONS 

We have presented a novel variable decomposition 
approach for automatic pose recovery of distal 
locking holes from single calibrated fluoroscopic 
image. Unlike previously introduced method (Yaniv 
and Joskowicz 2005), our approach does not ask for 
an image with perfectly circular holes. Our in vitro 
experimental results demonstrate that the accuracy 
of our approach is adequate for successful distal 
locking of intramedullary nails.  
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Figure 6: Three images used in our experiments. From left to right: LM_00, LM_01, and LM_02. 

Table 1: Comparision results between the estimated poses of the distal locking holes and their associated ground truth. 

Image Angular differences (o) Positional differences along the plane 
perpendicular to the hole axis (mm)  

LM_00 0.7 ± 0.3 0.2 ± 0.0 
LM_01 0.9 ± 0.2 0.4 ± 0.1 
LM_02 1.5 ± 0.2 1.1 ± 0.1 
Overall 1.0 ± 0.4 0.6 ± 0.4 

 

Figure 7: Test bench for evaluating the present approach. 
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