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Abstract. The Scale Invariant Feature Transform, SIFT, has been successfully
applied to robot vision, object recognition, motion estimation, etc. Still, the pa-
rameter settings are not fully investigated, especially when dealing with variable
lighting conditions. In this work, we propose a SIFT improvement that allows fea-
ture extraction and matching between images taken under different illumination.
Also an interesting approach to reduce the SIFT computational time is presented.
Finally, results of robot vision based localization experiments using the proposed
approach are presented.

1 Introduction

In computer vision features are at the basis of image data processing. The goal of com-
puter vision is to extract information about the content of specific data, i.e., a 2D image
[1–5]. The extraction process is then often defined in terms of image features of dif-
ferent levels of complexity, ranging from low-level features such as edges or lines via
medium-level features such as corners or junctions to high-level features in terms of
objects or living beings, and actions that they perform. However, the classification into
low, medium and high level features is not standardized. In the field of computer vision
and image processing a large number of features, with different complexity, have been
defined, e.g.:

– point features, e.g., corners, line crossings, or general interest points;
– local boundary features, e.g., lines or edges and their orientation;
– shape features, e.g., curvature;
– region based features, e.g., color, texture or objects.

From a conceptual point of view, an image feature should be defined in terms of at-
tributes related to the image data. Usually these features are used to perform some kind
of scene geometric reconstruction or object recognition or, also, they are used to per-
form range measurements based on vision. In the appearance based approach the same
features can be used to evaluate an image similarity, taking into account the whole im-
age without any need of physic description, but with the only purpose of evaluate scene
appearance.
The SIFT approach was introduced by David Lowe in [6, 7]. SIFT is a method for ex-
tracting distinctive invariant features from images that can be used to perform reliable
matching between different images of the same object or scene. Because of its compu-
tational efficiency and effectiveness in object recognition, the SIFT algorithm has led to
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significant advances in computer vision. The goal of our project is essentially to clean
up, simplify and improve Lowe’s SIFT algorithm. We intend first to implement the al-
gorithm roughly as Lowe has defined it and then to make changesto it, gauging their
effectiveness in object recognition. Specifically, we intend to improve SIFT’s robust-
ness to illumination changes, which will be judged by recognition accuracy in various
outdoor scenes. We hope in general to improve the effectiveness of SIFT recognition
keys by experimenting with different keypoint-descriptorgeneration methods, trying to
maximize recognition scores with varying cameras and illuminations. We are creating
an image database along the way to test actual implementation and future changes to
the algorithm.
One of the major problem with SIFT is that the algorithm is notcrisply defined and has
lots of free parameters; information provided by the Lowe’spapers is sometimes vague,
and thus leaves lots of implementation details to be filled in.
The SIFT is invariant to image translation, scaling and rotation. SIFT features are also
partially invariant to illumination changes and affine 3D projections. These features
have been widely used in the robot localization field as well as in many other computer
vision fields. The SIFT algorithm has four major stages.
1. Scale-space extrema detection: the first stage searches over scale space using a Dif-
ference of Gaussian (DoG) function to identify potential interest points.
2. Key point localization: the location and scale of each candidate point are determined
and key points are selected based on measures of stability.
3. Orientation assignment: one or more orientations are assigned to each key point based
on local image gradients.
4. Key point descriptor: a descriptor is generated for each key point from information
on local image gradients at the scale found in stage 2.
The first stage is clarified as follows. For each octave in the scale space, the initial image
is repeatedly convolved with Gaussians to produce the set ofscale space images. Ad-
jacent Gaussian images are subtracted to produce the DoG images. After each octave,
the Gaussian image is down-sampled by a factor of 2 and the process is repeated. For a
more detailed discussion of the key point generation and factors involved see [6].
In a nutshell, Lowe’s algorithm finds stable features over scale space by repeatedly
smoothing and down sampling an input image and subtracting adjacent levels to create
a pyramid of difference-of-Gaussian images. The features the SIFT algorithm detects
represent minima and maxima in scale space of these difference-of-Gaussian images.
At each of these minima and maxima, a detailed model is fit to determine location, scale
and contrast, during which some features are discarded based on measures of their in-
stability. Once a stable feature has been detected, its dominant gradient orientation is
obtained, and a key point descriptor vector is formed from a grid of gradient histograms
constructed from the gradients in the neighborhood of the feature. Key point matching
between images is performed using a nearest-neighbor indexing method.
There are many points along the course of this algorithm where simplifications and po-
tential improvements can be made. Our current goals, beyondimplementing and testing
Lowe’s algorithm, are:
(1) simplify and clean up the algorithm as much as possible,
(2) improve lighting invariance by normalizing potential SIFT difference-of-Gaussian
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points with the sum-of-Gaussians, and
(3) improve the general stability of key points.
Our approach is based on the Scale Invariant Feature Transform (SIFT). In particular
we propose an improvement of this feature extraction methodto deal with changing
in lighting conditions. This kind of adaptive vision is necessary in various applica-
tion fields of vision feature based techniques, e.g. outdoorrobotics, surveillance, object
recognition, etc. In general, the improvement is particular useful whenever the system
needs to work in presence of strong lightness variations. Also, while invariant to scale
and rotation and robust to other image transforms, the SIFT feature description of an
image is typically large and slow to compute. To solve this matter an approach to reduce
the SIFT computational time is also presented. The paper is organized as follow: next
section provides a description of the SIFT algorithm and of the proposed improvements;
results of mobile robot localization are discussed in section 3 and, finally, conclusions
and references are given.

2 Extension to Reduced SIFT

SIFT features are distinctive and invariant features used to robustly describe and match
digital image content between different views of a scene. Consequently, hese features
have been widely used in the robot localization field as well as in many other computer
vision fields.
As already said, the SIFT feature description of an image is typically large and slow to
compute. For this reason we compute the image similarity in the innovation term using
a reduced and optimized SIFT approach with 64 feature descriptors, and we introduced
time saving improvements by the following two steps:
- adaptation of SIFT parameters to each sub-image in which the original image is split-
ted(Figure 1);
- extraction of a fixed number of key points.

In particular, the number of scales of original image is defined according to its
dimensions and thus in some cases not all SIFT scales need to be computed.

The following threshold value (Tr) is also computed to definethe contrast threshold
value of the SIFT algorithm:

Tr = k ·

DimX,DimY
∑

i,j=0

∣

∣I(xi,yj) − Ī(xi,yj)
∣

∣

DimX · DimY
(1)

where k is a scale factor, DimX and DimY are the x and y image dimensions, I(x,y)
is the intensity of the gray level image and (x,y) is the medium intensity value of the
processed image. In the Lowe’s SIFT implementation the contrast threshold is statically
defined and low contrast key points are rejected because theyare sensitive to noise. In
our implementation this threshold is computed for each sub-image, sometime avoiding
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Fig. 1.Adaptive SIFT approach. Feature extraction parameters areadapted to the processed image
and then the SIFT algorithm is performed.

Table 1. Average number of matched features between original imagesand dark images and
average computational time.

Matched featuresComputational time (sec)
Lowe’s SIFT 13 1,3
Improved SIFT94 1,1

at all the time-consuming feature extraction process and inany case allowing to deal
with different lighting conditions. Further details aboutthis approach can be found in
[8]. Results have been obtained using a data set of outdoor images. We artificially per-
formed lighting and contrast variation to every image. Herebelow a comparison of the
proposed feature extraction process with the classical Lowe’s SIFT is reported. Figure
2 reports an example of feature matching between an originaland a dark image.

Results showed in Tab. 1 demonstrate better performances obtained using the pro-
posed approach. The key results of the experimental comparison are that the average
number of matched features is drastically higher and the computational time of the fea-
ture extraction is lower than the standard SIFT implementation. We also want to reduce
the number of key points and their corresponding extractionand matching time, while
maintaining the same descriptor for each key point.
In the classical SIFT approach, key points are detected by testing each value in the DoG
at each scale with the 8 surrounding values of the same scale as well as with 9 neigh-
bouring values in the scale above and 9 neighbouring values in the scale below. The
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Fig. 2.An example of matched features between original and dark image. In this case 174 features
are matched.

first and last DoG scales are not examined. This means 26mn comparisons for a DoG
of size m n, taking into consideration that points around a given border of each DoG
are not included in the key point detection.
Since SIFT establishes multiple scales in each octave, the above analysis is applied sev-
eral times to each scale in each octave. Each octave has one quarter of the pixels of the
previous one, so that key point detection in lower octaves requires more time than in
higher ones. We aim to modify this exhaustive search into a sample based one.
In the proposed approach, the number of key points can be defined in advance. The
process of finding the key points continues iteratively without the need for sequentially
going through the whole scale space. This involves two phases. The first phase con-
sists in randomly searching the scale space for local extrema. The random search is
followed by an update phase only when the local extremum is more likely to be found.
The theory behind this approach is mainly based on the assumption that local extrema
points are located in a blob region, i.e. smooth wide two dimensional hills or valleys.
In other words, blobs are regions in the image that are eithersignificantly brighter or
significantly darker than their surroundings. A local extremum cannot be located on a
flat region and can hardly be found near it. Another possible location of local extrema
are spikes, i.e. rapidly changing narrow regions. But sincethe scale space structure
involves multiple smoothing operations on the image, only information on the coarse
scale remains and the spikes are filtered out. With the above assumption we can say
that our search mechanism involves dealing with only two cases when searching for a
local extremum: detection or not of a blob region. When a blobregion is detected an
update phase handles the search for the position of the localextremum in that region.
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The search ends either when the local extremum is found or when a given number of
trials elapses. On the contrary, when a non-blob region is detected, the result of the
search in this area is ignored and the search is started somewhere else.
More in particular, we first initialize, for each scale, a setof candidate key points (sam-
ples) by selecting random couples of numbers, each representing the coordinates of one
point in the image. The samples are then verified and only those that have a value above
the given threshold will be considered stable key points. This reflects our assumption
that a value above the threshold is most probably a point thatlies in a blob. A similar
approach was introduced in [9]. The number of matched key points can be defined in
advance and the computation time will result proportional to that number.

3 Application to Mobile Robotics

The application to mobile robotics is in the localization task. These features have been
widely used in the robot localization field as well as many other computer vision fields.
Here following we will apply the proposed approach to the vision based localization
of a mobile robot in an indoor environment. Figure 3 reports the map of the used en-
vironment, which mainly consists of very similar corridorsand offices. This makes the
robot localization more difficult, due to perceptual aliasing (different places that look
very similar).

Monte Carlo Localization (MCL) is the method used for estimating the position of
the robot and the probability function for the robot position is approximated using a
particle filter.
The generation of the weight that will be associated to each particle is a crucial aspect of
the localization algorithm, as the robot position depends directly from particle weights.
Each particle weight is assigned according to the difference between the actual sensor
reading of the robot and the sensor reading that a robot wouldobtain from the position
of the particle.
The MCL weight-update phase needs to consider that we have reference images only for
a small number of reference positions over the environment;so the weight update takes
into account the similarity between the actual and the reference image and the distance
of the particle from the reference image position. For each particle j at every time
stepk the MCL innovation factor can be computed as the similarity measure between
the current observationok and the reference observationoj nearest (according to the
Euclidean distance) to the particlej:

Innov
j
k =

∣

∣

∣

∣

∣

Similarity(ok, oj)
j

k

dk

∣

∣

∣

∣

∣

, j = 1...nParticles (2)

In our case observations are images and their similarity is computed using the pro-
posed adaptive SIFT approach, but with only 64 feature descriptors (on the contrary
of 128). In particular, the similarity for the whole image iscomputed by dividing the
total number of features matched between the two images by the number of features
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Fig. 3. Map of the environment.

extracted from the reference images. In the localization phase, the same set of SIFT
features is extracted from the current observation, and foreach particle the similari-
ties with nearby nodes are interpolated to calculate the particle weight. These feature
descriptors are then used to represent the environment appearance at the respective po-
sition and stored in a map. A preliminary visual tour is used to take some pictures of the
environment and store their features and positions in a reference image database. The
map is a graph of nodes, covering the two-dimensional environment, where each node
contains the features extracted from the image at the respective position.
Two examples of feature extraction and matching between similar images are reported
in Figure 5.

Results were obtained using an Active Media Pioneer3 DX robot, a differential drive
robot with a high degree of mobility and the capability to climb over small obstacles.
This robot is characterized by the following technical specifications: eight sonar sensors
situated on the front part and characterized by a maximum range of 5 m and a visibility
angle of 30; two incremental encoders; two wheels controlled by independent motors;
serial connection RS232 and a low cost webcam.
Because of the partially random nature of Monte Carlo Localization, we executed 10
runs over the same data to receive significant results. The absolute position error for
SIFT-based MCL, comparing the classical SIFT and the improved one is shown in Table
2. The computational time for every step is of about 0.4 seconds, with respect to the 1.4
needed for the classical SIFT approach.
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Fig. 4. Sample images of the test environment.

Table 2.Results of visual MCL experiment. The table shows the difference between the classical
SIFT and the proposed one.

MCL ERROR (mm)Time (sec)
Enanched SIFT 1110 0.4
SIFT 1070 1.4

4 Conclusions

In these experiments we tested a practical idea to improve and speed up the SIFT ap-
proach. The number of matched key points can be defined in advance and the com-
putation time is proportional to that number. We also introduced the idea of parameter
adaptation to avoid feature extraction from uniform regions of an image and to deal well
with lightness changes. We applied the approach to a data setof outdoor images and we
demonstrated that this approach is suitable since we need todeal with lightness changes.
Even if results are preliminary the general idea applied to mobile robotics gives com-
fortable performances. The approach can be generally applied to any similar problem
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Fig. 5. Examples of feature extraction and matching between similar images.

and we plan to perform tests of mobile robot localization in outdoor environments. It is
obvious that any further optimization to the original SIFT approach, such as in the key
point descriptor or orientation assignment, may also be applied to this approach.
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