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Abstract.  Having as a main motivation the development of robust and high 
performing robot vision systems that can operate in dynamic environments, we 
propose a context-based generic vision system for a mobile robot with a mobile 
camera. We choose as a first application for this vision system, the detection of 
static objects in the RoboCup Four Legged League domain. Preliminary results 
using real video sequences are presented. 

1 Introduction 

Object visual perception in complex and dynamical scenes with cluttered 
backgrounds is a very difficult task, which humans can solve satisfactorily. However, 
computer and robot vision systems perform very badly in this kind of environments. 
One of the reasons of this large difference in performance is the use of context or 
contextual information by humans. Several studies in human perception have shown 
that the human visual system makes extensive use of the strong relationships between 
objects and their environment for facilitating the object detection and perception 
([1][3][5][6][12], just to name a few).  

Context can play a useful role in visual perception in at least three forms: (i) 
Reducing the perceptual aliasing: 3D objects are projected onto a 2D sensor, and 
therefore in many cases there is an ambiguity in the object identity. Information about 
the object surround can be used for reducing or eliminating this ambiguity; (ii) 
Increasing the perceptual abilities in hard conditions: Context can facilitate the 
perception when the local intrinsic information about the object structure, as for 
example the image resolution, is not sufficient; (iii) Speeding up the perceptions: 
Contextual information can speed up the object discrimination by cutting down the 
number of object categories, scales and poses that need to be considered. 

From the visual perception point of view, it is possible to define at least six 
different types of context: 

(i) Low-level context: Textures and color are perceived uniformly in objects parts 
and surfaces, independently of the illumination conditions and the presence of 
shadows or highlights. This is achieved using spatial diffusion mechanisms that 
interpolated low-level perceptions (interpolation at the pixel level). In humans this is 
carried out using cell mechanisms present in cortical areas V1-V4 [9]. 

 (ii) Physical spatial context: There are physical laws that determine the allowed 
positions of the physical objects in the world. Once the observer knows in which 
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physical context it is involved, it is possible to apply a corresponding visual model. A 
very general starting point for building a visual model is the assumption of the 
existence of a ground plane and a gravity vector, which allows us to define upward 
and downward directions. If we project the camera axis to the ground plane, then we 
can also define forward, backward, left and right. We can also define altitude as the 
distance to the ground plane. It is also possible to allow the existence of different 
horizontal planes in a single model, for example, if there is a table, over the ground, 
there can be other objects over the table. Most of the objects -more precisely, non-
flying objects- either are supported by a horizontal plane or accelerate with gravity. 
Supported objects have an almost constant altitude, and their vertical orientation is 
usually almost constant and sometimes predetermined. 

(iii) Temporal context: The cinematic models for the object’s and observer’s 
movements define their relative positions in different time steps. Thus, if an object is 
detected in a given position at time step k, then it should appear at a certain position in 
time step k+1. 

(iv) Objects’ configuration context: Normally physical objects are seen in specific 
spatial configurations or groups. For instance, a computer monitor is normally 
observed near a keyboard and a mouse; or a face, when detected in its normal upright 
pose, it is seen above the shoulders and below hair.  

(v) Scene context: In some specific cases, scenes captured in images can be 
classified in some defined types [8], as for examples “sunset”, “forest”, “office 
environment”, “portrait”, etc. This scene context, which can be determined using a 
holistic measurement from the image [1][2][7] and/or the objects detected in the same 
image, can contribute to the final detection or recognition of the image’s objects. 

(vi) Situation context: A situation is defined by the surround in which the observer 
is immersed (environment and place), as well as by the task being performed. An 
example of a situation context could be: “playing tennis in a red clay curt, in a sunny 
day, at 3PM”. The situation context is determined using several consecutive visual 
perception, as well as other source of perceptual information (e.g. auditory) and high-
level information (e.g. task being carried out, weather, time of the day). 

In [12] are also defined the photometric context (the information surrounding the 
image acquisition process, mainly intrinsic and extrinsic camera parameters), and also 
the computational context (the internal state of processing of the observer). However, 
we believe that those do not correspond to contextual information in the same sense 
we are defining it in this work. 

Low-level context is frequently used in computer vision. Thus, most of the systems 
performing color or texture perception uses low-level context to some degree (see for 
example [13]). Scene context have been also addressed in some computer vision [10] 
and image retrieval [4] systems. However, we believe that not enough attention has 
been given in robot and computer vision to the physical-spatial context, the temporal 
context, the objects’ configuration context, and the situation context.  

Having as our main motivation the development of robust and high performing 
robot vision systems that can operate in dynamic environment in real-time, in this 
work we propose a generic vision system for a mobile robot with a mobile camera, 
which employs all defined spatiotemporal contexts. We strongly believe that as in the 
case of the human vision, contextual information is a key factor for achieving high 
performance in dynamic environments. Although other systems, as for example [1][3] 
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[5][12] have also employed contextual information, to the best of our knowledge this 
is the first work in which context is addressed in an integral fashion. We believe that 
the use of a context filter that takes into account the coherence between current and 
past detections, as well as scene and situation contexts, and the estimation of the 
position of static objects when they are out of the field of view, are some of the most 
innovative contributions of this work. 

We choose as a first application for our vision system, the detection of static 
objects in the RoboCup Four Legged League domain. We select this application 
domain mainly because static objects in the field (beacons, goals and field lines) are 
part of a fixed and previously known 3D layout, where it is possible to use several 
relationships between objects for calculating the defined contexts. 

This paper is organized as follows. The proposed generic vision system for a 
mobile robot with a mobile camera is described in section 2. In section 3, this general 
vision system is adapted for the detection of static objects in the RoboCup 4L League. 
Finally, conclusions of this work are given in section 4. 

2 Proposed Context based Vision System 

The proposed vision system is summarized in the block diagram shown in figure 1. It 
considers object preceptors, a holistic characterization of the scenes, context 
coherence filtering between current and past detections, encoder-based, visual-based 
and filtered horizon information, objects characterization, situation (global) context, 
and high-level tracking (estimation) for the detected objects’ poses. 

2.1 Perceptors 

Each object of interest has a specialized perceptor that detects and characterizes it. 
For a detailed description of the perceptors used in our system, refer to [16]. The 
output of a perceptor i at time step k is a candidate object i

kc , defined as: 

( ), , , , , ,i i i
k k k

T
i i i i i
k k k k kc

η
α η σ σ= Σ

x y
x y  

(1) 

where i
kx  is the relative pose of the object with respect to the robot, i

k
Σ

x
 is the 

covariance matrix of i
kx , i

kα  is the a priori probability of the detection, and ( i
ky , i

kη ) 
and ( i

k
σ

y
, i

kη
σ ) are the horizon position and angle, and their corresponding tolerances 

(see explanation in section 2.5.2). 

2.2 Image Holistic Characterization 

As stated in [6], a single glance to a complex, real world scene is enough for an 
observer to comprehend a variety of perceptual and semantic information. There are 
several works that use different alternatives of representations of the global 
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information contained in an image (e.g. spatial frequency orientations and scales, 
color, texture density). We believe that some of those representations can be 
complementary, and that the selection of a subset of them can be done taking into 
account the kind of application for which the vision system is designed. For a general 
mobile robot vision system it is expected that the image characterization be invariant 
to lighting conditions, rotations, translations, and image distortions such as blur. 
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Fig. 1. Block diagram of the proposed general vision system for a mobile robot with a mobile 
camera. 

2.3 Situation Determination 

This stage intends to determine the situation in which the observer is involved. We 
propose that, for solving this task, it is necessary to consider several consecutive 
images, in an incremental process. This is inspired in the hypothesis that human visual 
system needs a short-term memory to adequately interpret images [11]. What we call 
as a situation goes from the kind of environment the robot is immersed in (natural, 
artificial), passing through the determination of the specific place where the robot is 
(inside room X, inside building Y), to the specific task that the robot is carrying out 
(crossing the street, raising the stairs, in a soccer game, etc.). A situation is not 
expected to change suddenly. Instead, one expects to have transition probabilities 
between situations given the observations and the observer odometry. We think that 
the situation state can be modeled as a Markov process, where, for each known 
situation, there is a transition probability to other situation. The transition probabilities 
are conditioned on the last coherent observations (HL-tracking module), and the 
current image holistic characterization. 
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2.4 H-L Tracking 

The high-level (H-L) tracking stage is intended to maintain information about the 
objects detected in the past, although they are currently not observed (for instance, in 
any moment you have an estimation of the relative position of the objects that are 
behind you). This tracking stage is basically a state estimator for each object of 
interest, where the state to be estimated, for fixed objects, is the relative pose i

kx  of 
the object with respect to the robot. For mobile objects, the relative velocity i

kv  may 
be added to the state vector. Every time the robot moves, a new state is predicted for 
each object been tracked. On the other hand, every time an object is detected, its state 
estimation i

kx  and covariance i
k

Σ
x

 are corrected based in the new observation. This 

module can be implemented using standard state estimation algorithms as Kalman or 
Particle Filters. 

2.5 Context Filter 

In this module context information is employed for filtering candidate objects. All 
candidate objects must be coherent between them, and also they must be coherent 
with the current situation, and the holistic image characterization. Moreover, 
candidate objects must be coherent with their past detections (detected objects in the 
previous time step), and their current pose estimation. Thus, the context of a candidate 
object consists of all the information obtained from the current and past images, 
excepting the information obtained from the candidate itself.  

2.5.1 Objects Coherence 

Let i
kK  be the vector of N candidates from the image at time k, excepting i

kc , kD  the 
vector of N detections obtained by applying the context coherence filter to the 
elements of kC , kH  the vector of high-level objects poses estimations, ak the current 
image holistic characterization, and sk the current situation. Then, the context vector 

i
k  of i

kc  is defined as:  

( )1 1, , , ,
Ti i T T T

k k k k k ka s− −= K D H  (2) 

Every element i
k j

⎡ ⎤⎣ ⎦  of the context vector has an associated weight ,
i
k jω  that 

corresponds to the probability of i
k j

⎡ ⎤⎣ ⎦ . The context weight vector is defined as: 

( ) ( )( ) ( ),
1 1 ,1 ,, , , , ,...,

T Ti iT T T i i
k k k k k k k k Lp a p s ω ω− −= =C D HΩ Ω Ω Ω  (3) 

with 3 1L N= + , and 
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( ), 1 1 1,.., , ,..,
Ti i i N

k k k k kα α α α− +=CΩ ; ( )1
1 1 1,..,

TN
k k kp p− − −=DΩ ; ( )1

1 1 1,..,
TN

k k kβ β− − −=HΩ  (4) 

Here, i
kα , i

kp  and i
kβ  are respectively the a priori probability of the candidate i

kc , 
the a posteriori probability of the detection i

kd , and the accumulated probability of the 
tracked object i

kh . Then, we define the coherence of i
kc  as: 

( )
( ) ( )

( )
( ) ,

1 1

,
1 1

| |
|

L L
i i i i i i
k k k k k k jj j j

j ji i i
k k k L L

i i
k k jj

j j

p c p p c
q p c

p

ω

ω

= =

= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

⎡ ⎤⎣ ⎦

∑ ∑

∑ ∑
 

(5)  

The a posteriori probability of i
kc  is then defined as: 

( ) ,
1

,
1

|
L

i i i
k k k jj

ji i i i
k k k k L

i
k j

j

p c
p q

ω
α α

ω

=

=

⎡ ⎤⎣ ⎦
= =

∑

∑
 

(6)  

We shall then calculate the probabilities ( )|i i
k k j

p c ⎡ ⎤⎣ ⎦ .  

2.5.2 Relationships between Physical Objects 

There are four kind of relationships that can be checked between physical objects. 
The first two must be checked between candidates belonging to the same image, or at 
most between candidates of very close images, when the camera’s pose change is 
bounded. The last two may be checked between candidates or objects of different 
images, considering the camera’s pose change between images. 

Horizontal Position Alignment. As we said before, most of the objects in the real 
world are supported on ground. This, plus the knowledge of the height of the object, 
gives us information about a region of the object that is likely to be at the same 
altitude as the camera. For each candidate i

kc , we will call the center of this region, 
i
ky , the horizontal point of the candidate, and its tolerance will be noted i

k
σ

y
. 

Horizontal points of correct candidates are supposed to be part of a line, the visual 
horizon. 

Horizon Orientation Alignment. Another quality of several objects is their 
almost fixed orientation with respect to a vertical axis. Using this quality, it is 
possible to find a horizon angle that is coherent with the orientation of the object in 
the image. For each candidate i

kc , we will call this angle, i
kη , the horizontal angle of 

the candidate, and its tolerance will be noted i
kη

σ . Horizontal angles of correct 

candidates must have similar values, and furthermore, they are expected to be similar 
to the angle of the visual horizontal obtained from the horizontal points. 
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Relative Position or Distance Limits. In some specific situations, objects are part 
of a fixed layout. The robot may know this layout a priori from two different sources: 
been previously taught about it, or learning it from observations, as in SLAM. In both 
cases, the robot can check if the relative position between two objects, or at least their 
distances (when objects has radial symmetry), is maintained. 

Speed and Acceleration Limits. Even between mobile objects, it is possible to 
check their relative speed and acceleration limits. Of course, it is necessary to have a 
previous knowledge of those limits related with the objects identity. 

2.5.3 High Level Tracked Objects Maintenance 

When an object is detected and it is not been tracked, the HL-Tracking module creates 
a new state estimator for it, and initializes it whit all the values coming from the 
detection process. In particular, the coherence is initialized with the coherence 
obtained by the candidate that generated the detection. However, as the robot moves, 
odometry errors accumulate and high-level estimations become unreliable. If a set of 
high-level estimations is self-coherent, but moves too far from real poses of tracked 
objects, then all the new observations may become incoherent and be rejected. To 
avoid this kind of situations, high-level estimations are also evaluated in the 
coherence filter. In order to inhibit the self-confirmation of an obsolete set of 
estimations, the coherence i

kr  is only checked with respect to the current observations, 
but it is smoothed to avoid a single outlier observation discarding all the objects been 
tracked. Thus, the coherence of a tracked object is updated using: 

( )
( )

1
1

1

|
1

N
i j j
k k k

ji i
k k N

j
k

j

p h c
r r

α
λ λ

α

=
−

=

= + −
∑

∑
 

(7)  

where λ is a smoothing factor. As the coherence is recalculated, the a posteriori score 
shall be also recalculated according to i i i

k k krβ α= . The a priori score is kept in the 
same value obtained from the object’s last perception. 

2.6 Encoders Horizon, Visual Horizon, Filtered Horizon and Objects Final 
Characterization 

In the Encoders Horizon module, the horizon line in each image is estimated using the 
information from the neck encoders, and an estimation of the body inclination 
obtained from either encoders or accelerometers. However, depending on the robot 
architecture, both measurements used to calculate the encoders’ horizon are noisy and 
can yield a very poor estimate of the horizon line. This affects the characterization of 
some objects, for example, when measuring the distance to certain pixel which is 
known to be at the ground, using its elevation angle. To solve this problem, we have 
implemented a Visual Horizon module. In this module, information from detected 
objects is used to calculate a consensual horizon. The horizon line can be defined with 
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two parameters: its distance to the image center and its angle with respect to the rows 
direction of the image. 

Even when no visual object is detected, the previously computed horizon and the 
changes of neck-encoders’ measurements are used to predict a final horizon in the 
Filtered Horizon module. Afterwards, in the Objects Final Characterization module 
objects relative poses are recalculated using the filtered horizon. 

3 Detection of Static Objects in the RoboCup 4L League  

We apply the proposed vision system in the RoboCup Four Legged League 
environment (see description in [14]). In a Four Legged League soccer field, there are 
many objects that have spatial relationships between them, and defined temporal 
behaviors. These objects are goals, beacons, a ball, robots, and field lines. Some of 
the objects are static and others are moving. Goals, beacons and field lines detection 
is essential for the robot self-localization in the field, while ball and robots detection 
is necessary for correctly playing soccer. Static objects in the field (beacons, goals 
and field lines) are part of a fixed and previously known 3D layout. Thus, it is 
possible to use several of the proposed relationships between objects to calculate a 
candidate’s coherence. For this reasons we choose as a first application of our vision 
system, the detection of static objects in the RoboCup Four Legged League domain. 

Beacons have a radial symmetry. Detecting goals rotation with respect to the 
camera is difficult because occlusions may change the ratio between the goal’s height 
and width. For that reason it is not possible to determine the relative position of one of 
these objects relative to other. Nevertheless we are able to use distances between them 
and laterality. Laterality information comes from the fact that the robot is always 
moving in an area that is surrounded by the fixed objects. For that reason, it is always 
possible to determine, for any pair of candidates, which of them should be to the right 
of the other. Then, depending on the kind of information that i

k j
⎡ ⎤⎣ ⎦  represents, 

( )|i i
k k j

p c ⎡ ⎤⎣ ⎦  is calculated as: 

( ) ( ) ( ) ( )| | | |i j i j i j i j
k k Hor k k Lat k k Dist k kp c c p c c p c c p c c=  (8)  

( ) ( ) ( ) ( )1 1 1 1| | | |i j i j i j i j
k k Hor k k Lat k k Dist k kp c d p c d p c d p c d− − − −=  (9) 

( ) ( ) ( )1 1 1| | |i j i j i j
k k Lat k k Dist k kp c h p c h p c h− − −=  (10) 

( ) ( )| , |i i i
k k k k kp c a p aη= y  (11)  

We have not yet implemented the use of sk, as our vision system has been tested in 
one single application.  

The horizontal coherence between two candidates is approximated using a 
triangular function: 
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( ) ( ) ( ), ,
, ,| , ,i j j i

k k

i j i j j i
Hor k k k kp c c tri tri

η η
η σ η σ

Δ Δ
= Δ Δ  (12) 

( ) 1
,

0

x x
tri x

otherwise

σ
σ σ

Δ⎧ − Δ <⎪Δ = ⎨
⎪⎩

 
(13) 

with 
, ,i j i i j

k k kη η ηΔ = −  ; ( ), ,i j j i i j
k k k kη η= = −y y  (14) 

and 

, ,
1tan

i j
k k

i j j i i j
kk k k i j

k k
ηη η η

σ σ
σ σ σ σ −

Δ Δ

+⎛ ⎞
⎜ ⎟= = + +
⎜ ⎟−⎝ ⎠

y y

y y
 

(15) 

Similarly, the calculation of ( )|i j
Hor k kp c d  is totally analogous with only two 

differences: j
ky  and j

kη  are modified using the encoders information, and the 
tolerances j

kη
σ  and j

k
σ

y
 are increased to meet the uncertainty generated by the 

possible camera and robot movements. The lateral coherences, ( )|i j
Lat k kp c c , 

( )|i j
Lat k kp c d  and ( )|i j

Lat k kp c h , are defined as binary functions, which are equal to 1 

if the lateral relation between i
kc  and j

kc , j
kd  or j

kh , is the expected one, and 0 
otherwise. The distance coherence, pDist, is also approximated using a triangular 
function: 

( ) ( ),
,| , i j

k

i j i j
Dist k k k x

p c c tri σ
Δ

= Δx  (16) 

with ,i j i j
k k kΔ = −x x x , and i

kx , j
kx  been the relative detected positions of i

kc  and  j
kc  

respectively. The calculation of ( )|i j
Dist k kp c d  and ( )|i j

Dist k kp c h  is analogous. The 

tolerance ,i j
kx

σ
Δ

 is calculated as a function of the covariance matrices  i
k

Σ
x

 and j
k

Σ
x

. 

The global measure of the image we selected for this application is similar to that 
of Color Shapes [15], with the difference that we make histograms of color classes, 
after a color segmentation stage. We divided the image in cells of 16x16 pixels. The 
probability ( ), |i i

k k kp aηy  is approximated by: 

( ) ( ) ( )inf, sup,, |i i i i
k k k k kp a p a p aη =y  (17) 

where inf,
i

ka  and sup,
i

ka  are respectively the inferior and superior histograms of the 
image. The superior (inferior) histogram counts all bins of cells being over (below) 
the horizon line. The probabilities ( )inf,

i
kp a  and ( )sup,

i
kp a  are associated to the 
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likelihoods of inf,
i

ka  and sup,
i

ka  been obtained from the corresponding regions of the 
image: 

( ) ( )
( ) ( )

inf, inf inf
inf,

inf, inf inf inf,

, ,
1

, , , ,

i
ki

k i i
k k

innov a a
p a

innov a a innov a a
= −

+

A

A A
 

(18) 

( ) ( )
( ) ( )

sup, sup sup
sup,

sup, sup sup sup,

, ,
1

, , , ,

i
ki

k i i
k k

innov a a
p a

innov a a innov a a
= −

+

A

A A
 

(19) 

with ( ) ( ) ( ), , Tinnov = − −z z Z z z Z z z . 

This has the implicit assumption that inf,
i

ka  and sup,
i

ka  has different PDF’s, which in 
our application is valid (for example, it is more likely to find green below the 
horizon). The parameters sup sup inf inf, , , , ,a a aA A A  correspond to the means and 
covariances over and below the horizon and of the whole image. They are obtained 
from a training set of approximately 200 images captured from different positions in 
the field. ( )kp a  is assumed to be Gaussian with mean a  and covariance A . 

4 Experimental Results 

We have tested our vision system using real video sequences obtained by an AIBO 
Robot inside a RoboCup four legged soccer field. The detection rates were measured 
in different situations having different quantities of false objects. False objects are 
objects that resemble to the actual ones, and that the color-based vision system is not 
able to correctly distinguish. For example, a spectator wearing a yellow shirt is a false 
yellow goal. Even objects having the same appearance but put in a different place are 
false objects. For example, a yellow goal of a neighbor field is a false yellow goal. 

For illustrating the operation of the system, Fig. 2 shows some example images 
where context becomes relevant to discriminate between false and true objects. Fig. 2 
shows two examples of a posteriori probabilities obtained by different false and true 
objects. Fig 2.a. contains a false beacon (p = 0.10), a false goal (p = 0.01), a true 
beacon (p = 0.38) and a true goal (p = 0.48). Fig 2.b. contains three beacons of which 
two are true (p = 0.43, 0.58) and one is false (p = 0.00). Even when the shown false 
objects are not a priori differentiable (they are all true objects placed in wrong places), 
and thus, a priori probabilities are the same for all objects (p = 1.00), context is 
helpful to differentiate a posteriori probabilities of true and false objects. 
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(a) (b) 

Fig. 2. Some examples of a posteriori probabilities for true and false objects. 

With the purpose of evaluating the performance of the system, the different ROC 
curves in Fig. 3 compare the use of the different scores of the object to detect it; a 
priori (with no use of context), a posteriori (using of all the context information), and 
partial scores obtained from the consideration of one single type of context: current 
(objects detected in the current image), HL-Tracking, last (objects detected in the last 
image), and global (global measurements). In the situation of Fig 3.a, false objects 
present were “natural” objects, like the cyan blinds and some other objects of our 
laboratory, these objects appear in approximately 20% of the frames. In Fig 3.b, two 
more aggressive objects were added: two false goals over the ground plane and in the 
border of the field. In Fig 3.c, two additional false objects were added (over those of 
Fig 3.b): two false beacons over the ground plane, in the border of the field. 

These noisy situations may appear as artificially overexposed to false objects, but 
they are neither very different to the actual situations observed in RoboCup games 
with several spectators in the border of the field nor more noisy than real 
environments situations. Note how the a priori and a posteriori ROC curves evolve as 
the quantity of noise is increased. When facing situations with a low quantity of false 
objects, the use of context appears as no improving the performance of the system 
(Fig 3.a). However, as the quantity of false objects grows, the use of context increases 
noticeably the detection rate for a given false negative rate (Fig 3.b, 3.c). 

The results presented correspond to sequences obtained with the robot camera 
moving, and the robot either standing or moving. 

5 Conclusions 

We have presented a general context based vision system for a mobile robot having a 
mobile camera. The use of spatiotemporal context is intended to make the vision 
system robust to noise and high performing in the task of object detection.  
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Fig. 3. ROC Curves with low (a), medium (b) and high (c) quantity of noise. 

We have first applied our vision system to detect static objects in the RoboCup 
Four Legged League domain, and preliminary experimental results are presented. 

Experimental results confirm that the use of spatiotemporal context is of great help 
to improve the performance obtained when facing the task of object detection in a 
noisy environment. We are working in obtaining more experimental results to provide 
a better characterization of the system. The existing results encourage us to continue 
developing our system and to test it in other applications, where different physical 
objects and lighting conditions may exist and thus a situation determination stage and 
different perceptors and global measures should be considered. 
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