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Abstract: Automated snake-based combined technique for segmenting cytological images is proposed. The main fea-
tures of the technique are: implementation of the wave propagation model and modified Gaussian filter 
based on the heat equation with heat source, availability of coarse and precise levels of contour approxima-
tion, automated snake initiation. The technique is successfully implemented for segmenting cytological 
specimen images.  

1 INTRODUCTION 

One of the problems arising in the field of automated 
diagnostics of hematological diseases is the segmen-
tation of nuclei in the cytological specimen images 
for subsequent calculation of diagnostic features. It 
is necessary to obtain such a closed curve in the 
specimen image that follows the boundary of select-
ed nucleus with an adequate accuracy. 

Haralick and Shapiro (Haralick and Shapiro, 
1985) established the following requirements to im-
ages leading to successful segmentation: homogene-
ousness of regions in image with respect to some 
characteristics; topological simplicity, significant 
difference of characteristics of adjacent regions; 
simplicity, smoothness, and spatial accuracy of re-
gion boundaries. 

An image of a lymphoid tissue stained by Ro-
manovski-Giemsa technique is a color image (24 
bpp) taken by a camera mounted on Leica DMRB 
microscope using PlanApo 100/1.3 objective. The 
equivalent size of a pixel was 0,0036 µ2. Cytological 
specimen images have the following specific fea-
tures plaguing the solution. Firstly, because of poor 
dye quality the boundary between cytoplasm and a 
cell nucleus may be indistinctive. Secondly, cells 
may be located closely to each other, in part may be 
overlapped. Thirdly, adjacent nuclei may have more 
strong boundaries, than selected nucleus. Fourthly, 
strong edges reflecting chromatin structure inside 
the nucleus appear. 

Due to the features listed above any single tech-
nique failes to solve the segmentation task properly 

(Bengtsson, 2004). Currently the researches more 
often turn their attention to combined techniqes. 

A combined technique for automated segmenting 
of cell nuclei in cytological specimen images is pro-
posed. The solution of segmentation problem is ob-
tained by combining two level active contour model 
and thresholding procedure with automatically esti-
mating thresold value from image histogram in CIE 
Lab colour space. 

Two level active contour model (or snake) is 
formed using nonlinear model of a dynamic system 
in terms of state-space. A snake can be initiated in 
automated and manual modes. Taking into account 
the properties of the stain, segmentation at a coarse 
level is operating using blue colour component in 
RGB space. Correction at precise level of segmenta-
tion is made using the green component. To elimi-
nate the influence of the neighboring nuclei bounda-
ries the modified Gaussian filter based on the heat 
equation with a heat source is used. In order to in-
crease the capture range of the snake the wave 
propagation model is implemented. 

2 METHODS FOR SEGMENTING 
SPECIMEN IMAGES  

One of the popular segmentation techniques in cy-
tology is thresholding with automatically estimated 
threshold value (Borst, 1979). The technique is com-
putationally simple but it is effective only in case 
when objects and background differ in colour or 
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gray level. In more complicated cases the segmenta-
tion consists in extraction of features per pixel and 
their classification into different classes of sub-
regions. But in many cases the segmentation should 
be controlled and the result should be corrected in-
teractively. 

Using the simple techniques, one may run into 
problems if the nuclei are clustered, the image back-
ground is inhomogeneous, and there are intensity 
variations within the nuclei. By combining the 
methods some of these problems can be solved. For 
segmentation of cell nuclei in histological tissue 
images, the method based on watersheds and dis-
tance transform (Malpica, 1997) was proposed. In 
(Bengtsson, 2004), a method for segmentation of cell 
nuclei in tissue images by combining seeded water-
sheds with gradient and shape information was pre-
sented. The main disadvantage of these methods is 
that one should have a tool for correcting the results 
manually in complicated cases. In (Comaniciu, 
2001) an approach based on nonparametric clusteri-
zation using gradient ascent mean shift procedure is 
presented. The algorithm outlines clusters in Luv 
space and marking their boundaries. But for obtain-
ing the suitable result the manual merging of clusters 
is needed. In (Colantonio, 2006) a pixel-by-pixel 
nural network classification procedure is presented. 
The network is trained using clustering algorithm. 
The procedure is efficient but a special tool for cor-
recting the results manually in difficult cases is 
needed. 

For segmentation of cell nuclei in histological 
and cytological images, active contour models (pa-
rametric and geometric), or snakes, were used in 
(Klemencic, 1998, Ortiz de Solorzano, 2001, Ley-
marie, 1990). Snakes provide the smooth contour 
without gaps at the object boundary. Snakes were 
firstly proposed in (Kass, 1987). The main idea of 
parametric active contours is the following. Paramet-
ric active contour is defined as a curve 

[ ] [ ]( ) ( ), ( ) , 0,1s x s y s sν = ∈  (here, s is a parameter), 
that moves through the spatial domain of an image 
minimizing the energy functional: 
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where ( )sν ′  and ( )sν ′′  (the first and the second 
derivatives of ( )sν  with respect to s) characterize 
the energy of internal forces, α and β are weighting 
parameters that controls snake’s tension and rigidity, 

extE  – the energy of the external force. The external 
force pulls the snake toward the object boundaries. 

The functional (1) achieves its minimum at the 
boundaries of the object. A gray-level image ( , )I x y  
is considered as a function of spatial coordinate 
variables (x, y). extE  is defined as: 

[ ] 2( , ) ( , ) ( , )extE x y G x y I x yσ= − ∇ ∗  (2) 
where ( , )G x yσ  denotes the a Gaussian kernel with 
standard deviation σ, ∇ denotes the gradient opera-
tor, * denotes the convolution. As σ increases, the 
blurring appears and the capture range of the active 
contour increases. The curve that minimizes (1, 2) 
must satisfy the Euler equation. A numerical solu-
tion of the equation can be found using an iterative 
procedure which is finished when the balance of 
forces is achieved. The main disadvantage of the 
method is the limited capture range. The effective 
solution of this problem is the Gradient Vector Flow 
(GVF) method, proposed in (Xu, 1998). Within this 
framework, a new external force which is the solu-
tion of the generalized diffusion equation is used. 
This force minimizes the new energy functional that 
includes the term compensating the lack of force 
farther away from the object boundaries. Such a 
model increases the capture range and provides con-
vergence to boundary concavities, but it is computa-
tionally expensive. Geometric active contours 
(Caselles, 1993) are based on the curve evolution 
theory and level set method. This model is less com-
putationally expensive than parametric model and 
makes it possible to segment more than one object in 
the image. The model provides good results for im-
ages with high contrast. When the object boundary 
has gaps, the contour leaks through the boundary. A 
modified model, based on the relation between ac-
tive contours and the computation of geodesics in a 
Riemannian space (Sapiro, 2001), eliminates leaking 
at some extent. In (Yang, 2005) authors proposed a 
combined snake-based approach to segmentation of 
tissue images using colour gradients in Luv space. 
For snake initializing a classifier is used. Classifier 
is trained using sample images selected by experts. 

Thus, one may conclude that: (a) the task of de-
velopment fully automated segmentation technique 
is actual; (b) only combined techniques can provide 
the suitable result; (c) snakes are efficient for seg-
menting cell nuclei images and can be used in auto-
mated tools (d) snakes also provide within the same 
framework an instrument for manual segmentation 
in difficult cases. In the next sections the problems 
concerned with the development of automated com-
bined snake-based technique are considered. 
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3 ACTIVE CONTOUR MODEL 

For developing a segmentation technique it is neces-
sary to have a model of the object boundary.  

3.1 Boundary Model 

In literature an object boundary is defined as an ar-
rangement of local edges. Local edges are defined as 
discontinuities in image luminance from one level to 
another (Pratt, 2001). Various types of edge models 
are known (Rohr, 2001). In (Belyaev, 1998, Eberly, 
1994) edges are defind in terms of surface theory as 
a ridge of the surface produced by the function of 
the gray-level gradient module computed from the 
image. In (Eberly, 1994) definitions of ridges are 
given in terms of extremal intencity values, in terms 
of principal curvature extremal values, and in terms 
of level surface. In this work the following definition 
of ridges is used (Eberly, 1994). 

Let function ( ) : nh x R R→  is of the class C2. 
Definition. Define ( )W H h= − , where H(h) is 

Hessian matrix, and let iλ  and iv , 1 i n≤ ≤  be its 
eigenvalues and eigenvectors. Assume that 

1 ... nλ λ≥ ≥  and 1 d n≤ ≤ . A point x is a ridge point 
of type n-d if ( ) 0d xλ >  and x is a generalized maxi-
mum point of type n-d for h with respect to 

1[ , ..., ]dV v v= . 
The function ( )h x has a generalized maximum of 

type n-d at x if ( ) 0TV h x∇ =  and ( ( ))TV H h x V  is 
negative definite (Eberly, 1994). 

Since 2 2
1( ) { | | , ..., | | }T

i d dV H h V diag v vλ λ=  and 
the eigenvalues are ordered, the test for the ridge 
point reduces to ( ) 0TV h x∇ =  and 0dλ > . 

Let the gray image be described by the function 
u(x)∈C3, u(x):R2→R+, x=(x,y)T. The coordinate 
frame Oxyz is introduced; the plane Oxy is coinci-
dent with the image plain, and z=u(x,y). Let us con-
sider the function h(x):R2→R+, 

2 2( ) ( ) x yh u u u= ∇ = +x x ,  (3) 

where x
u
x

u ∂
=
∂

, y
u
y

u ∂
=
∂

. In this case the ridge of 

the surface h(x,y) will be a connected set of general-
ized maximum points of type 1 on the surface h(x,y), 
vector v will be aligned with the surface principal 
direction orthogonal to the ridge direction at this 
point. For 2D images the following property follows 
from the ridge definition (from the condition of 1-
maximum). 

Property. At the ridge point of the surface h(x,y) 
at least one principal direction is parallel to the co-
ordinate plane Oxy. 

We consider an object in the image as a con-
nected set of points in some closed region 2X R⊂ . 

We consider an edge in the image u=u(x,y) as a 
projection of ( , )z h x y=  ridge onto Oxy plane. 

We consider the boundary of an object in the im-
age as a simple closed curve which includes the 
edges separating the inner object regions from the 
surrounding regions. 

In the next section using the definitions and no-
tions given here, an active contour model will be 
developed. 

3.2 Active Contour Model 

As the digital image includes a finite number of pix-
els, it is valid to present an active contour as a set of 
n dynamic pointwise objects: 

0( ) ( ( )), (0)x t f x t x x= = ,  (4) 
where x=(x,y)T is the vector of spatial coordinates, t 
is time. Function f(x(t))∈C2 in the neighborhood of 
the edge points xe should force the system (4) to 
move towards xe and should provide stability with 
respect to xe. As soon as we consider a set of points 
modelling a continuous curve it is reasonable to say 
about stability only along the normal to the contour 
(or along the normal to the intensity edge). 

Let us consider the function h(x,y) (3). The func-
tion z=h(x,y) defines the surface 2 3V R⊂ . Further 
on, we shall analyze the properties of the surface 
z=h(x,y) in the neighborhood of points located at the 
intensity edge. 
Statement. If the function in the right-hand part of 
the system (4) is constructed as ( , )T

x yf h h= , the 
system (4) will be stable in the neighborhood of in-
tensity edge in the sense of the first Lyapunov 
method (Lee and Markus, 1971): 

[ ]( ) 0, Re ( ) 0x ee x xf x f xλ == < , (5) 
where ( )x ex xf x = is a matrix of the linear approxi-
mation of the system (4) at x=xe.  
Proof. The linear approximation of the system (4) in 
the neighborhood of the edge point is described by 
the equation: 

.

.

xx xy

xy yy

h hx x
h h yy

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

. (6) 

Here the system matrix is Hessian matrix. Let 
O`x`y`z` be a coordinate frame with the origin at the 
h(x,y) ridge point P which is projected to the edge 
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point xe in the Oxy plane, the axis z` is aligned with 
the surface normal, the axes O`x` and O`y` are 
aligned with the principal directions (it is assumed, 
that the couple of quadratic forms has different ei-
genvalues). We place the origin of the frame Oxyz in 
P.  Let axis Ox align with the principal direction 
orthogonal to the ridge direction. The local surface 
structure in the neighborhood of 2P V∈  is deter-
mined by its Gaussian curvature 

2 2 2 2
1 2 ' ' ' ' ' ' ' '( ) ( ) /(1 )x x y y x y x yK P h h h h hλ λ= = − + + ,  

where 1 2,λ λ  are the eigenvalues of matrix 1I II− , I 
and II are matrices of the first and the second fun-
damental quadratic forms. Gaussian curvature sign is 
the same as one of Hessian matrix determinant. 

The following cases are considered. 
1. O`x`y` plane is tangent to ( , )h x y  surface and 
coinsides with Oxy. In this case ' 0xh =  and ' 0yh = , 

' ' ' ' 0x y y xh h= = . If P is the local maximum, then 

1 0λ < , 2 0λ < . The system (6) splits into two inde-
pendent equations. In this case, the system matrix is 
the Hessian matrix, and its eigenvalues are equal to 
the principal curvatures 1 2,λ λ  of ( , )h x y  at the 
point P. Hence, the system is stable according to the 
first Lyapunov method. 
2. O`x`y` plane is tangent to ( , )h x y  surface and 
coinsides with Oxy plane, ' ' ' ' 0x y y xh h= = , 1 ' 'x xhλ = , 

2 ' 'y yhλ = . The O`x`y` plane is tangent to the surface 
and parallel to the Oxy plane. In this case ' 0xh =  
and ' 0yh = . Let us assume 1 0λ < , 2 0λ =  (or 1 0λ = , 

2 0λ < ). Then the system will be stable in the sense 
of the first Lyapunov method along the Ox axis and 
neutral along the Oy axis. So, an object (4) will 
move from some initial point (x0,y0) to a point (0,y0). 
3. O`x`y` plane is tangent to ( , )h x y  surface and 
coinsides with Oxy plane, ' 0x xh h= = , and 

' 0y yh h= = ; 1 0λ < , 2 0λ > , or vise versa. In this 
case, P is a saddle point, and the system is stable 
along one of the principal directions and tends to the 
closest local maximum along another one. So, at the 
steady state the pointwise objects move permanently 
along the curvature lines from the ( , )h x y  saddle 
points towards the nearest local maxima or parabolic 
points. Hence, the snake is stable with respect to the 
intensity edge. 
4. O`x`y` plane is tangent to ( , )h x y  surface but 
does not coinside with Oxy (see Figure 1). Accord-
ing to the property of ridge points, at least one of the 
prncipal directions is parallel to image plane. Let 

axis O`x` be in Oxy plane. Axis O`x coinsides with 
Ox` and Oy axis directed along the projection of 
O`y` axis onto Oxy plane. In O`x`y`z` frame the sur-
face will be described by a function 

' ( ', ')z x yϕ= . (7) 
We shall find out how the Hessian matrix and its 
eigenvalues will change in Oxyz frame. Coordinates 
x`, y`, z` are transformed to coordinates x, y, z ac-
cording to the following expression: 

2 2

1 0 0 '

0 cos sin ,

0 sin cos

'
'

x x

y

z

y
z

π π
θθ θ

θ θ

< <= −

−

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

.  

Taking into account that ' 0xϕ =  and ' 0yϕ =  it is 
shown that the elemets of the Hessian matrix will be 
as follows: 

2
' '

2 cos
x xz

x
ϕ

θ
∂

=
∂

, 
2

0
z

x y
∂

=
∂ ∂

, 
2

' '

2 3cos
y yz

y

ϕ

θ
∂

=
∂

. (8) 

 

 
Figure 1: The surface z=h(x,y) and coordinate frames. 

From (8) follows that theHessian is the diagonal 
matrix and the signs of the eigenvalues depend on 
cosθ sign. The expressions (8) can be justified by 
comparing formulas for Gaussian and mean curva-
ture in both coordinate frames. Hence, as in cases 
described above, the linear approximation of the 
system (4) splits into two independent equations 
with respect to variables x and y. According to the 
conditions (5) the sysytem (4) will be stable with 
rspect to intensity edge. The statement is proofed. 

In practice, the function in the right-hand part of 
the system (4) may be composed of several compo-
nents. The main component f0 is formed as a 
smoothed image edge map:  

0 ( ) [ ( ) ( )]f x G x h xσ= ∇ ∗ ,  
where x=(x,y)T, G is the Gaussian kernel with stan-
dard deviation σ, ∇  is the gradient operator. The 
appearance of f0(x) for 1-D case and the stages of 
forming are shown in Figure 2 (a). Also, a smooth-
ing term of the form 1 1 max( ) / | |k f x f  (here 1( )f x  char-
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acterizing the curvature, fmax is the maximum value 
of f0(x)) is introduced in (4). Let ( )( ) ( ), ( ) TC s x s y s=  
be a parameterized representation of the contour at 
fixed instant of time t, here, s - is the Euclidian arc 
length. We define 1( )f x  by the expression: 

1( ) ( )ssf x C s= , 
2 2

2 2
,( )

T

ss
d x d y

ds ds
C s

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

.  

Thus, the equation describing the dynamics of the 
pointwise object will be as follows: 

( ) 0 max 1 1 max ( ) / | | ( ) / | |x t f x f k f x f= + , (9) 
Coefficient k1 is calculated from the stability condi-
tions of model (9). To eliminate discontinuities and 
redundant contour points during evolution, resam-
pling procedure is applied. For segmenting images 
with low contrast boundaries of the objects of inter-
est and high contrast boundaries of adjacent objects, 
the two-level algorithm is proposed. At the first 
level, the coarse approximation of the boundaries is 
obtained. At the second level, the contour evolution 
results in precise boundary approximation.The initial 
condition of model (9) at the first level is the given 
initial contour, for example, an elipse. Initial condi-
tion at the second level is the contour obtained at the 
first level. The accuracy of segmentation substan-
tially depends on nucleus edge map quality. At the 
first level, where the main goal of preprocessing is 
the obtaining of coarse nucleus edge map and sup-
pression of high contrast edges of adjacent nuclei, 
the blue component of the input image is used. At 
the second level, where contour evolution results in 
precise boundary approximation, the influence of 
adjacent nuclei is not crucial, but it is necessary to 
operate with more precise and strong nucleus edge 
map. In this case, color reduction is performed by 
subtracting the green component from the input im-
age. 

3.3 Expanding the Capture Range 

Within the developed technique, thresholding and 
subsequent Gaussian blurring are applied to the 
function h(x,y) in order to strengthen and to level off 
the edge map. The standard deviation σ determines 
the capture range of the model (4). At large σ, the 
boundaries of the objects in the analyzed image dis-
appear and the adjacent objects merge. The pre-
sented model accurately segments the objects of 
simple shapes with smooth boundaries. But it fails to 
segment the images with boundary concavities. Xu 
and Prince (Xu and Prince, 1998) proposed the GVF 
model that uses the vector field to force the snake to 
move. The vector field is computed from the image 

as the steady-state solution of a pair of linear partial 
differential equations. The GVF model provides the 
ability to move the snake into boundary concavities 
but it is computationally expensive. In this paper, in 
order to expand the capture range of the model (4), 
the model of wave propagation is used. The main 
idea is to spread the large values of the function in 
the right-hand part of (4) (see Figure 2 (b)). 
 

 
(a) 

 
(b) 

Figure 2: Constructing active contour model: (a) forming 
component f0(x) for 1-D case, top – object boundary, mid-
dle – smoothed edge map, bottom – function f0(x); (b) 
expanding the capture range of the active contour model. 

Unlike the GVF model, there is no need to obtain 
the steady-state solution of differential equations. 
For this model, the Cauchy problem for the hyper-
bolic partial differential equation is solved with the 
initial conditions w= ( , )G h x yσ , wt=0: 

2

2 2 2 2
0

( , , ) ( , , ),

( ) ( , ), / / ,
ttw x y t a w x y t

w t G h x y x yσ

= Δ

= Δ = ∂ ∂ + ∂ ∂
 (10) 

where Gσ  is the Gaussian kernel with standard de-
viation σ. Equation (10) describes the wave propa-
gation process generated by the smoothed edge map. 
When solving equation (10) at each instant of time t 
at a point (x,y) the values of ,x yw w  are calculated, 
and maximal absolute values at the wave front are 
stored. The sign of the stored value is the same as 
the sign of the first nonzero value of ,x yw w  calcu-
lated at this point. Thus, the maximal gradient values 
of the function ( , )G h x yσ  propagate inside and out-
side the object boundary in natural way. The size of 
this region is defined by the value of at. In result, the 
vector field that forms the right hand part of model 
(4) is obtained. In Figure 3 (a)-(e) an example of 
segmenting of an object with non-convex boundary 
is shown: (a) – initial contour approximation, (b) – 
smoothed edge map, (c) and (d) - ,x yw w , (e) – re-
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sulting contour, bright regions correspond to positive 
values, dark ones – to non-positive values. The 
frame origin is at the top left corner of the image. In 
Figure 3 (f)-(k) the results of cell nucleus segmenta-
tion are shown: (f) – the initial contour approxima-
tion; (g) – coarse approximation; (h) – precise ap-
proximation, (i) – blurred edge map ( , )G h x yσ ; (j), 
(k) – ,x yw w  at the second level. 

 
(a) 

 
(b) 

 
(c) 

 
(d) (e) 

(f) 
 

(g) (h) 

(i) 
 

(j) (k) 

Figure 3: Image segmentation process: (a) – (e) – artificial 
image, (f) - (k) – cytological image. 

3.4 Modified Gaussian Filter 

For the successful operating of the active contour 
model two problems should be solved. Firstly, 
strong edges at the boundaries of the segmented nu-
cleus should be obtained. Secondly, strong edges at 
the boundaries of the adjacent nuclei should be sup-
pressed. For constructing function f0(x) in the right-
hand part of the active contour model (9) Gaussian 
blur is used for image smoothing before obtaining 
the edge map h(x) and then for blurring h(x). 

For suppressing strong edges at the boundaries of 
adjacent nucleus the modified Gaussian filter was 
applied. The Gaussian kernel used in a standard 
Gaussian filter is the fundamental solution of a heat 
equation (Koederink, J., 1984). The modified filter is 
constructed on the basis of a heat equation which 

features the development of two-dimensional non-
stationary process in the fixed environment with heat 
sources or sinks: 

( , , ),t xx yyu u u F x y t−= +  0 0( ) ,u t u=  
0 f

t t t≤ ≤ , (11) 
here, ( , , )u u x y t=  is the image under processing, 

,x y  - are the spatial coordinates, t is time, t0, tf  are 
initial and final moments. On the one hand, for im-
age smoothing before obtaining edge map, the func-
tion ( , , )F x y t  describing a source or sink of heat, 
should be designed so that the adjacent nuclei should 
not be smoothed and merge with one of interest. On 
the other hand, the function ( , , )F x y t  should not 
generate the strong edges in the image edge map. 
Thus, we may define this function as follows: 

0

0

, ( , ) int( );
( , , )

0, ( , ) int( ),
xx yyu u x y C

F x y t
x y C

+ ∉⎧⎪= ⎨
∈⎪⎩

 (12) 

where 0int( )C  denotes the set of points ( , )x y  inside 
the initial approximation of contour 0C .For blurring 
the edge map the function ( , , )F x y t  should be cre-
ated so that it should essentially reduce the intensity 
of the pixels outside the initial contour 0C . For ex-
ample, the function may be defined as follows: 

0( , , ) * C[ [ ( )]]BF x y t G FILL Cσ δ= , (13) 
for 0 ft t t≤ ≤ , where 0C  denotes the initial contour, 

Bδ  denotes the dilation operator with the structuring 
element B, FILL denotes the fillhole operator (Soille, 
2004), Gσ  is the Gaussian kernel with standard de-
viation σ, * denotes the convolution, and C  denotes 
the complementation operator. The size of structur-
ing element B is set equal to σ. The initial approxi-
mation of the contour in this case should be set out-
side of the selected nucleus. In Figure 5 the stages of 
constructing the function f0(x) in the right-hand part 
of model (9) using the modified Gaussian filter with 
different functions 0( , , )F x y t  are illustrated. In Fig-
ure 4 (a) the given fragment of the preparation image 
with the initial contour 0C  is shown. In Figure 4 (b) 

0( , , )F x y t  is shown. Figure 4 (c) the result of the 
initial image blurring with function 0( , , )F x y t  de-
fined by (12) is presented. In Figure 4 (d) one can 
see the edge map obtained from the image in Figure 
4 (c). In Figure 4 (e) the result of applying morpho-
logical opening and thresholding operations to the 
image in Figure 4 (d) is shown. In Figure 4 (f) the 
blurred image Figure 4 (e) is presented, here the 
function 0( , , )F x y t  is defined by expression (13). 
The scheme for the numerical solution of the equa-
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tion (11) is based on the scheme presented in (Lin-
deberg, 1994). 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4: The stages of constructing the function f0(x) 
using modified Gaussian filter: (a) the given fragment of 
the preparation image and initial contour 0C ; (b) the heat 

source function 0( , , )F x y t ; (c) blurred image (a), the 

function 0( , , )F x y t  is defined as (12); (d) the edge map 
obtained from image (c); (e) the result of applying mor-
phological opening and thresholding operations to image 
(d); (f) blurred image (e), the function 0( , , )F x y t  is de-
fined as (13). 

4 AUTOMATED SNAKE 
INITIALIZATION 

In cytological specimen image segmentation tasks a 
lot of objects appeared in the image (see Figure 5) 
should be segmented.  

 
Figure 5: Cytological specimen image. 

The manual snake initialization making segmenta-
tion task crucially time consuming. In (Yang, 2005) 
a classifier trained by example provided by experts 
is applied for obtaining rough approximation of ob-
jects used for initializing GVF snake. Taking into 
account instability of staining properties and condi-
tions of specimen image aquizition the experts 
should train the classifier regularly. 

 
Figure 6: Component a of the specimen image in the CIE 
Lab color space. 

In this work a simple automated initialization 
procedure based on the specimen staining properties 
is proposed. The procedure is based on the proper-
ties of specimens stained by Romanovsky-Giemza 
technique. Specimen image component a in the CIE 
Lab colour space (see Figure 6) has bimodal inten-
sity histogram (see Figure 7).  

 
Figure 7: Histogram of the image shown in Figure 6. 

Using thresholding operation with automatic es-
timated threshold value one can obtain a binary 
mask of the specimen image (see Figure 8). 

 
Figure 8: Binary mask of the image shown in Figure 7. 

Further on, the following operations should be ap-
plied to each of the objects taken one-by-one in the 
binary mask image to obtain the corresponding ini-
tial approximation of the contour. First, morphologi-
cal fillhole operation. Second, filtering by area 
value. Small objects are excluded. If the object area 
is large, an iterative procedure is applied to compo-
nent a image fragment in order to find the threshold 
value at which the binary object splits into parts. 
After that, filtering is applied to each part of the ini-

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

244



 

tial object. Third, the white top-hat operation is ap-
plied to obtain contour initial approximation. 

It is necessary to note, that at step 2 one may use 
distance transform operation to separate two touch-
ing objects instead of described iterative procedure. 
The iterative procedure is effective because of 
smoothness of intensity histogram.  

5 CONCLUSIONS 

The combined technique for automated segmenting 
of cell nuclei in cytological specimen images is pro-
posed. The solution of segmentation problem is ob-
tained by combining two level active contour model 
and thresholding procedure with automatically esti-
mating threshold value from image histogram in CIE 
Lab colour space. The main features of the technique 
are: implementation of the wave propagation model 
and modified Gaussian filter based on the heat equa-
tion with heat source, availability of coarse and pre-
cise levels of contour approximation, automated 
snake initiation. The technique is successfully im-
plemented for segmenting cytological specimen im-
ages. 
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