
A SIMPLE AND FAST HARDWARE-ACCELERATED
POINT-IN-POLYGON TEST

F. Mart́ınez, A. J. Rueda, F. R. Feito
Departamento de Inforḿatica, University of Jáen, Campus Las Lagunillas, Jaén, Spain

Keywords: Point-in-polygon test, hardware-accelerated algorithms.

Abstract: The new generations of GPUs bring us a set of new basic operations or tools that allow us to design new
solutions to traditional problems in Computer Graphics. In this paper we present two approaches for the point-
in-polygon problem based on the occlusion query extensions supported by modern GPUs. Both approaches
are fast and their execution times do not depend on the number of edges of the polygon. Besides, one of the
tests allows multiple point-in-polygon queries to be done in parallel with CPU computations.

1 INTRODUCTION

The 2D point-in-polygon test is a basic geometric
operation in Computer Graphics, GIS and other ar-
eas. We can roughly classify point-in-polygon ap-
proaches into two categories. In the first one the
algorithms work with the set of edges of the poly-
gon, neither preprocessing nor additional data struc-
ture are needed. An example of these methods is
the crossings test of Shimrat (Shimrat, 1962) as cor-
rected by Hacker (Hacker, 1962). In the second cat-
egory, a preprocessing of the polygon —normally
a decomposition— is done, and an alternative data
structure to the set of edges of the polygon is built.
This alternative data structure implies additional stor-
age requirements. However, the approaches into this
category are very fast. Examples of this kind of al-
gorithms are the grid method (Antonio, 1992) and the
triangle fan methods, as the Spackman test (Spack-
man, 1993).

Traditionally, point-in-polygon test algorithms
have been implemented in the CPU because it is a
relatively simple and efficient operation. However,
the new generation of GPUs allows us to design new
solutions to the point-in-polygon problem. In (Han-
rahan and Haeberli, 1990) graphics hardware is used
to support picking, an operation quite similar to the
point-in-polygon test.

The occlusion query mechanism of modern GPUs
is used in occlusion culling algorithms (Akenine-

Moller and Haines, 2002). These algorithms try to
avoid drawing objects that are hidden by other objects
in the scene. In this paper we show how this occlu-
sion query mechanism can also be used to develop
two original and efficient point-in-polygon tests. The
main advantages of the tests are: they are easy to un-
derstand and they have a straightforward implementa-
tion, they work with any kind of polygon, they are fast
and their execution times do not depend on the num-
ber of edges of the polygon. Besides, one of the tests
allows multiple point-in-polygon queries to be done
in parallel with CPU computations.

The remainder of the paper is structured as fol-
lows. Section 2 explains the picking algorithm
based on graphics hardware mentioned in this in-
troduction. Section 3 describes the first point-
in-polygon test, which is based on the OpenGL’s
HP occlusiontest extension. In Section 4 the sec-
ond point-in-polygon test, which is based on the
OpenGL’s NVocclusionquery extension, is de-
scribed. In Section 5 we compare our point-in-
polygon tests with other well known tests. Finally,
Section 6 brings conclusions.

2 GRAPHICS HARDWARE
BASED PICKING

In this section we describe a picking algorithm sup-
ported by graphics hardware developed by Hanrahan

161
Martínez F., J. Rueda A. and R. Feito F. (2007).
A SIMPLE AND FAST HARDWARE-ACCELERATED POINT-IN-POLYGON TEST.
In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - GM/R, pages 161-165
DOI: 10.5220/0002072501610165
Copyright c© SciTePress



and Haeberli (Hanrahan and Haeberli, 1990). At a
“preprocessing” stage a scene is rendered in an off-
screen buffer, with each polygon having a unique
color that will be used as an identifier. When the
user wants to pick an object clicks on a pixel, and the
object can be efficiently determined looking up the
pixel’s color identifier in the off-screen buffer.

Obviously, the same idea can be used to solve the
the point-in-polygon problem. The polygon can be
drawn with a colorc different from the background
color in an off-screen buffer in 2D. We can say that
point p falls inside the polygon if the color of its as-
sociated pixel in the off-screen buffer isc.

An OpenGL implementation of a point-in-
polygon test that uses this strategy can be seen next.

bool inclusiontest (Point p)
{
GLfloat pixels[1][1][1];
GLint x = p.x * X_BUFFER_SIZE/X_IMAGE_SIZE;
GLint y = p.y * Y_BUFFER_SIZE/Y_IMAGE_SIZE;
glReadPixels(x, y, 1, 1, GL_RED, GL_FLOAT,

pixels);
return pixels[0][0][0] == 1;

}

At the preprocessing stage the polygon is drawn
with RGB color (1,0,0), i.e. red, in an black off-screen
buffer, i.e. with RGB color (0,0,0), using a 2D ortho-
graphic projection. To test whether pointp is inside
the polygon, the coordinates (x, y) of its associated
pixel in the off-screen buffer are first computed. Then,
the red component of pixel (x, y) is read from the off-
screen buffer, if its value is 1 thenp falls inside the
polygon.

3 A POINT-IN-POLYGON TEST
BASED ON THE
HP OCCLUSION TEST
EXTENSION

The OpenGL’s HPocclusiontest extension is in-
tended for testing the visibility of an object, where
“visible” means that at least one of its pixels passes
the stencil and depth tests. An obvious application of
this extension is occlusion culling. Before rendering
an object in a scene, an occlusion test can be done
with the object bounding volume, if the test fails the
object does not need to be rendered and some perfor-
mance can be gained.

This extension can also be used to develop a point-
in-polygon test as follows. At a preprocessing stage
the filled polygon is drawn in an off-screen buffer on a
plane orthogonal to the observer’s line of sight, using
an orthographic projection —see Figure 1.a). To test

whether a 2D point p = (x,y) is inside the polygon,
an occlusion test with a 3D point p2 = (x,y,z) is done,
wherez is such thatp2 is positioned in a plane far-
ther, from the observer’s point of view, than the plane
where the polygon was drawn. If pointp2 fails the
occlusion test, then it is occluded by the polygon and
it can be concluded thatp falls into the polygon —see
Figure 1.b). Ifp2 passes the occlusion test, it is not
occluded by the polygon, sop is outside the polygon
—see Figure 1.c).

A possible implementation of the test can be seen
next.

bool inclusiontest (Point p)
{
GLboolean result;
glEnable (GL_OCCLUSION_TEST_HP);
glBegin (GL_POINTS);
glVertex3f (p.x, p.y, -0.5);

glEnd ();
glDisable (GL_OCCLUSION_TEST_HP);
glGetBooleanv (GL_OCCLUSION_TEST_RESULT_HP,

&result);
return !result;

}

In this implementation the polygon is drawn in a
P-buffer. In order to draw an arbitrary polygon we
have considered two approaches: the first one is to use
the OpenGL’s tessellation algorithm, and the second
one is based on using the stencil buffer (A. Rueda and
Ruiz, 2004). We have chosen the latter because it is
faster for complex polygons.

4 A POINT-IN-POLYGON TEST
BASED ON THE
NV OCCLUSION QUERY
EXTENSION

The point-in-polygon test presented in this section is
basically the same that the one presented in the pre-
vious section. The only difference is that this test
uses the OpenGL’s NVocclusionquery extension to
query whether the point is occluded by the poly-
gon. However, this extension allows multiple point-
in-polygon queries to be done in parallel with CPU
computations.

The NV occlusionquery extension provides an
alternative occlusion query that overcome two limi-
tations of the HPocclusiontest extension. First, in-
stead of returning a boolean value, it returns the num-
ber of pixels of the object that pass the stencil and
depth tests. This is useful in occlusion culling be-
cause provides more information about the visibility

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

162



Observer

Line of sight

Viewing volume

(a) Preprocessing

Observer

(b) The occlusion test fails

Observer

(c) The occlusion test succeeds

Figure 1: Example of HPocclusiontest.

of the object. For instance, an application could de-
cide not to draw an object if less than a threshold num-
ber of pixels of its bounding volume pass the test, or to
draw it with a low-detail model. However, our point-
in-polygon test will not benefit from this feature be-
cause we only test the visibility of a point —which it
is drawn with only one pixel—, so we get the same
information with both occlusion queries.

The second improvement of this extension is that
allows for issuing an occlusion query before asking
for the result of a previous query, so that multiple oc-
clusion queries, and therefore point-in-polygon tests,
can be solved in parallel with CPU computation.

Next we show an implementation of a point-in-
polygon test based on the NVocclusionquery exten-
sion that allows multiple tests to be done in parallel
with CPU computations.

vector<Point> points; // points to be tested
vector<bool> result; // test results
GLuint pixelCount;
GLuint *occlusionQueries = (GLuint *)

malloc(points.size ()*sizeof(GLuint));

// preprocessing (the polygon is drawn)
...
// occlusion tests start
glGenOcclusionQueriesNV (points.size (),

occlusionQueries);
for (int i = 0; i < points.size (); i++) {
glBeginOcclusionQueryNV(occlusionQueries[i]);
glBegin (GL_POINTS);

glVertex3f (points[i].x, points[i].y, -0.5);
glEnd ();
glEndOcclusionQueryNV();

}
// CPU computation can be done here
...
// occlusion results are asked
for (int i = 0; i < points.size (); i++) {
glGetOcclusionQueryuivNV(occlusionQueries[i],

GL_PIXEL_COUNT_NV, &pixelCount);
result[i] = pixelCount == 0;

}

In the first cycle the occlusion queries are issued,
each query tests how many pixels of a query point
pass the depth test. In the second cycle the results
of the queries are processed, if no pixels of the point
pass the test —really at most one pixel will pass— the
point falls inside the polygon. It is important to note
that between the first and second cycle code can be in-
serted that will execute in parallel with the occlusion
queries.

5 COMPARISON OF THE TESTS

In this section we compare the tests based on graph-
ics hardware explained in this paper with the follow-
ing tests: 1) The crossings test, the most used method
and the fastest algorithm without any preprocessing.
2) The spackman test, a representative sample of tri-

A SIMPLE AND FAST HARDWARE-ACCELERATED POINT-IN-POLYGON TEST

163



angle fan methods. 3) The grid test, one of the fastest
methods, which is based on a regular space decompo-
sition.

To make the comparison we have used the imple-
mentation of Eric Haines (Haines, 1994) in Graphics
Gems IV. The tests consist in 1000 consecutive point
tests performed on 5 different random polygons, with
sizes from 10 to 10000 edges. The target hardware
consists of a Intel Pentium IV processor at 1.6 GHz,
with 512 MB of RAM memory. The graphics card
is an NVIDIA GeForce 6600. In the tests based on
graphics hardware the size of the P-buffer where the
polygon is drawn is 400x400. Table 1 shows the exe-
cution times of the different tests.

As it can be seen, the results obtained by the
approaches based on the occlusion query mecha-
nism are very good. The approach based on the
NV occlusionquery extension beats the crossings
and Spackman methods for polygon from 100 edges.

Next, we describe the main advantages of the tests
presented in the paper based on graphics hardware:

• Their execution times are almost constant, they do
not depend on the number of vertices of the poly-
gon.

• The tests, as well as their preprocessings, are
very simple, easy to understand, and they have an
straightforward implementation.

• They work with the GPU memory, saving RAM
memory.

• As “alternative data structure” an off-screen
buffer is used, whose size is constant, not depend-
ing on the size of the polygon.

• They work with any kind of polygon: concave,
with holes, with intersecting edges, etc.

Furthermore, the test based on the
NV occlusionquery extension has the advan-
tage that multiple queries can be done in parallel with
CPU execution.

And next we describe the main drawbacks of these
tests:

• As other methods they need preprocessing —to
draw the polygon—. Therefore, they are mainly
suitable when a high number of tests is needed.
Table 2 compares the preprocessing times of the
different tests.

• The precision of the tests depends on the resolu-
tion of the P-buffer, and it is lower than software
based tests.

Finally, another drawback of the tests based on the
occlusion query mechanism is that they cannot be ex-
tended to solve picking.

6 CONCLUSION

The occlusion query extensions of modern GPUs
were originally intended for supporting occlusion
culling algorithms. This paper has shown that these
extensions can also be used to develop two original,
efficient point-in-polygon tests. The tests, as well as
their preprocessings, are easy to understand and they
have a straightforward implementation. Besides, they
work with any kind of polygon, they are fast and their
execution times do not depend on the number of edges
of the polygon. Finally, one of the tests allows mul-
tiple point-in-polygon queries to be done in parallel
with CPU execution.

However, the tests have some drawbacks: their
precision is lower than software based tests, they need
preprocessing, and they cannot be extended to solve
picking.

ACKNOWLEDGEMENTS

This work has been partially granted by the Ministe-
rio de Ciencia y Tecnologı́a of Spain and the Euro-
pean Union by means of the ERDF funds, under the
research project TIN2004-06326-C03-03 and by the
Conserjeŕıa de Innovacíon, Ciencia y Empresa of the
Junta de Andalućıa, under the research project P06-
TIC-01403.

REFERENCES

A. Rueda, R. Segura, F. F. and Ruiz, J. (2004). Rasterizing
complex polygons without tesselations. InGraphical
Models. 66(3) 127-132.

Akenine-Moller, T. and Haines, E. (2002).Real–Time Ren-
dering. A.K. Peters, Massachusetts, 2nd edition.

Antonio, F. (1992). Faster line segment intersection.
David Kirk (Ed.) Graphics Gems III Academic Press,
Boston, 1st edition.

Hacker, R. (1962). Certification of algorithm 112: position
of point relative to polygon. InCommunications of the
ACM. Vol. 5 pp. 606.

Haines, E. (1994).Point in polygon strategies. Paul Heckert
(Ed.) Graphics Gems IV Academic Press, New York,
1st edition.

Hanrahan, P. and Haeberli, P. (1990). Direct wysiwyg paint-
ing and texturing on 3d shapes. InComputer Graphics
(SIGGRAPH ’90 Proceedings). 24(4) 215-223.

Shimrat, M. (1962). Algorithm 112: position of point rela-
tive to polygon. InCommunications of the ACM. Vol.
5 pp. 434.

Spackman, J. (1993). Simple, fast triangle intersection, part
ii. In Ray Tracing News. 6(2).

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

164



Table 1: Execution times of the 1000 tests (in microseconds).

Algorithm Number of edges
10 100 1000 5000 10000

Grid (400 cells) 0.12 0.2 0.7 2.49 4
Crossings 0.5 2.77 25.86 147.92 594.35
Spackman 0.27 2.83 26.55 243.35 613.9
NV occlusionquery 2.62 2.54 2.56 2.58 2.56
HP occlusiontest 10.3 10.4 10.44 10.2 10
Picking algorithm 26.86 26.87 26.83 26.94 26.6

Table 2: Execution times of the preprocessing (in milliseconds).

Algorithm Number of edges
10 100 1000 5000 10000

Grid (400 cells) 0.13 0.4 2.64 10.37 21.74
Crossings – – – – –
Spackman 0.02 0.08 0.2 0.84 1.89
graphics hardware tests0.75 1.1 2.37 5.78 11.1

A SIMPLE AND FAST HARDWARE-ACCELERATED POINT-IN-POLYGON TEST

165


