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Abstract: Compression of digital geometry models is the answer to an industrial demand. Over the last years, many 
exciting ideas and new theoretical insights have been devoted to finding ways of reducing the amount of 
storage such models absorb. EdgeBreaker is one of the effective lossless single-rate connectivity 
compression techniques for triangular meshes. This paper presents an enhanced EdgeBreaker encoding 
algorithm which solves the problem of non-linearity of EdgeBreaker decoding procedure while 
reconstructing the mesh triangles in the same order they were traversed during the encoding phase. The new 
enhancement is based on the same data structure: the corner-table used by EdgeBreaker however, it 
eliminates some of the computational overhead exhibited by EdgeBreaker compression.    This enhanced 
technique also yields to significantly smaller rates for connectivity compression than EdgeBreaker. It 
achieves an average compression ratio of 1.8 bit per triangle and 3.57 bit per vertex for the used benchmark 
3D models. 

1 INTRODUCTION 

Interactive display of 3D content has been 
extensively used in many applications ranging from 
electronic commerce to the virtual game industry. 
Among several representations, polygonal meshes 
are used most often as surface representation  (Abd 
El-Latif, Ghaleb and Hussein, 2006)   because of 
their wide spread support in many file formats and 
graphics libraries. These large and complex meshes 
are becoming commonplace because of the 
increasing capabilities of the computing 
environments, visualization hardware, modern 
interactive modelling tools and semi automatic 3D 
data acquisition systems. The complexity of these 
models poses basic problems of efficient storage in 
file servers, transmission over computer networks, 
rendering, analysis, processing etc. for these reasons 
it was desirable to compress polygonal meshes to 
reduce storage and transmission time requirements.  

Geometry compression techniques for such very 
large 3D geometric models have thus become a 
subject of intense study in recent years. The 
compression approach is one of the primarily 
approaches for reducing the size of a mesh. It 
depends on deriving a new encoding for the 
polygonal mesh such that the total number of bits 

needed in the new encoding is much lower than the 
number needed for the uncompressed representation. 
Large body of compression research has 
concentrated on clever encoding of the mesh 
connectivity. Typically (Shikhare, 2000), the 
number of triangles in a mesh is roughly twice the 
number of vertices and each vertex is referenced in 5 
to 7 triangles, which means that large part of the 
representation of the model is in the definition of 
connectivity. Also the combinatorial graph structure 
of the mesh connectivity allows it to be coded 
losslessly, so it can be restored to the original model 
after decoding. 

Prior Works. Much of the work in the area of 
single-rate connectivity compression has been 
concerned with triangle meshes only (Allie and 
Gotsman, 2005) This is because the triangle is the 
basic geometric primitive for standard graphics 
rendering hardware and also it can be easily derived 
from other surface representations. Many 
compression schemes have been emerged recently 
using different approaches such as focusing on 
hardware decoding (Deering, 1995 and Chow, 
1997), applying mesh traversal (Gumhold and 
Strasser, 1998 and Rossignac, 1999) and using 
valence-based incidence compression (Touma and 
Gotsman, 1998 and Alliez and Desbrun 2001).  
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Among these techniques, EdgeBreaker (Rossignac, 
1999) is considered one of the best connectivity 
compression techniques for compressing simple 
manifold triangular meshes that are homeomorphic 
to a sphere. It achieved bit rates of 2 bit per triangle 
(bpt) and 4 bit per vertex (bpv).  As this result was 
the best achieved so far, many derivatives of the 
EdgeBreaker algorithm had appeared.  Using a 
slightly more complex code, King and Rossignac 
(King and Rossignac, 1999) guaranteed that the 
compressed file will not exceed 1.83t bits and 3.67v 
bits. The algorithm was further optimized for 
meshes with regular connectivity (Szymczak, King 
and Rossignac, 2001). In (Rossignac, Safonova and 
Szymczak, 2002) the same algorithm was introduced 
with a simple data structure, the Corner-Table for 
representing the connectivity of triangle meshes. 
Again the algorithm was extended with a simple 
formulation to deal with triangulated surfaces with 
handles (Lopes, Rossignac, Safonova, Szymczak 
and Tavares, 2003). Finally the authors in (Lewiner, 
Lopes, Rossignac, and Vieira 2004) provided 
efficient extensions of the EdgeBreaker compression 
which enables to use the EdgeBreaker algorithm to 
encode the connectivity of a surface, possibly having 
any number of connected components, handles or 
boundary curves. 

While the encoding scheme of EdgeBreaker 
(Rossignac, 1999) exhibits a linear storage cost, 
some preliminary preprocessing steps were required 
in the decoding phase making it exhibits a non-linear 
time complexity of O(n2). More recent work 
(Rossignac and Szymczak, 1999) eliminated the 
need for this look-ahead procedure and improved the 
worst case complexity to O(n). However this 
algorithm requires multiple traversals of the mesh 
triangles for meshes with handles and an initial 
traversal of the encoding for meshes with boundary. 
Another simple decoding technique (Isenburg and 
Snoeyink, 2001) was developed that recreates the 
triangles encoded by EdgeBreaker in linear time 
unless this was done in the reverse order these 
triangles were encoded. 

Contributions. The main work of this paper is 
based on the work of EdgeBreaker (Rossignac, 
Safonova and Szymczak, 2002) developed by 
Rossignac et al. The EdgeBreaker encoding 
procedure is enhanced to allow the decoding phase 
to be implemented in linear time complexity without 
any additional preprocessing and in the same order 
the mesh is traversed during the encoding phase. 
Further more, this enhancement eliminates the 
computational overhead implemented by using extra 
data structures and also improves the compression 

ratio generated by the original procedure (Rossignac, 
1999) to 1.8 bpt and 3.57 bpv. 

The remainder of this paper is organized as 
follows: in the next section the EdgeBreaker 
encoding and decoding schemes are explained. A 
detailed description of the algorithm can be found in 
(Rossignac, 1999 and Rossignac, Safonova and 
Szymczak, 2002). Section 3 illustrates the new 
improvement done to the encoding algorithm of 
EdgeBreaker. The results and discussions are 
presented in section 4 and we conclude in section 5. 

2 EDGEBREAKER ENCODING 
AND DECODING 

The EdgeBreaker encoding process visits the 
triangles in a spiraling (depth-first) order and 
produces a CLERS string. The CLERS string 
includes five different operations called C, L, E, R, 
and S. The encoding process starts off with picking 
an arbitrary triangle of the mesh as an initial active 
boundary. One of the three initial boundary edges is 
defined to be the gate of the boundary. An initially 
empty stack is used to temporarily store boundaries. 
This process terminates after t-1 operations, with t 
being the number of mesh triangles. Which 
operation is chosen depends on how the respective 
triangle is attached to the active boundary at the 
moment it is processed (Figure 1). If its third vertex 
is not on the active boundary then operation C is 
used and the new gate is the right edge of the old 
gate. If the third vertex is the next boundary vertex 
then operation R is used. If it is the previous 
boundary vertex then operation L is used. In both R 
and L operations the new gate is the inserted 
boundary edge.  If the third vertex is some other 
boundary vertex, then operation S is used. The left 
edge of the old gate is pushed on the stack and the 
other becomes the active gate. If the third vertex is 
the previous and the next boundary vertex then 
operation E is used. This can only happen for an 
active boundary of length three.  

For triangle meshes with v vertices and t 
triangles that are homeomorphic to a sphere, t equals 
2v-4 (Rossignac, 2003). Because, except for the first 
two vertices, there is a one-to-one mapping between 
each C triangle and each vertex, the number of C 
triangles is v–2. Consequently, the number of non-C 
triangles in a simple mesh is t–(v–2), which is also 
v–2. Thus exactly half of the triangles are of type C. 
using A straight-forward compression scheme that 
uses the following simple binary code for the labels 
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(C=0, L=110, E=111, R=101, S=100) is guaranteed 
to use no more than 2t or 4v bits. 

 

 

 

 

 

Figure 1: EdgeBreaker encoding operations. 

The EdgeBreaker decoding process starts with a 
CLERS string and produces a triangulated mesh. 
Two traversals of the CLERS string are needed: The 
preprocessing phase computes an offset value for 
every S operation. The offset value is the distance 
between the active gate and the tip vertex along the 
active boundary. These offset values are calculated 
by adding up the resulting change in boundary 
length for all operations following an S operation 
until and including its corresponding E operation. 
Since pairs of S and E operations are always nested, 
the offset values for all S operations can be 
computed in a single traversal (Figure 2).  

The other decoding phase is the generation phase 
which creates the triangles in the same order they 
were encoded by the EdgeBreaker encoding process. 
It starts with creating the initial triangle. The active 
boundary and the gate are identified and the CLERS 
string is processed. For the C operation a new vertex 
is created. For all other operations a vertex from the 
active boundary is used. For the R operation the 
third vertex is the next vertex on the active boundary 
and for the L operation the third vertex is the 
previous vertex on the active boundary.  For the S 
operation the precomputed offset value is used. 
When the E operation occurs, the active boundary 

consists of only three boundary edges leaving no 
choice for the third vertex. If the active boundary is 
maintained in a linear data structure, each S 
operation will require a linear search for the vertex 
specified by the offset implying an asymptotic worst 
case time complexity of O(n2) for the EdgeBreaker 
decoding. 

 
Figure 2: EdgeBreaker decoding operations. 

3 ENHANCED EDGEBREAKER 
ENCODING 

The breakthrough of EdgeBreaker lies in the 
discovery that the locations of the tips of the S 
triangles need to be stored neither as integer 
references nor as offsets which separate the gate 
from the tip location in the current loop. They 
discovered that these offsets can be recomputed by 
the decoding algorithm from the CLERS string 
itself. This solution minimizes the encoding size and 
improves the compression ratio while it leads for the 
nonlinearity of the decoding algorithm. The new 
enhancement of EdgeBreaker tries to keep 
advantage of not saving the offsets as part of the 
encoding while in the same time eliminate the need 
of computing them as a preprocessing stage during 
decompression. 

The S triangle in EdgeBreaker compression 
scheme splits the active boundary into two, one on 
each side of the S triangle. The algorithm then tends 
to fill the hole generated in the mesh surface on the 
right side of the S triangle before returning to the left 
one. This required keeping a stack for storing the left 
edge of every S triangle to be the next active gate 
(Figure 3a). The new enhancement developed here 
performs the same traversal of the EdgeBreaker 
compression but only differs in the way it deals with 
the S triangles. Whenever an S triangle is reached, 
the algorithm tends to ignore encoding it at the 
moment and the active gate is changed to another 
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location and then the traverse keeps going on. This 
is done by moving on the active boundary one step 
to the right of the current active gate (Figure 3b). 

 

(a) 

 
(b) 

Figure 3: Encoding example of the final eighteen 
operations of a mesh. (a) EdgeBreaker encoding, The red 
edges show the ones being stored in the stack; (b) 
Enhanced EdgeBreaker encoding, The arrows show how 
the active edge is changed during traversal. 

This approach ensures that all the previously 
ignored S triangles are going to be revisited again as 
long as they are not encoded so far but from another 
gate – usually the pervious right edge – which will 
change the triangle state to an L triangle. This 
enhancement eliminates the case of S and E triangles 
from the CLERS string while it presents another 
symbol M that does not interpret a triangle case but 
only tells the decoding algorithm that the current 
active gate will be changed to another location some 
where on the active boundary just right to the current 
one.  Keeping the same notations of the C, L and R 
triangles, the encoding string has been changed to 
the CLRM string. The elimination of the S case from 
the encoding string makes the active boundary never 
split. The algorithm in this case needs only to 
maintain one circular linear list for active boundary 
during compression and decompression. In addition, 
the enhanced technique has eliminated both the 
recursive overhead exhibited by the original 
EdgeBreaker compression algorithm and the 
computational overhead needed by the stack to keep 
list of new active gates generated after splitting. 
During the decompression process it eliminates the 
need for the preprocessing step, the algorithm only 
traverses the encoded string once to regenerate the 
mesh triangles in the same order they were encoded 
and thus maintaining a linear time complexity of the 
decoding process O(n). 

While the first version of the developed 
enhancement algorithm adopted the idea of moving 

to the right of the active gate whenever an S triangle 
is reached, a serious problem has emerged. The 
original encoding algorithm of EdgeBreaker ensures 
that all the triangles in the hole generated to the right 
of the S triangle are visited before directing to the 
left one. Instead the modification applied here so far 
by the enhanced algorithm does not maintain this 
feature, meaning that the algorithm can traverse part 
of the mesh right to the S triangle and then bypass it 
in its reverse course - without encoding - to the other 
part of the mesh surface on its left.    While the 
implemented linear list of boundary edges is 
circular, it means that this track can be repeated for 
many levels. At each level both areas of the mesh 
surface to the left and right of the original S triangle 
is being shrinking, giving a chance for other S 
triangles to appear until leading to a very long strip 
of consecutive S triangles.  

  

 

 
 

  

 

 

(a) 

  

  

(b) 

Figure 4: Steps of mesh generation for the Horse model. 
(a) Using the CLRM string; (b) using the CLRGF string. 

Notice the long line of un-encoded triangles 
generated along the mesh while traverse (figure 4a). 
This line begins to appear in parts of the mesh 
wherever the boundary tends to meet at a closed 
point. In the horse example the line first begins to 
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appear in the front left leg, extends to the horse 
neck, the back left leg and then to the back right leg 
respectively. This long strip will not be encoded 
until one of the mesh surfaces on the right or the left 
of the original S triangle is encoded completely. This 
long strip which is traversed many times will result 
in much increase in the encoding string size and 
hence lead to minimize the compression ratio instead 
of trying to maximize it. 

In order to solve the emerging problem of the 
long chain of S triangles, the second version of the 
enhanced algorithm updated the procedure to allow 
moving along the active boundary either to the right 
or to the left of the current active gate whenever an S 
triangle is reached. This choice is decided according 
to which boundary on the right or the left is shorter 
in length. The boundary length is calculated by the 
number of edges it contains. The M symbol is now 
replaced by other two symbols G and F which are 
used to differentiate between either to move one step 
to the right or to the left of the current active gate. 
The final encoding string introduced by the 
enhanced EdgeBreaker compression scheme 
becomes the CLRGF string. Figure 4b shows that 
the problem of the long chain of un-encoded 
triangles previously mentioned does not exist any 
more. Each of the four parts of the horse example is 
encoded completely before directing to another part 
of the mesh. The pseudo-code of the proposed 
encoding procedure is provided in the frame below. 

Input: 
      Connectivity and geometry of the mesh in 

the CornerTable format. 
Output: 

CLRGF string that contains one symbol per 
triangle except for the first triangle. 

Procedure Compress() 
  While (True)  
      If tip vertex is not visited Then  
         Append encoding of C to the CLRGF string,            
         Add tip vertex to the list of vertices, 
         Mark triangle and tip vertex as visited, 
         Update active gate to the right edge of the   
         old gate input  
      Else If right triangle was visited Then 
         Append encoding of R to the CLRGF string, 
         Mark triangle as visited, 
         If left triangle was visited Then 
             End Procedure 
         Else 
             Update active gate to the new inserted  
             boundary edge 
      Else If left triangle was visited Then 
             Append encoding of L to the CLRGF   

             string, 
             Mark triangle as visited, 
             Update active gate to the new inserted 
             boundary edge 
         Else 
             Calculate right and left boundary lengths 
             If the right boundary length is less than 
             the left boundary length Then 
                   Append encoding of G to the CLRGF  
                   string, 
                   Update active gate to the right edge of  
                   the old one 
             Else 
                   Append encoding of F to the CLRGF  
                   string, 
                   Update active gate to the left edge of  
                   the old one 

4 RESULTS AND DISCUSSION 

Table 1 presents the data of the test case meshes 
shown in Figure 5. All the meshes are triangular, 
manifold, without boundary, holes or handles.  
Associating the following binary code based upon 
Huffman coding (Huffman, 1952) for the labels 
(C=0, R=10, L=110, G=1110, F=1111) used in the 
CLRGF string leads to the best compression ratio 
that can be achieved. This selection is based on a 
study of the average percentage each symbol 
consumes from an encoding file generated to each of 
the 3D models used.  

Table 1: Used benchmark 3D models. 

File name File size No of 
triangles 

No of 
vertices 

Retinal 240 KB 7,282 3,643 

Cow2 304 KB 8,626 4,315 

Smooth-
feature 416 KB 12,350 6,177 

Egea 534 KB 16,532 8,268 

Head 1 MB 32,744 16,374 

Horse 4.62  MB 96,966 48,485 

Armadillo 11.9 MB 345,944 172,974 

Vase-Lion 14.6 MB 400,000 200,002 
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It is apparent from figure 6 that the largest 
percentage of the triangles is of type C; this is 
because each C triangle is related with the 
introduction of a new vertex in the sequence of mesh 
vertices.  The percentage of R triangles is very close 
from the C one; they both consume about 88.72 % 
on the average from the total number of symbols 
used to encode a mesh.  The rest of the symbols is 
distributed between L triangles and symbols G and F 
which give an indication of finding an S triangle and 
so the need of movement along the boundary list. 
The two percentages of L; and G plus F together are 
very close. This ensures that most of the S triangles 
which were ignored for the first time during 
traversal are encoded afterwards as L triangles.  

Table 2 lists the compressed file size written in 
binary format and the compression ratio achieved in 
file size, per triangle and per vertex for every test 
case of the 3D models used. The compression results 
vary from 1.52 bpt and 3.04 bpv (Head example) to 
2.16 bpt and 4.31 bpv (Cow2 example). This 
variation is due to the different percentage of S 
triangles occurrence during mesh traversal which 
leads to the addition of symbols G or F to the 
encoding string (Figure 6). 

 
Figure 6: Frequency percentage each symbol consumes 
from encoding data file. 

This percentage of occurrence depends mainly 
on the shape characteristics and it represents the 
main parameter controlling the compression ratio 
that can be achieved to the mesh. It appears from the 
used examples that the largest occurrence which 
leads to the smallest compression ratio in file size 
happens to the Cow2, Armadillo and Horse 
examples respectively. This is due to their shape 
characteristics; legs of the Horse and Cow2 
examples and legs and arms of the Armadillo 
example. 

Table 2: Comprssion results. 

Connectivity 
size Compression ratio 

File name Unco
mpres

sed 

Comp
ressed 

KB 

file 
size % bpt bpv 

Retinal 124 
KB 1.47 98.8 1.61 3.23 

Cow2 172 
KB 2.3 98.65 2.16 4.31 

Smooth-
feature 

222 
KB 2.35 98.94 1.52 3.05 

Egea 304 
KB 4 98.68 1.89 3.77 

Head 608 
KB 6 99.01 1.52 3.04 

Horse 1.87 
MB 24.21 98.7 1.99 3.99 

Armadillo 6.95 
MB 93.04 98.66 2.15 4.30 

Vase-Lion 8.9 
MB 91.26 98.97 1.83 3.65 

Average   98.92 1.8 3.57 

According to the binary code associated to each 
symbol, an average compression ratio of 1.8 bit per 
triangle and 3.57 bit per vertex is achieved. This 
result is improved over the results obtained by 
EdgeBreaker (Rossignac, 1999) and its derivative 
(King and Rossignac, 1999).  Connectivity 
information is compressed according to the file size 
with an average of 98.92%. The encoding algorithm 
is also barely sensitive to the seed triangle; therefore 
a random face can be selected without affecting the 
achieved results much. The compression ratios of 
connectivity file size, in bit per triangle and in bit 
per vertex are calculated according to equations 1, 2 
and 3 respectively. 

bits ed uncompress of  No.
bits  compressed of  no. - bits ed uncompress of  No.      (1) 

 trianglesof No.
bitsity   connectiv   compressed of No.                   (2) 

 verticesof No.
bitsity    connectiv    compressed of No.

                    (3) 

    
Retinal Cow2 Smooth-

feature 
Egea 

 

    
 

Head Horse Armadillo Vase-Lion 

Figure 5: Benchmark 3D models. 
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5 CONCLUSION 

In this paper, we described an enhanced lossless 
single-resolution connectivity encoding algorithm 
that is based on the algorithm of EdgeBreaker 
(Rossignac, 1999) and uses the same data structure 
of (Rossignac, Safonova and Szymczak, 2002). The 
enhanced algorithm allowed the decoding procedure 
to run in linear time complexity and the triangles to 
be generated in the same order they were encoded. It 
eliminates the computational overhead consumed by 
stack operation and the recursive procedure of 
traversing. The new enhancement led to the 
elimination of both S and E cases and introducing 
new symbols G and F which results in changing the 
encoding string used to the CLRGF string. The 
achieved result was encouraging as it improved the 
late achieved results into 1.8t and 3.57v bits for 
representing the mesh connectivity. This 
enhancement can be further applied to meshes with 
boundary, holes and non-manifold meshes. The 
future work is to extend the algorithm to non-
triangular meshes. 
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