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Abstract: The sphere can be covered by any of an infinite number of tiling sets of equilateral spherical quadrilaterals 
(diamonds). Five of these tiling sets have practical use for texture mapping application. Points on the sphere 
can be described by intersections of geodesics, which provide coordinate values in a new coordinate system, 
defined for each tiling set. Each of the diamonds can be subdivided by a grid of coordinate geodesics to 
pixel level and so can be directly mapped to and from a texture array. The diamonds can also be subdivided 
into spherical quadrilaterals that can be approximated by pairs of triangles for fast rendering in a graphics 
system. Because coordinates in the new system are readily converted to and from Cartesian coordinates, 
diamonds can be used easily in interactive graphics and ray-tracing applications. 

1 INTRODUCTION 

Texture mapping is essentially the mapping of an 
image onto the surface of a graphics object. The 
image is typically a square array of discrete elements 
called texels. In this paper, a texel is also the 
quadrilateral on the surface of the sphere that 
corresponds to an element in the texture array. 

The image also has its own coordinate space, 
usually with coordinates denoted as (u, v). The 
coordinates typically run from 0 to 1; in this way, 
the number of elements in the array (i.e., the 
resolution) can be changed without affecting the 
mapping mathematics. 

A necessary part of texture mapping is the 
mapping function, through which a point on the 
surface of the object (expressed perhaps in Cartesian 
coordinates in object space or in a surface coordinate 
system) is mapped to a point in the coordinate space 
of the texture image (Foley, van Dam, Feiner, and 
Hughes, 1996; Heckbert, 1986). 

Watt and Watt (1982) discuss texture mapping in 
general and texturing the sphere specifically. The 
discussed technique divides the surface of the sphere 
into areas that are delimited by circles of constant 
latitude and longitude. However, such areas do not 
lead to a consistent set of tiles; in particular, polar 
areas usually require special treatment. 

One common approach to texturing a sphere is to 
use a texture array in which the rows correspond to 

latitude and the columns correspond to longitude. 
This single-tile approach has several disadvantages. 
The texels at the poles are extremely small in area, a 
waste of texture resources. Further, a graphics 
engine that limits the size of texture arrays would 
prevent the increase in size of the texture array to 
achieve high resolution. 

Texturing a sphere through a set of tiles provides 
several advantages. First, because each tile covers a 
relatively small portion of the spherical surface, it 
can have low area distortion and thus can make 
economic use of texture resources. Second, a set of 
tiles, with a separate texture array mapped to each 
tile, can obviously provide higher resolution than 
can a single texture array mapped to the whole 
sphere. This advantage is especially important with 
graphics engines that have restraints on sizes of 
texture arrays affecting performance. 

The goal here is to cover the sphere with tiles of 
identical size and shape such that a texture array can 
be easily mapped to each tile. High resolution is 
another desirable goal. 

The literature on spherical tilings does not 
address texture mapping, and the various schemes 
described are intended for other applications and are 
not usually well suited to texture mapping. 

For example, Borgefors (1992) describes a 
spherical tiling in which the application is a view-
sphere for image analysis. Each hemisphere is 
divided into four tiles of equal area; each tile is then 
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recursively divided into four. Each level includes 
polar tiles with circular borders, figures that are 
difficult to map to texture arrays. At any subdivision 
level, the tiles are equal in area but quite different in 
shape. 

One well-known approach to tiling the sphere is 
to begin with the tiling set of twenty equilateral 
spherical triangles based on the vertices of an 
inscribed regular icosahedron. Finer triangulations 
are then obtained by recursively subdividing the 
spherical triangles into four with geodesics (Pottman 
and Eck, 1990; Ramaraj, 1986). An inscribed 
tetrahedron has also been used (Nielson, 1993; 
Renka, 1984). The common application for these 
tilings is data interpolation. 

A similar approach of recursive triangulation is 
based on an inscribed regular octahedron (Dutton, 
1999); the application is GIS. The hierarchical 
coordinate system described is a quad-tree encoding, 
not a traditional coordinate system with continuous 
coordinates. The recursive subdivisions are based on 
latitude and longitude, not geodesics. Other GIS-
related tilings include an equal-area hierarchical 
tiling (Wickman, Elvers, and Edvarson, 1974) based 
upon a dodecahedron and a tiling (White, Kimerling, 
and Overton, 1992) based upon a truncated 
icosahedron, or “soccer ball.” 

However, when applied to texture mapping, a 
recursive triangulation approach has two problems. 
First, when the triangular tiles are subdivided to 
texel level, the texel figures are triangular and in a 
triangular pattern, and are difficult to match with 
elements in a square texture array. Conceptually, 
there appears to be a simple solution: adjacent 
triangular icosahedral tiles can be paired to form a 
tiling set of ten quadrilaterals, and the texel triangles 
can be similarly paired, forming a matchable pattern 
of quadrilateral texels in a quadrilateral grid. 
However, in application, recursive triangulation is 
essentially the traversal of a quad-tree structure, and 
adjacent texel triangles to be paired may be widely 
separated in the tree, which can lead to a 
complicated scheme for associating these triangles.  

Borgefors (1992) states that the recursive 
triangulation from icosahedral vertices does not 
provide an easy way to determine in which sub-tile 
an arbitrary point is located. (This determination is a 
complicated recursive calculation involving 
numerous geodesics.) Thus, the second problem is 
that recursive triangulation lacks a convenient 
mapping of arbitrary points from object space to 
texture image space; it is not suitable for texture 
mapping. 

Another approach (Giraldo, 2001) from 
icosahedral spherical triangles is to connect the 
center of each triangle with the center of each of the 
edges, thus forming three spherical quadrilaterals. 
The quadrilaterals have two opposite angles of 90°; 
the other two angles are 120° and 72°. The 
application is fluid dynamics modelling. The 
described mapping is through the gnomonic map 
projection. 

Górski et al. (2005) describe several quadrilateral 
tilings derived from the cylindrical equal-area map 
projection; sub-tilings are also equal-area. However, 
the quadrilaterals in a tiling set are not of the same 
shape. Also, polar quadrilaterals require separate 
treatment. Designed for processing astronomical 
data, this approach reduces the number of latitudes 
on which pixels are centered, a concern that is not 
relevant for texturing. 

One useful technique for texturing the sphere 
through tiling is based on Fuller’s map projection 
(Gray, 1995). This patented (Fuller, 1946) projection 
uses geodesics on polyhedral faces. Although the 
patent describes spherical tiles based solely upon the 
six square faces and eight triangular faces of the 
cuboctahedron, the most common projection is 
based on icosahedral spherical triangles. Unlike the 
recursive triangulation approach, this technique uses 
only geodesics that connect two edges of the original 
icosahedral triangles. Such geodesics form the basis 
of the map projection, which provides the mapping 
from object space to texture image space that is 
necessary for texture mapping. This technique’s low 
area distortion and triangular tiles make it practical 
for texturing the sphere. However, this technique has 
a minor disadvantage: the reverse map projection 
(i.e., from plane to sphere) has not been developed. 
Thus, determining the locations of the texels on the 
spherical surface is difficult. 

The work reported here starts from the geodesics 
that connect two edges of the square tiles as 
discussed with the patented Fuller map projection, as 
well as from the pairing of icosahedral triangles to 
form quadrilaterals as discussed above.  

2 THE DIAMOND 

In this paper the diamond (equilateral spherical 
quadrilateral) is examined as a basis for texturing the 
sphere for two reasons. 

First, diamonds are versatile in forming tiling 
sets. Spherical icosahedral triangles, when paired, 
yield a tiling set of diamonds; projected edges of an 
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inscribed cube form another. Indeed, there are an 
infinite number of diamonds tiling sets. 

Second, diamonds and texture arrays are similar 
in the sense that both can be perceived as two 
dimensional entities, and sizes in both dimensions 
are the same. Thus, diamonds appear to be well 
suited as mapping targets of textures. 

Focusing on the diamond leads to a new 
spherical coordinate system, which is based upon 
intersections of geodesics within a diamond. It is 
general-purpose, its coordinates can be easily 
converted to and from Cartesian coordinates, and it 
has a variety of potential applications. It is used here 
to determine precisely the locations of the texels. 
Diamonds can be subdivided to texel level so that 
the texels of a texture array can be mapped readily to 
and from the texel figures on the spherical surface. 

3 INFINITE FAMILIES OF 
TILING SETS 

Consider a regular hexahedron (cube) inscribed in a 
unit sphere. When its edges are projected to the 
sphere, the sphere is tiled with a set of six diamonds. 
This tiling set may be called a spherical cube. 

In this tiling set, one of the vertices can be 
chosen as the north pole. It is seen that three of the 
tiles touch the north pole; the other three touch the 
south pole. Instead of three diamonds sharing a pole, 
any greater number of diamonds can share the north 
pole, with the same number of diamonds sharing the 

south pole. Such a tiling set is a member of an 
infinite family of tiling sets. The first few members 
of this family are shown in Figure 1. 

As the number of diamonds increases, the small 
vertex angles decrease and the large vertex angles 
increase. For the tiling set of twelve diamonds, the 
large vertex angle is 150°. Such a large vertex angle 
may cause problems for intersections of geodesics 
used for determining texel locations (as discussed in 
Sections 5 and 6), so the use of this or larger tiling 
sets in the family is not recommended. The 
following section describes an alternative tiling set 
of twelve diamonds with better geometric 
characteristics. Thus only the first three members of 
this family are judged to have practical use with 
texturing; these three are in the foreground of Figure 
1. 

The spherical cube may be considered as an 
alternative to the common single-tile latitude-
longitude technique described in Section 1. When 
tiled spheres covered by the same total number of 
texels are compared, the tiling set of six has the 
advantages of a narrower range of texel areas and a 
smaller maximum texel area (i.e., higher resolution). 

The tiling set of eight diamonds provides slightly 
higher resolution. This tiling set has no relation to a 
regular polyhedron. 

The tiling set of ten diamonds is a reasonable 
compromise between simplicity of implementation 
and high resolution for a given texture array size. Its 
vertices are identical to those of an inscribed regular 
icosahedron. 

Figure 1: Members of an Infinite Family of Tiling Sets. 
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Figure 3: A Tiling Set of Thirty Diamonds. 

Figure 2: A Tiling Set of Twelve Diamonds. 

There is another infinite family of tiling sets. Its 
members can be derived from members of the first 
family by a simple transformation. For any tiling set 
in the first family that has an odd number of 
diamonds touching a pole, a cap on the side of the 
sphere that is composed of almost half of the 
diamonds is rotated almost 120° to produce a new 
tiling set. This tiling set has a mirror image that is 
also a member of this family. A tiling set in the first 
family that has an even number of diamonds at a 
pole has no corresponding member in the second 
family. The spherical cube is a member of this 
family but is a special case: the transformation 
produces the same spherical cube, and the mirror 
image is no different. 

The only unique member of this family that may 
have practical use with texturing is the tiling set of 
ten, but it provides no specific advantage. This 
family is described here only for completeness; 
These two infinite families and the family described 
in the following section include all diamond tiling 
sets (Ueno and Agaoka, 2002). 

4 THE FAMILY OF THREE 
TILING SETS 

For the first infinite family of tiling sets discussed 
above, each non-polar vertex is shared by three 
diamonds, and at each of these vertices are two 
small vertex angles and one large vertex angle. In 
the third family of tiling sets, at each vertex shared 
by three diamonds all three vertex angles are large. 
Thus, for the diamonds in these tiling sets, each 
large vertex angle is 120°. Clearly, the spherical 

cube is a member of this family as well. This family 
has two other members. 

The second member is a tiling set of twelve 
diamonds; four diamonds surround each of the poles 
and four diamonds ring the equator. This tiling set is 
shown in Figure 2. 

The third member is a tiling set of thirty 

diamonds. Ten of the diamonds are centered on the 
equator, and a ring of five diamonds lies between the 
equatorial diamonds and each set of five polar 
diamonds. This tiling set is appropriate for 
applications requiring fine detail; for a given texture 
array size, it provides the highest resolution of the 
five tiling sets. This tiling set is shown in Figure 3. 

5 DIAMOND COORDINATE 
SYSTEM 

The diamond coordinate system is a new coordinate 
system that is based on geodesics and on the tiling 
sets of diamonds. This coordinate system is 
especially useful for textures on a sphere; it can 
identify precisely the location of each texel on the 
sphere’s surface. For any point feature on a sphere, it 
can identify the texel containing the feature. 

This system has three components, represented 
as {d, u, v}. The first component, d, is an integer that 
identifies one of the diamonds in a specific tiling set 
(diamond identifiers may be assigned arbitrarily). 
Thus, each tiling set has a different diamond 
coordinate system. The specific tiling set being used 
is assumed to be known by context. 
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Figure 4: Diamond Coordinate System. 

The second and third components of the diamond 
coordinate system, u and v, identify a point on the 
designated diamond by specifying two geodesics 
that intersect at the point. 

The u and v coordinates depend upon the four 
vertices of the diamond. For each diamond, one of 
the vertices with a small angle is designated as p0; 
the other vertices are designated as p1, p2, and p3, in 
counter-clockwise order. The other small angle is at 
p2, and the large angles are at p1 and p3. (Position 
vectors are used to represent surface points; the 
origin is at the center of the sphere.) 

Each of the u and v coordinates ranges from 0 on 

one edge of the diamond to 1 on the opposite edge. 
Figure 4 illustrates the diamond coordinate system; 
in this figure, u0 and v0 represent arbitrary constants. 

 
Along edge p0-p1 of the diamond, coordinate u 

runs uniformly from 0 at vertex p0 to 1 at vertex p1. 
That is, a point on this edge can be expressed as a 
spherical linear interpolation of the two vertices: 

 0 0 1

sin( ) sin( )
( )    .

sin( ) sin( )u

S uS uS
u

S S

−
= +p p p  (1) 

The parameter S is the arc length of the edge of the 
diamond. 

Similarly, along edge p2-p3, coordinate u runs 
uniformly from 0 at p3 to 1 at p2. A point on this 
edge can be expressed as: 

 1 3 2

sin( ) sin( )
( )    .

sin( ) sin( )u

S uS uS
u

S S

−
= +p p p  (2) 

The locus of points with a given value of u is 
defined to be the geodesic that connects the point 
with the value of u on edge p0-p1 with the point that 
has the same value of u on edge p2-p3. 

Along edge p0-p3 of the diamond, coordinate v 
runs uniformly from 0 at vertex p0 to 1 at vertex p3. 
A point on this edge can be expressed as: 

 0 0 3

sin( ) sin( )
( )    .

sin( ) sin( )v

S vS vS
v

S S

−
= +p p p  

Along edge p1-p2, coordinate v runs uniformly 
from 0 at vertex p1 to 1 at vertex p2. A point on edge 
p1-p2 can be expressed as: 

 1 1 2

sin( ) sin( )
( )    .

sin( ) sin( )v

S vS vS
v

S S

−
= +p p p  

The locus of points with a given value of v is 
defined to be the geodesic that connects the point 
with the value of v on edge p0-p3 with the point that 
has the same value of v on edge p1-p2. 

A geodesic plane is conveniently specified by its 
normal vector. With the convention that the normals 
of the geodesic planes for constant u point in the 
direction of increasing u, the normal of the geodesic 
plane for a given u is: 

 1 0( ) ( ) ( )   .u u uu u u= ×n p p  (3) 

Similarly, the normal of the geodesic plane for a 
given v is: 

 0 1( ) ( ) ( )   .v v vv v v= ×n p p  

Specific values of u and v identify the point that 
is the intersection of the two geodesic planes at the 
surface of the sphere. The normals of the two 
geodesic planes (u and v) are multiplied (vector 
cross product) to yield the line that is the intersection 
of the two planes. The intersection of this line and 
the unit sphere is the point of interest. Thus, 
Equation (4) converts a point from diamond 
coordinates to Cartesian coordinates: 

 
( ) ( )

( , )  
( ) ( )

  .u v

u v

u v
u v

u v

×
=

×

n n
p

n n
 (4) 

To obtain diamond coordinates for any point p 
on the unit sphere with known Cartesian 
coordinates, the first step is to identify the diamond 
(coordinate d) that contains the point. The scalar 
(dot) product of a point p with the normal of a 
geodesic plane indicates the side of the plane on 

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

120



 

which p is located. Thus, point p is located on a 
given diamond if this condition is true: 

 
(0) 0 (1) 0
(0) 0 (1) 0   .

u u

v v

• ≥ ∧ • ≤ ∧

• ≥ ∧ • ≤

n p n p
n p n p

 (5) 

If it is not known which diamond contains p, the 
above condition can be tested for each diamond until 
the correct one is found. If one or more of the dot 
products is zero, p lies on an edge or a vertex 
common to two or more diamonds. 

In each tiling set, the edges of several diamonds 
may lie on the same geodesic plane. As an 
optimisation, these planes can be identified and used 
to determine the diamond containing a point p 
through fewer comparisons than implied by 
Equation(5). 

Points on edges and at vertices have multiple 
representations. For example, a vertex that is 
common to three diamonds has three coordinate 
representations (one for each diamond). 

For any point p on a diamond, a geodesic of 
constant u passes through the point. This relation is 
expressed as: 
 ( ) 0   .u u • =n p  

The value of u that satisfies this equation is the u 
coordinate of the point. Substituting the expression 
for the normal from Equation(3), then substituting 
the two edge points from Equation (1) and Equation 
(2), leads to: 

 ( ) ( ) ( )2tan ( ) tan( )
0   ,

u u uuS uS• + • + •

=

a p b p c p
 (6) 

which is quadratic in tan(uS); the coefficient vectors 
for Equation (6) are: 

 

( )
( )
( )
( )

( )
( )

2
0 3

0 2 1 3

1 2

0 3

0 2 1 3

2
0 3

cos ( )

cos( )

   ,

2 sin( ) cos( )

sin( )   ,

sin ( )   .

u

u

u

S

S

S S

S

S

= ×

− × + ×

+ ×

= − ×

+ × + ×

= ×

a p p

p p p p

p p

b p p

p p p p

c p p

 

If the point is in the relevant diamond [as 
confirmed by Equation (5)], then u is obtained from 
the quadratic root of Equation (6) that is between 0 
and tan(S). 

The value of the v coordinate is obtained in the 
same manner, with p1 and p3 interchanged; the 
coefficients are: 

 

( )
( )
( )
( )

( )
( )

2
0 1

0 2 3 1

3 2

0 1

0 2 3 1

2
0 1

cos ( )

cos( )

   ,

2 sin( ) cos( )

sin( )   ,

sin ( )   ,

v

v

v

S

S

S S

S

S

= ×

− × + ×

+ ×

= − ×

+ × + ×

= ×

a p p

p p p p

p p

b p p

p p p p

c p p

 

and the quadratic equation is: 

 ( ) ( ) ( )2tan ( ) tan( )
0   .

v v vvS vS• + • + •

=

a p b p c p  (7) 

Thus, for each diamond, there are two sets of 
constant vectors (au, bu, cu and av, bv, cv) that are 
used to obtain quadratic coefficients from a point p. 

Therefore, Equation (4) converts from diamond 
coordinates to Cartesian coordinates, and Equations 
(5), (6) and (7) convert from Cartesian coordinates 
to diamond coordinates. 

The conversions in Equations (6) and (7) also 
underlie the necessary texture mapping function 
discussed generally in Section 1 and specifically for 
diamonds in Section 6. 

The conversion from Cartesian coordinates to 
diamond coordinates adds significant capability to 
the diamond coordinate system, as an interactive 
graphics application illustrates. The screen 
coordinates corresponding to a mouse click can be 
converted to a ray in the view frustum. The 
intersection of this ray with a sphere is a point with 
determinable Cartesian coordinates, which can be 
converted to diamond coordinates to identify a texel 
in a texture array. The same considerations apply to 
ray-tracing. 

6 SUBDIVIDING DIAMONDS TO 
TEXELS 

A grid of geodesics of constant u and of constant v 
subdivides a diamond into an array of (non-
equilateral) sub-diamonds. Typically the values of u 
and v for a grid would be chosen to be equally 
spaced, and spaced such that there is a one-to-one 
correspondence between the sub-diamond 
quadrilaterals and the texture array texels. 

Thus, the diamond coordinates u and v are 
identical to the texture image coordinates u and v 
described in Section 1; the necessary texture 
mapping function is the identity function [as is 
usually true also for parametric surface patches 
(Foley et al. 1996; Watt and Watt, 1992)]. 
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Figure 7: Sphere Textured with the Tiling Set of Thirty; 
n = 256. 

Figure 6: Sphere Textured with the Tiling Set of Thirty; 
n = 16. 

Figure 5: Sphere with Tiling Set of Thirty; n = 4. 

For a grid of equally-spaced subdivisions, an 
important parameter is the number of sub-diamonds 
on each side of a diamond; this number is designated 
here as n. This number can be any positive integer, 
but is typically a power of 2, following from texture 
array sizes. 

Figure 5 shows the tiling set of thirty with 
diamonds subdivided by geodesics of constant u and 
v. For illustrative purposes, each diamond has four 
sub-diamonds on a side. Graphics systems 
commonly have an optimum size for texture arrays; 
256 pixels on each side are probably a minimum for 
practical use. As is discussed in Section 7, a smaller 
number of subdivisions can be useful for other 
purposes. 

Figure 6 shows a textured sphere with the tiling 
set of thirty; each diamond has 16 sub-diamonds on 
a side (thus, each texture array is 16x16). Many of 
the individual texels are clearly visible; with 
reference to Figure 5, various diamond vertices can 
be located. 

As high resolution is a desirable goal, Figure 7 
shows the same textured sphere with the same tiling 
set as Figure 6, but each diamond has 256 sub-
diamonds on a side. A sphere textured with any of 
the other four tiling sets and with the same texture 
array size would not appear noticeably different, 
unless the viewpoint were extremely close to the 
sphere. 

Figure 8 shows the texture array associated with 
one of the diamonds of Figure 7. Although the 
texture array is square, the rhombic arrangement 
shown gives the best planar representation of its 

image. This arrangement requires a linear 
transformation (skew and rotation) of the u and v 
coordinates and is for visualization of a texture array 
only; it is not an integral part of the texture mapping. 
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7 RENDERING WITH 
TRIANGLES 

For fast animation, curved surfaces are often 
approximated by meshes of polygons, usually 
triangles. Subdivision of diamonds leads readily to 
such an approximation. When the four edges of a 
sub-diamond are replaced by line segments, and the 
opposite vertices with large angles are connected by 
a line segment, the result is a pair of (non-coplanar) 
triangles. 

Figure 5 serves as an example because it could 
have been rendered this way. Each of the 16 sub-
diamonds on a diamond can be approximated by a 
pair of triangles. This example would lead to a 
sphere approximated by a mesh of 960 triangles. 

Thus, spherical diamonds can be subdivided to 
various levels for different purposes. At the finest 
level of subdivision, the resulting sub-diamonds 
correspond to texels. At a coarser level of 
subdivision, the sub-diamonds correspond to triangle 
pairs for fast rendering through a mesh of triangles. 
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