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Abstract: This paper presents a method for physical simulation of deformable closed surfaces over a network, which 
is suitable for realistic interactions between users and objects in a collaborative virtual environment (CVE). 
CVE's are being extensively used for training, design and gaming for several years. To demonstrate a 
deformable object in a CVE, we employ a real-time physical simulation of a uniform-tension-membrane, 
based on linear finite-element-discretization of the surface yielding a sparse linear system of equations, 
which is solved using the Runge-Kutta Fehlberg method. The proposed method introduces an architecture 
that distributes the computational load of physical simulation between each participant. Our approach 
requires a uniform-mesh representation of the simulated structure; therefore we designed and implemented a 
re-meshing algorithm that converts irregularly triangulated genus zero surfaces into a uniform triangular 
mesh with regular connectivity. The strength of our approach comes from the subdivision methodology that 
enables to use multi-resolution surfaces for graphical representation, physical simulation, and network 
transmission, without compromising simulation accuracy and visual quality.  

1 INTRODUCTION 

Collaborative Virtual Environments (CVE)’s are 
being extensively used for training, design and 
gaming for several years. They enable participants to 
get immersed into a Virtual Environment where they 
can perform a task or experience a story together. In 
most use cases such as gaming and education, 
current CVE’s are sufficient to address user 
expectations related to visual realism, animations 
and networking. However, CVE’s also involve 
substantial amount of interaction between the users 
and the objects in synthetic worlds, which should be 
visually appealing and physically realistic as well. 
Current CVE’s are mostly limited to avatar-avatar 
interaction or the object interactions are animated 
using offline techniques and they are commonly 
hard-coded into the application. Another recent 
approach is to use rigid body simulations together 
with inverse kinematics engines (Jorissen and 
Maarten Wijnants, 2005). Real-time physical 

simulation of deformable bodies in CVE’s will 
enable accurate replication of interaction with real 
world deformable objects and open a vast array of 
possible applications. One example is medical and 
engineering applications which require accurate 
simulations in real-time. 

 
Figure 1.1: First (a) and second (b) peers deforming a 
sample deformable model. (c) Colors red and blue denote 
domains of different peers in a collaborative deformation. 

In this paper, we are presenting a method for 
deformations on closed surfaces over a peer-to-peer 
network architecture (Figure 1.1).  
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2 RELATED WORK 

2.1 Collaborative and Distributed 
Network Virtual Environments 

DIVE (Hagsand, 1996) is one of the first Distributed 
Virtual Environments that allows participants to 
collaborate in a 3D virtual world which facilitates 
audio, video and text transmission for 
communication and interaction within the VE. 
Similarly, NPSNET (Macedonia, Zyda et al., 1994) 
is designed for military training and simulation for 
networked environments using Distributed 
Interactive Simulation Standard (DIS). MASSIVE is 
a VR conferencing system especially used for public 
participation and performance (Benford, Greenhalgh 
et al., 2001). VLNET allows multiple users 
represented by 3D virtual human actors to interact 
with each other and enables third parties to view the 
shared virtual environment from the Web using 
VRML(Thalmann, Babski et al., 1997). 

There are only a few systems that in particularly 
deal with the significance of physical simulation in 
collaborative virtual environments. A recent work by 
Jorissen (Jorissen and Maarten Wijnants, 2005), 
gives a detailed survey on state of the art of dynamic 
interactions and physical simulations in CVE’s. 
Jorissen et al. introduces a collaborative virtual 
environment, where the object-object interaction is 
allowed in addition to avatar-object and avatar-
avatar interactions using a non-commercial physics 
engine.  

There are few attempts to introduce deformable 
objects into CVE’s: Dequidt et al. (Dequidt, Grisoni 
et al., 2005) propose a system based on ghost objects 
to handle network latency. Ghost objects are 
associated to objects manipulated over the network 
and introduced into the client side to perform 
physical simulations asynchronously at each user. 

Collaborative Haptics Environments are also 
introduced to handle surgical training and 
simulations (Xiaojun, Bogsanyi et al., 2003). As 
haptic rendering must be performed at simulation 
rates higher than 1 KHz, most systems require 
dedicated hardware running on real-time operating 
systems (Zhou, Shen et al., 2004). Goncharenko et 
al. (Goncharenko, Svinin et al., 2004) report a 
distributed and collaborative haptic visualization of 
a 1-DOF crank model only possible on Intranets. 
They used a dedicated haptic communication library 
to satisfy real-time communication requirements of 
haptic rendering on a client-server architecture 
connected through Ethernet. 

2.2 Deformable Objects 

Visualization of object deformations is an important 
research area for over two decades with a large span 
of applications such as cloth, tissue modeling and 
virtual surgery. One set of approaches on the 
visualization of deformable models is non-physical 
and purely geometric techniques, most of which is 
classified as Free-Form-Deformations (Sederberg 
and Parry, 1986). Physics based approaches gained a 
popular attention by enabling cloth animations 
(Terzopoulos, Platt et al., 1987). Cloth animation is 
an extensive research area covering wide range of 
issues from physical simulation to collusion 
detection (Volino and Magnenat-Thalmann, 2006). 
Early examples of cloth animation using a linear 
model based on energy minimization, and 
continuing approaches using explicit integration 
schemes, are suffering from stability issues for large 
body deformations. Baraff and Witkin (Baraff and 
Witkin, 1998), introduced an implicit integration 
scheme for stable simulations using large time steps. 
On the other hand, real-time simulation of 
deformable models is an other challenge, and linear 
mass-spring models introduced at first (Desbrun, 
Peter Schröder et al., 1999). As an alternative, 
Boundary Element Method is introduced, which is 
inspired by Finite Element Method (FEM), however, 
considers only the surface of the model (James and 
Pai, 1999). Non-linear FEMs are not suitable for 
real-time simulations since they are computationally 
intensive, so deformable object simulations in virtual 
environments continued to use improved mass-
spring models (Kang and Cho, 2002). Also, pre-
computed models for real-time dynamic 
deformations are considered (Nikitin, Nikitina et al., 
2002). Since medical applications require real-time 
and accurate simulations some approaches used 
FEM to parameterize the mass-spring model to 
improve accuracy (Choi, Sun et al., 2004). 

3 NETWORK DEFORMABLE 
OBJECTS 

Our method applies a collaborative deformation on a 
linear membrane model over network, which can be 
used for simulation of deformable objects (tissue, 
organ, cloth) in CVEs.  

3.1 Geometric Model 

The proposed approach requires a uniform 
representation of the simulated structure. Restriction 
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on the genus of the model allows us to construct a 
regular 2D grid that corresponds to the surface of the 
model.  

The surface of any convex polyhedron is 
homeomorphic to a sphere and has Euler 
characteristic of two. Homeomorphic spaces are 
identical from the viewpoint of the topology 
therefore genus zero surfaces preserve their 
topological properties under spherical 
parameterization and can be mapped onto a convex 
regular polyhedron. 

3.1.1 Mesh Representation 

We have chosen Tetrahedron as the Domain for our 
mesh representation, since it has four equilateral 
triangular faces that can be represented as a 2D grid 
having (2n + 1) x (2n+1 + 1) nodes where, n is 
positive integer determining the number of vertices 
and will be referred as detail level (Figure 3.1). 

 
Figure 3.1: 2D Grid representation of a tetrahedron. 

3.1.2 Mesh Generation  

We propose an algorithm that converts irregularly 
triangulated genus zero surfaces into a uniform mesh 
with regular connectivity. Previous approach for 
constructing regular meshes with fixed and simple 
topology by Hoppe (Praun and Hoppe, 2003), 
generates a spherical parameterization of the surface 
and the domain. Surface, projected on the sphere, 
mapped on to the domain, and unfolded to generate 
the geometry image. We apply a similar procedure, 
but we introduce a different technique for spherical 
parameterization and model re-meshing. It allows 
adjusting the tradeoff between face area uniformity 
of the generated mesh, and preserving the accuracy 
with the original mesh. 

Given a triangle mesh M, the problem of 
spherical parameterization is to form a continuous 
invertible map φ : S→M from the unit sphere to the 
mesh (Praun and Hoppe, 2003). Spherical 
parameterization of both a regular tetrahedral 
domain D and an irregular input mesh M are 

necessary to generate Sphere to Mesh (S→M) and 
Sphere to Domain (S→D) mappings that will allow 
us to perform Mesh to Sphere and Sphere to Domain 
(M→S→D) transformation. 

Any convex polyhedron can easily be projected 
onto a unit sphere (Figure 3.2) by switching to 
spherical coordinate system (Θ, Φ, r) and setting a 
unit radius for all vertices (Gnomonic Projection), 
however translation between each mesh triangle and 
spherical triangle might introduce a certain amount 
of distortion.  

 
Figure 3.2: Gnomonic Projection of a tetrahedron.  

Previous approaches define a stretch norm to 
measure the stretch efficiency and conclude that 
minimizing the stretch norm is a non-linear 
optimization problem (Sander, Snyder et al., 2001; 
Praun and Hoppe, 2003). We attack this problem by 
a modification of a well known technique used for 
graph drawing. Graph drawing using force directed 
placement methods, which are also called spring-
embedders, distributes vertices evenly in the frame 
and minimize edge crossings while favoring 
uniformity of the edge lengths (Fruchterman and 
Reingold, 1991). Since we implemented a 
deformable physics engine that can handle mass 
spring systems efficiently, we introduce a variant of 
spring-embedders for stretch optimization.  

10,0,, <<≤≤∀×= CnNodesiixCx iinew

 (3.2)

A spring-embedder model is generated from the 
gnomonic projection of the domain. Every vertex 
has a constant mass, and springs are introduced 
between neighboring vertices. An external force 
field (3.1) is applied from the center of the domain 
that limits displacements of vertices on the unit 
sphere.  

Springs between the vertices tend to preserve 
initial edge lengths and resist movements that 
change the topology; however we need to establish a 
tension on these springs to perform stretch 
optimization.  

We scale down the positions of the vertices that 
are projected onto unit sphere (3.2), and an external 
force which is applied continuously expands the 
vertices onto the unit sphere again while producing a 
tension on the springs. Stiffness parameters are 

( ) nNodesiixxf iiExternal i
≤≤∀×−=

∧

0,1  (3.1) 
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updated continuously to achieve an area uniform 
tessellation over the unit sphere (Figure 3.3). 

 
Figure 3.3: (a) Gnomonic Projection of Tetrahedron.      
(b) Stretched Gnomonic Projection of Tetrahedron.  

Our proposed force model is a feasible stretch 
optimization technique for domain to sphere 
mapping; however, it is insufficient for mesh to 
sphere mappings where the projection of non-
convex polyhedron into a unit sphere results in edge 
crossings and does not preserve initial surface 
topology. We use a vertex displacement procedure 
(3.3) which is similar to the relaxation method of 
previous spherical parameterization approaches 
(Alexa, 2002) to overcome this problem (Figure 
3.4). 

 
Figure 3.4: (a) Irregular Input Mesh. (b) Stretched 
Gnomonic Projection of Input Mesh.  

3.1.3 Model Re-meshing  

Combining the spherical mappings mesh to sphere 
(M→S) and sphere to domain (S→D) to derive 
mesh to domain mapping (M→D), requires 
intersection of the sets on the sphere. However, 
transformed vertex coordinates of the mesh and 
domain might not intersect on the sphere, and 
vertices of the domain might fall inside of a mesh 
facet. For each vertex of the domain, intersecting 
face of the parameterized mesh should be found out 
and 3D coordinates of domain vertex should be 
computed by interpolating the vertices of the 
intersecting face (Figure 3.5). 

 
Figure 3.5: Intersecting Spherical Projections of 
Tetrahedral Domain and Input Mesh. 

Since computing the interpolated coordinates is 
costly, we introduce a fast method taking advantage 
of recent advances in graphics hardware using the 
GPU and frame buffer objects.  

 
Figure 3.6: Spherical projection of input mesh is, (a) 
rendered as 3D wireframe, (b) 3D colored surface, (c) 2D 
colored surface, and (d) 2D colored surface, where the 
original positions of vertices are used as color 
components.  

Using OpenGL and programmable shaders 
(GLSL), we render the faces of the parameterized 
mesh onto the frame buffer using the two 
dimensional spherical coordinates (Θ and Φ) of the 
transformed vertices. Initial Cartesian coordinates 
(x, y, and z) of the parameterized mesh vertices are 
attached to color attributes (r, g, and b) at the vertex 
shader, and inside of each face is filled with the 
interpolated Cartesian coordinates at the fragment 
level (Figure 3.6). Rendered image is then fetched 
from the frame buffer as a 2D texture and used like a 
lookup table to generate 3D coordinates of the 
domain vertices.  

 
Figure 3.7: Final comparison of (a) the input mesh with 
1444 vertices, and (b) the resulting regular mesh with 
8385 vertices. 
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3.1.4 Subdivision Scheme using Convolution 
Kernels 

Subdivision methodology is appropriate for our 
approach since it allows multi-resolution 
representation of a surface and fast switching 
between detail levels. It also favors numerical 
stability , so it is highly suitable for physical 
simulation of deformations using finite element and 
finite difference methods.  

We used a variant of butterfly subdivision 
scheme (Zorin, Peter Schröder et al., 1996) that 
generates a C1 smooth triangular mesh. Modified 
Butterfly Scheme is an interpolating subdivision 
scheme, where the original vertices (control points) 
are also the vertices of the refined surface and 
surface is interpolating to a limit surface. This 
behavior makes it possible to use surfaces with 
different resolutions for graphical representation, 
physical simulation, and network transmission, 
without compromising the integrity of simulation 
accuracy and the rendered image. 

 
Figure 3.8: Modified 2D Grid Structure. 

Given that we have a regular mesh representation as 
a grid structure, we introduce some modifications 
(Figure 3.8) to apply a fast and robust refinement 
strategy using modified butterfly scheme. Taking 
advantage of having a regular domain, we have no 
boundary or crease vertices, but there are four 
extraordinary vertices of valances three on the 
corners of the tetrahedral domain. However, if we 
duplicate the edges of these vertices, they can be 
treated as regular vertices. Since the duplicate edges 
are symmetric to existing edges, resulting odd 
vertices will have same values. This modification 
allows us to use the mask for interior odd vertices 
with regular neighbors for all the grid nodes. We 
also introduce offsets to 2D grid representation. 
Offsets are the copies of grid nodes, assuring 

existing neighboring properties and they are kept 
updated before the convolution process.  

  
Figure 3.9: (a) Modified 2D Grid Structure. (b) 
Application of mask for interior odd vertices with regular 
neighbors. (c) Equivalent convolution kernel. (d) Three 
convolution kernels generated for three edges. 

Having a 2D grid representation and a mask with 
constant coefficients, odd vertices can be generated 
by consecutive convolutions with three kernels 
created by rotating the subdivision mask three times 
(Figure 3.9).  

 
Figure 3.10: Comparison of resulting mesh refined by 
subdivision and rendered at different level of details: (a) 
8335 vertices, (b) 33153 vertices, (c) 131841 vertices. 

Necessity for the grid offsets arises from the 
application of the mask to the grid boundaries, and 
modified subdivision scheme requires first neighbors 
of even vertices that are next to generated vertex. 
Offset width does not change according to the grid 
dimensions and time required for the update of the 
offsets is negligible. After the convolution of the nth 
level subdivision surface three times, resulting 2D 
grids are merged to generate n+1th level subdivision 
surface having (2n+1 + 1) x (2n+2 + 1) nodes (Figure 
3.10). 

3.2 Physical Model 

Physical simulation of deformable objects is an 
extended research area, where several methods are 

REAL-TIME DEFORMABLE OBJECTS FOR COLLABORATIVE VIRTUAL ENVIRONMENTS

125



 

present, varying from fast and simple methods 
favoring speed and scalability, to much more 
complex methods favoring accuracy and stability. 
Linear methods such as mass-spring models for 
dynamic deformations are suitable for use in real-
time applications; however, they are not capable of 
handling large deformations and small time steps 
which are required to guarantee stability (Desbrun, 
Peter Schröder et al., 1999; Georgii and 
Westermann, 2005). On the other hand, non-linear 
models incorporating large viscoelastic and plastic 
deformations are computationally intensive (Reddy, 
2004), and despite their physical accuracy, real-time 
simulation of large deformations is only possible 
with massively parallel computers. 

For the demonstration of the deformable object 
on a collaborative virtual environment, we use a 
real-time physical simulation of a uniform-tension-
membrane, based on linear finite-elements. We 
introduced finite element discretization to form the 
global stiffness matrix, which is updated frequently 
to handle large deformations with enhanced 
accuracy and we used Runge-Kutta-Fehlberg 
method for integration to achieve bigger time steps 
and improved stability (Baraff and Witkin, 2003).  

3.2.1 Linear Finite-Element Model  

Application of the finite-element method for the 
wave equation (Bathe and Bathe, 1996; Reddy, 
2004), describing the time-dependent small 
deformations of a uniform-tension membrane results 
in a standard system of equations (Hughes, 1987): 

where, x is the normal deformation of each node, M 
is the diagonal mass matrix, externalf  is the external 
force vector due to user interactions, B is the 
diagonal damping matrix, and K is the stiffness 
matrix. In our implementation, we separate normal 
deformation and the velocity of each node to 
improve the stability of the Runge-Kutta method 
used to solve the linear system.  
Namely, we have 

and the resulting equation of motion: 

The finite element method works well with an 
arbitrary triangulation of a surface as well as 
proposed regular grid structure.  In our 
implementation we apply the damping matrix 
directly on the nodal velocities, so as to model a 
permeable membrane placed in a liquid. In some 
standard formulations, the damping is applied to 
relative nodal velocities. The two yields in similar 
solutions, however our implementation results in 

simpler sparse structures and faster simulation times 
via improved stability of nodal damping. 

3.3 Network Model 

There are several network topologies used for 
Distributed Virtual Environments. Our approach is 
implemented with a peer-to-peer architecture which 
is operational on local and wide area networks. User 
Datagram Protocol (UDP) is used for 
communication, since speed and bandwidth 
requirements are essential for a real time simulation 
and have a greater priority over packet integrity. 

Peers can run on different computers on the 
network or can be started in the same application as 
separate threads. We don’t introduce any dedicated 
servers, and peer nodes are functioning as both 
clients and servers. Every peer has a listening port 
and address for incoming connection requests. The 
peer which started to run CVE is required to act as a 
master for coordinating partitioning of the 
simulation. Partitioning occurs after sending a 
request by a participant which selects a face on the 
mesh and identifies it as the point of interest where 
the peer is going to introduce an external force. 
Participants can enter the CVE also as a viewer, 
where they do not interact with the model, but can 
observe the simulation. 

3.4 Partitioning and Synchronization 
of Physical and Geometric Models 
through the Network 

In our approach, partitioning the deformable object 
and synchronizing among peers is an important 
issue, since it enables collaboration in the virtual 
environments with distributed computational load. 
For an efficient communication and separation, we 
introduce a quad tree based data structure over 2D 
grid structure proposed on the previous sections. 

 
Figure 3.11: Sample tree structure for tetrahedral domain 
having depth of two. 

Quad-tree structure (Figure 3.11) is a natural 
formation for the tetrahedral domain, and can be 
divided hierarchically. Tree nodes are transferred 
efficiently via network since a tree node contains a 

externalfKxxBxM +−−= &&&  (3.4) 

vx =&  (3.5)

externalfKxBvvM +−−=&  (3.6)
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range identifier which is actually the combination of 
upper left and lower right node index numbers, and 
state information of corresponding region as a 2D 
array. Minimum depth level for the tree can be 
adjusted to keep the packaged tree node size smaller 
then the maximum packet size allowed by the 
network protocol. 

Domain divisions are designed upon a quad tree 
based structure in the figure (Figure 3.11). While 
dividing the domain into sub-domains, equivalence 
of the number of shared grid nodes is an important 
criterion. However, keeping the domain boundaries 
shorter for an accurate synchronization of the 
physical simulation is essential, and keeping the 
fragmentation minimal for efficient network 
transmission is also important.  

At the beginning of the simulation, each client 
starts to simulate the whole domain independently. 
When a connection invoked, domain is partitioned 
according to the points of interest where the forces 
are applied by the clients. Nodes at the domain 
boundaries are treated as boundary conditions, and 
the dynamical simulation of the local domain 
performed consequently at the each client. 

4 RESULTS 

Our graphical sub-system can efficiently handle very 
large meshes, taking advantage of regular-mesh and 
subdivision methodology as presented in the 
previous chapters (Figure 4.1). Our system renders 
meshes using the Phong shading model at interactive 
frame rates (25 fps) with resolution up to 100K 
polygons on an AMD Opteron 2.6 GHz PC equipped 
with NVIDIA Quadro FX4500 GPU. We 
implemented Phong shading model on the GPU. 
Vertex positions are uploaded to texture memory 
and vertex normals are computed on the fly using 
texture lookups. 

The proposed network communication model 
can handle synchronous simulation among two peers 
of a surface up to 10K vertices over the local area 
network. This level has a bandwidth requirement of 
20 M Bits per second without any compression.  

We also tested the performance of the system by 
comparing computational load and number of 
simulated nodes. Our deformation engine can handle 
multi-resolution meshes up to 30K nodes, and 
maintains interactivity at less than %30 CPU 
utilization. Partitioning the domain between clients 
reduces computational load by 45% on the average, 
and increases the running speed by a factor of 1.8, 
depending on the partitioning ratio.  

 
Figure 4.1: (a) One peer and (b) two-peers collaborative 
network deformation of a sample model having a regular 
mesh structure. 

5 CONCLUSION  

We have proposed a new technique for deformable 
body simulations in the field of collaborative virtual 
environments and introduced several improvements 
over the methods we adopted. We found that 
adaptive refinement and multilevel meshing 
strategies are promising research domains that can 
be further exploited for increased network efficiency 
and better physical accuracy for CVE’s. 

Furthermore, we showed that the partitioning of 
physical simulation domain has a considerable effect 
on performance, and makes real-time simulation 
possible in scenarios where only one peer is 
incapable of handling the computational load. 

As future work, we consider on the fly 
compression which might significantly reduce the 
bandwidth requirement but can degrade overall 
performance because of the additional computational 
cost. Optimization of the system for the Internet is 
out of the scope of this paper, but it is safe to predict 
that the network lag on public networks will have an 
impact on performance. Our method needs to be 
optimized for the Internet, and tested over large 
physical distances to overcome possible negative 
network effects. 
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